|
|
@@ -132,8 +132,8 @@ The superscript in parenthesis denotes the current layer. For example $a_i^{(l)}
|
|
|
&= \pd[w^{(1)}]\left(\avgsum[i, n] (a_i^{(1)} - e_i)^2\right) =\\
|
|
|
&= \avgsum[i, n] \pd[w^{(1)}]\left((a_i^{(1)} - e_i)^2\right) =\\
|
|
|
&= \avgsum[i, n] 2(a_i^{(1)} - e_i)\pd[w^{(1)}]a_i^{(1)} =\\
|
|
|
- &= \avgsum[i, n] 2(\pd[a_i^{(1)}]C^{(2)})x_i \\
|
|
|
- \pd[b^{1}]C^{(1)} &= \avgsum[i, n] 2(\pd[a_i^{(1)}]C^{(2)})
|
|
|
+ &= \avgsum[i, n] 2(\pd[a_i^{(1)}]C^{(2)})a_i^{(1)}(1 - a_i^{(1)})x_i \\
|
|
|
+ \pd[b^{1}]C^{(1)} &= \avgsum[i, n] 2(\pd[a_i^{(1)}]C^{(2)})a_i^{(1)}(1 - a_i^{(1)})
|
|
|
\end{align}
|
|
|
|
|
|
\subsection{Arbitrary Neurons Model with 1 input}
|