|
@@ -11,8 +11,8 @@
|
|
|
\begin{tikzpicture}
|
|
|
\draw[-stealth] (\minZ,0) -- (\maxZ,0) node[above]{$z$};
|
|
|
\draw[-stealth] (0,\minY) -- (0,\maxY) node[above]{$x$};
|
|
|
- \draw[fill] (\eyeZ, \eyeY) circle (.5ex) node[above]{eye $E$};
|
|
|
- \draw[dotted,thick] (\screenZ, \minY) -- (\screenZ, \maxY) node[above]{screen};
|
|
|
+ \draw[fill] (\eyeZ, \eyeY) circle (.5ex) node[above]{eye ($E$)};
|
|
|
+ \draw[dotted,thick] (\screenZ, \minY) -- (\screenZ, \maxY) node[above]{screen ($S_z$)};
|
|
|
\draw[dotted] (\eyeZ, \eyeY) -- (\pZ, \pY);
|
|
|
\draw[dotted] (\eyeZ, \eyeY) -- (\pZ, -\pY);
|
|
|
\draw[fill] (\pZ, \pY) circle (.5ex) node[above]{$p_1$};
|
|
@@ -43,4 +43,4 @@ If we assume that $E = (0, 0, 0)$ and $S_z = 1$
|
|
|
& p_x' = \frac{p_x}{p_z} \\
|
|
|
\end{align}
|
|
|
|
|
|
-\end{document}
|
|
|
+\end{document}
|