|
@@ -97,7 +97,7 @@ The main effort goes towards finding $T^{-1}$
|
|
\end{bmatrix}
|
|
\end{bmatrix}
|
|
\end{align}
|
|
\end{align}
|
|
|
|
|
|
-And the final formula you need to find $(u_1, u_2, u_3)$ given points $v_1, v_2, v_3, p$~is
|
|
|
|
|
|
+And the final formula you need to find $(u_1, u_2, u_3)$ given the points $v_1, v_2, v_3, p$~is
|
|
|
|
|
|
\begin{align}
|
|
\begin{align}
|
|
u_1 &= \frac{(y_2 - y_3)(x_p - x_3) + (x_3 - x_2)(y_p - y_3)}{(x_1 - x_3)(y_2 - y_3) - (x_2 - x_3)(y_1 - y_3)} \\
|
|
u_1 &= \frac{(y_2 - y_3)(x_p - x_3) + (x_3 - x_2)(y_p - y_3)}{(x_1 - x_3)(y_2 - y_3) - (x_2 - x_3)(y_1 - y_3)} \\
|