#ifndef DFPSR_SPRITE_ENGINE #define DFPSR_SPRITE_ENGINE #include "../../DFPSR/includeFramework.h" #include "orthoAPI.h" #include "lightAPI.h" #include #include namespace dsr { // TODO: Make into a constructor for each vector type inline FVector3D parseFVector3D(const ReadableString& content) { List args = string_split(content, U','); if (args.length() != 3) { printText("Expected a vector of three decimal values.\n"); return FVector3D(); } else { return FVector3D(string_toDouble(args[0]), string_toDouble(args[1]), string_toDouble(args[2])); } } // A 2D image with depth and normal images for deferred light // To be rendered into images in advance for maximum detail level struct SpriteInstance { public: int typeIndex; Direction direction; IVector3D location; // Mini-tile coordinates bool shadowCasting; public: SpriteInstance(int typeIndex, Direction direction, const IVector3D& location, bool shadowCasting) : typeIndex(typeIndex), direction(direction), location(location), shadowCasting(shadowCasting) {} }; struct DenseModelImpl; using DenseModel = std::shared_ptr; DenseModel DenseModel_create(const Model& original); // A 3D model that can be rotated freely // To be rendered during game-play to allow free rotation struct ModelInstance { public: int typeIndex; Transform3D location; // 3D tile coordinates with translation and 3-axis rotation allowed public: ModelInstance(int typeIndex, const Transform3D& location) : typeIndex(typeIndex), location(location) {} }; class SpriteWorldImpl; using SpriteWorld = std::shared_ptr; // Sprite types int spriteWorld_loadSpriteTypeFromFile(const String& folderPath, const String& spriteName); int spriteWorld_getSpriteTypeCount(); // Model types int spriteWorld_loadModelTypeFromFile(const String& folderPath, const String& visibleModelName, const String& shadowModelName); int spriteWorld_getModelTypeCount(); SpriteWorld spriteWorld_create(OrthoSystem ortho, int shadowResolution); void spriteWorld_addBackgroundSprite(SpriteWorld& world, const SpriteInstance& sprite); void spriteWorld_addBackgroundModel(SpriteWorld& world, const ModelInstance& instance); void spriteWorld_addTemporarySprite(SpriteWorld& world, const SpriteInstance& sprite); void spriteWorld_addTemporaryModel(SpriteWorld& world, const ModelInstance& instance); // Create a point light that only exists until the next call to spriteWorld_clearTemporary. // position is in tile unit world-space. void spriteWorld_createTemporary_pointLight(SpriteWorld& world, const FVector3D position, float radius, float intensity, ColorRgbI32 color, bool shadowCasting); void spriteWorld_createTemporary_directedLight(SpriteWorld& world, const FVector3D direction, float intensity, ColorRgbI32 color); void spriteWorld_clearTemporary(SpriteWorld& world); // Draw the world using the current camera at the center of colorTarget void spriteWorld_draw(SpriteWorld& world, AlignedImageRgbaU8& colorTarget); // Draw debug information void spriteWorld_debug_octrees(SpriteWorld& world, AlignedImageRgbaU8& colorTarget); // The result is an approximation in mini-tile units. // The 3D system does not align with screen pixels for less than whole tile units. IVector3D spriteWorld_findGroundAtPixel(SpriteWorld& world, const AlignedImageRgbaU8& colorBuffer, const IVector2D& pixelLocation); // Set the camera's location directly void spriteWorld_setCameraLocation(SpriteWorld& world, const IVector3D miniTileLocation); // Approximates a mini-tile offset along the ground from the given pixel offset and moves the camera accordingly // If the offset is too small, the camera might not move at all void spriteWorld_moveCameraInPixels(SpriteWorld& world, const IVector2D& pixelOffset); // Get internal buffers after rendering. // Reading before having drawn the world for the first time will return null because the world does not yet know the target resolution. // By not being a part of rendering itself, it cannot go back in time and speed up rendering, so only use for debugging. // TODO: Make another feature for actually disabling dynamic light on low-end machines. AlignedImageRgbaU8 spriteWorld_getDiffuseBuffer(SpriteWorld& world); OrderedImageRgbaU8 spriteWorld_getNormalBuffer(SpriteWorld& world); OrderedImageRgbaU8 spriteWorld_getLightBuffer(SpriteWorld& world); AlignedImageF32 spriteWorld_getHeightBuffer(SpriteWorld& world); // Access the index of the camera's fixed direction // This is not an index selecting the camera itself, only selecting the viewing angle // TODO: Implement bound checks or a system that's easier to understand. int spriteWorld_getCameraDirectionIndex(SpriteWorld& world); void spriteWorld_setCameraDirectionIndex(SpriteWorld& world, int index); // Pre-conditions: // The model should be pre-transformed so that it can be rendered at the world origin // Textures must be converted into vertex colors or else they will simply be ignored // Enabling debug will save another file using a *Debug.png prefix with additional information // Use it to find flaws in generated shadow shapes that are hard to see in raw data // TODO: Hide OrthoSystem or expose it safely void sprite_generateFromModel(const Model& visibleModel, const Model& shadowModel, const OrthoSystem& ortho, const String& targetPath, int cameraAngles, bool debug = false); // A simpler version writing the result to an image and a string instead of saving to files. void sprite_generateFromModel(ImageRgbaU8& targetAtlas, String& targetConfigText, const Model& visibleModel, const Model& shadowModel, const OrthoSystem& ortho, const String& targetPath, int cameraAngles); } #endif