// zlib open source license // // Copyright (c) 2017 to 2023 David Forsgren Piuva // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. #ifndef DFPSR_MATH_SCALAR #define DFPSR_MATH_SCALAR #include namespace dsr { // A minimum function that can take more than two arguments. // Post-condition: Returns the smallest of all given values, which must be comparable using the < operator and have the same type. template inline T min(const T &a, const T &b) { return (a < b) ? a : b; } template inline T min(const T &a, const T &b, TAIL... tail) { return min(min(a, b), tail...); } // A maximum function that can take more than two arguments. // Post-condition: Returns the largest of all given values, which must be comparable using the > operator and have the same type. template inline T max(const T &a, const T &b) { return (a > b) ? a : b; } template inline T max(const T &a, const T &b, TAIL... tail) { return max(max(a, b), tail...); } // Preconditions: // 0 <= a <= 255 // 0 <= b <= 255 // Postconditions: // Returns the normalized multiplication of a and b, where the 0..255 range represents decimal values from 0.0 to 1.0. // The result may not be less than zero or larger than any of the inputs. // Examples: // mulByte_8(0, 0) = 0 // mulByte_8(x, 0) = 0 // mulByte_8(0, x) = 0 // mulByte_8(x, 255) = x // mulByte_8(255, x) = x // mulByte_8(255, 255) = 255 static inline uint32_t mulByte_8(uint32_t a, uint32_t b) { // Approximate the reciprocal of an unsigned byte's maximum value 255 for normalization // 256³ / 255 ≈ 65793 // Truncation goes down, so add half a unit before rounding to get the closest value // 2^24 / 2 = 8388608 // No overflow for unsigned 32-bit integers // 255² * 65793 + 8388608 = 4286578433 < 2^32 return (a * b * 65793 + 8388608) >> 24; } // Returns a modulo b where 0 <= a < b inline int signedModulo(int a, int b) { int result = 0; if (b > 0) { if (a >= 0) { result = a % b; // Simple modulo } else { result = (b - (-a % b)) % b; // Negative modulo } } return result; } inline int roundUp(int size, int alignment) { return size + (alignment - 1) - signedModulo(size - 1, alignment); } inline int roundDown(int size, int alignment) { return size - signedModulo(size, alignment); } inline float absDiff(float a, float b) { float result = a - b; if (result < 0.0f) { result = -result; } return result; } inline uint8_t absDiff(uint8_t a, uint8_t b) { int result = (int)a - (int)b; if (result < 0) { result = -result; } return (uint8_t)result; } inline uint16_t absDiff(uint16_t a, uint16_t b) { int result = (int)a - (int)b; if (result < 0) { result = -result; } return (uint16_t)result; } // Allowing compilation on older C++ versions // Only use for trivial types if you want to avoid cloning and destruction template inline void swap(T &a, T &b) { T temp = a; a = b; b = temp; } // More compact than min(a, b) when reading from the target template inline void replaceWithSmaller(T& target, T source) { if (source < target) { target = source; } } // More compact than max(a, b) when reading from the target template inline void replaceWithLarger(T& target, T source) { if (source > target) { target = source; } } // True iff high and low bytes are equal // Equivalent to value % 257 == 0 because A + B * 256 = A * 257 when A = B. inline bool isUniformByteU16(uint16_t value) { return (value & 0x00FF) == ((value & 0xFF00) >> 8); } // A special rounding used for triangle rasterization inline int64_t safeRoundInt64(float value) { int64_t result = floor(value); if (value <= -1048576.0f || value >= 1048576.0f) { result = 0; } if (value < 0.0f) { result--; } return result; } } #endif