// zlib open source license // // Copyright (c) 2017 to 2025 David Forsgren Piuva // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // Gets access to private members by making them public for the whole module #define DSR_INTERNAL_ACCESS #include #include #include #include #include #include #include #include #include "stringAPI.h" #include "../api/fileAPI.h" #include "../settings.h" using namespace dsr; // The print buffer keeps its buffer size from previous printing to avoid reallocating memory every time something is printed. // It is stored separatelly for each calling thread to avoid conflicts. static thread_local String printBuffer; String &dsr::string_getPrintBuffer() { return printBuffer; } static void atomic_append_ascii(String &target, const char* source); static void atomic_append_readable(String &target, const ReadableString& source); static void atomic_append_utf32(String &target, const DsrChar* source); static intptr_t strlen_utf32(const DsrChar *content) { intptr_t length = 0; while (content[length] != 0) { length++; } return length; } static char toAscii(DsrChar c) { if (c > 127) { return '?'; } else { return c; } } ReadableString::ReadableString(const DsrChar *content) : view(content, strlen_utf32(content)) {} String::String() {} String::String(const char* source) { atomic_append_ascii(*this, source); } String::String(const DsrChar* source) { atomic_append_utf32(*this, source); } String& Printable::toStream(String& target) const { return this->toStreamIndented(target, U""); } String Printable::toStringIndented(const ReadableString& indentation) const { String result; this->toStreamIndented(result, indentation); return result; } String Printable::toString() const { return this->toStringIndented(U""); } Printable::~Printable() {} // TODO: Handle the remaining Unicode characters after ȳ (563). DsrChar dsr::character_upperCase(DsrChar character) { if (U'a' <= character && character <= U'z') { // a (97) to z (122) Ascii return character - (U'a' - U'A'); } else if (U'à' <= character && character <= U'ö') { // à (224) to ö (246) Latin-1 return character - (U'à' - U'À'); } else if (U'ø' <= character && character <= U'þ') { // ø (248) to þ (254) Latin-1 return character - (U'ø' - U'Ø'); } else if (character == U'ÿ') { // ÿ (255) Latin Extended-A return U'Ÿ'; // Ÿ (376) } else if (U'Ā' <= character && character <= U'ķ') { // Ā (256) to ķ (311) Latin Extended-A return character & ~DsrChar(1); } else if (U'Ĺ' <= character && character <= U'ň' && !(character & 1)) { // Even from Ĺ (313) to ň (328) Latin Extended-A return character - 1; } else if (U'Ŋ' <= character && character <= U'ŷ') { // Ŋ (330) to ŷ (375) Latin Extended-A return character & ~DsrChar(1); } else if (character == U'ź') { // ź (378) Latin Extended-A return U'Ź'; // Ź (377) } else if (character == U'ż') { // ż (380) Latin Extended-A return U'Ż'; // Ż (379) } else if (character == U'ž') { // ž (382) Latin Extended-A return U'Ž'; // Ž (381) } else if (character == U'ƃ') { // ƃ (387) Latin Extended-B return U'Ƃ'; // Ƃ (386) } else if (character == U'ƅ') { // ƅ (389) Latin Extended-B return U'Ƅ'; // Ƅ (388) } else if (character == U'ƈ') { // ƈ (392) Latin Extended-B return U'Ƈ'; // Ƈ (391) } else if (character == U'ƌ') { // ƌ (396) Latin Extended-B return U'Ƌ'; // Ƌ (395) } else if (character == U'ƒ') { // ƒ (402) Latin Extended-B return U'Ƒ'; // Ƒ (401) } else if (character == U'ƙ') { // ƙ (409) Latin Extended-B return U'Ƙ'; // Ƙ (408) } else if (character == U'ơ') { // ơ (417) Latin Extended-B return U'Ơ'; // Ơ (416) } else if (character == U'ƣ') { // ƣ (419) Latin Extended-B return U'Ƣ'; // Ƣ (418) } else if (character == U'ƥ') { // ƥ (421) Latin Extended-B return U'Ƥ'; // Ƥ (420) } else if (character == U'ƨ') { // ƨ (424) Latin Extended-B return U'Ƨ'; // Ƨ (423) } else if (character == U'ƭ') { // ƭ (429) Latin Extended-B return U'Ƭ'; // Ƭ (428) } else if (character == U'ư') { // ư (432) Latin Extended-B return U'Ư'; // Ư (431) } else if (character == U'ƴ') { // ƴ (436) Latin Extended-B return U'Ƴ'; // Ƴ (435) } else if (character == U'ƶ') { // ƶ (438) Latin Extended-B return U'Ƶ'; // Ƶ (437) } else if (character == U'ƹ') { // ƹ (441) Latin Extended-B return U'Ƹ'; // Ƹ (440) } else if (character == U'ƽ') { // ƽ (445) Latin Extended-B return U'Ƽ'; // Ƽ (444) } else if (character == U'dž' || character == U'Dž') { // dž, Dž (454, 453) Latin Extended-B return U'DŽ'; // DŽ (454) } else if (character == U'lj' || character == U'Lj') { // lj, Lj (457, 456) Latin Extended-B return U'LJ'; // LJ (457) } else if (character == U'nj' || character == U'Nj') { // nj, Nj (460, 459) Latin Extended-B return U'NJ'; // NJ (460) } else if (U'Ǎ' <= character && character <= U'ǜ' && !(character & 1)) { // Even from Ǎ (461) to ǜ (476) Latin Extended-B Pinyin return character - 1; // Unhandled: ǝ (477) } else if (U'Ǟ' <= character && character <= U'ǯ') { // Ǟ (478) to ǯ (495) Latin Extended-B return character & ~DsrChar(1); // Unhandled: ǰ (496) } else if (character == U'dz' || character == U'Dz') { // dž, Dž (499, 498) Latin Extended-B return U'DZ'; // DŽ (497) } else if (character == U'ǵ') { // ǵ (501) Latin Extended-B return U'Ǵ'; // Ǵ (500) // Unhandled: Ƕ Ƿ } else if (U'Ǹ' <= character && character <= U'ȳ') { // Ǹ (504) to ȳ (563) Latin Extended-B return character & ~DsrChar(1); } else { return character; } } DsrChar dsr::character_lowerCase(DsrChar character) { if (U'A' <= character && character <= U'Z') { // A (65) to Z (90) Ascii return character + (U'a' - U'A'); } else if (U'À' <= character && character <= U'Ö') { // À (192) to Ö (214) Latin-1 return character + (U'à' - U'À'); } else if (U'Ø' <= character && character <= U'Þ') { // Ø (216) to Þ (222) Latin-1 return character + (U'ø' - U'Ø'); } else if (character == U'Ÿ') { // Ÿ (376) Latin Extended-A return U'ÿ'; // ÿ (255) } else if (U'Ā' <= character && character <= U'ķ') { // Ā (256) to ķ (311) Latin Extended-A return character | DsrChar(1); } else if (U'Ĺ' <= character && character <= U'ň' && character & 1) { // Odd from Ĺ (313) to ň (328) Latin Extended-A return character + 1; } else if (U'Ŋ' <= character && character <= U'ŷ') { // Ŋ (330) to ŷ (375) Latin Extended-A return character | DsrChar(1); } else if (character == U'Ź') { // Ź (377) Latin Extended-A return U'ź'; // ź (378) } else if (character == U'Ż') { // Ż (379) Latin Extended-A return U'ż'; // ż (380) } else if (character == U'Ž') { // Ž (381) Latin Extended-A return U'ž'; // ž (382) } else if (character == U'Ƃ') { // Ƃ (386) Latin Extended-B return U'ƃ'; // ƃ (387) } else if (character == U'Ƅ') { // Ƅ (388) Latin Extended-B return U'ƅ'; // ƅ (389) } else if (character == U'Ƈ') { // Ƈ (391) Latin Extended-B return U'ƈ'; // ƈ (392) } else if (character == U'Ƌ') { // Ƌ (395) Latin Extended-B return U'ƌ'; // ƌ (396) } else if (character == U'Ƒ') { // Ƒ (401) Latin Extended-B return U'ƒ'; // ƒ (402) } else if (character == U'Ƙ') { // Ƙ (408) Latin Extended-B return U'ƙ'; // ƙ (409) } else if (character == U'Ơ') { // Ơ (416) Latin Extended-B return U'ơ'; // ơ (417) } else if (character == U'Ƣ') { // Ƣ (418) Latin Extended-B return U'ƣ'; // ƣ (419) } else if (character == U'Ƥ') { // Ƥ (420) Latin Extended-B return U'ƥ'; // ƥ (421) } else if (character == U'Ƨ') { // Ƨ (423) Latin Extended-B return U'ƨ'; // ƨ (424) } else if (character == U'Ƭ') { // Ƭ (428) Latin Extended-B return U'ƭ'; // ƭ (429) } else if (character == U'Ư') { // Ư (431) Latin Extended-B return U'ư'; // ư (432) } else if (character == U'Ƴ') { // Ƴ (435) Latin Extended-B return U'ƴ'; // ƴ (436) } else if (character == U'Ƶ') { // Ƶ (437) Latin Extended-B return U'ƶ'; // ƶ (438) } else if (character == U'Ƹ') { // Ƹ (440) Latin Extended-B return U'ƹ'; // ƹ (441) } else if (character == U'Ƽ') { // Ƽ (444) Latin Extended-B return U'ƽ'; // ƽ (445) } else if (character == U'DŽ' || character == U'Dž') { // DŽ, Dž (452, 453) Latin Extended-B return U'dž'; // dž (454) } else if (character == U'LJ' || character == U'Lj') { // LJ, Lj (455, 456) Latin Extended-B return U'lj'; // lj (457) } else if (character == U'NJ' || character == U'Nj') { // NJ, Nj (458, 459) Latin Extended-B return U'nj'; // nj (460) } else if (U'Ǎ' <= character && character <= U'ǜ' && character & 1) { // Odd from Ǎ (461) to ǜ (476) Latin Extended-B Pinyin return character + 1; } else if (U'Ǟ' <= character && character <= U'ǯ') { // Ǟ (478) to ǯ (495) Latin Extended-B return character & DsrChar(1); } else if (character == U'DZ' || character == U'Dz') { // DŽ, Dž (497, 498) Latin Extended-B return U'dz'; // DŽdz499) } else if (character == U'Ǵ') { // Ǵ (500) Latin Extended-B return U'ǵ'; // ǵ (501) } else if (U'Ǹ' <= character && character <= U'ȳ') { // Ǹ (504) to ȳ (563) Latin Extended-B return character & DsrChar(1); } else { return character; } } String dsr::string_upperCase(const ReadableString &text) { String result; string_reserve(result, text.view.length); for (intptr_t i = 0; i < text.view.length; i++) { string_appendChar(result, character_upperCase(text[i])); } return result; } String dsr::string_lowerCase(const ReadableString &text) { String result; string_reserve(result, text.view.length); for (intptr_t i = 0; i < text.view.length; i++) { string_appendChar(result, character_lowerCase(text[i])); } return result; } bool dsr::string_match(const ReadableString& a, const ReadableString& b) { if (a.view.length != b.view.length) { return false; } else { for (intptr_t i = 0; i < a.view.length; i++) { if (a[i] != b[i]) { return false; } } return true; } } bool dsr::string_caseInsensitiveMatch(const ReadableString& a, const ReadableString& b) { if (a.view.length != b.view.length) { return false; } else { for (intptr_t i = 0; i < a.view.length; i++) { if (character_upperCase(a[i]) != character_upperCase(b[i])) { return false; } } return true; } } static intptr_t findFirstNonWhite(const ReadableString &text) { for (intptr_t i = 0; i < text.view.length; i++) { DsrChar c = text[i]; if (!character_isWhiteSpace(c)) { return i; } } return -1; } static intptr_t findLastNonWhite(const ReadableString &text) { for (intptr_t i = text.view.length - 1; i >= 0; i--) { DsrChar c = text[i]; if (!character_isWhiteSpace(c)) { return i; } } return -1; } // Allow passing literals without allocating heap memory for the result ReadableString dsr::string_removeOuterWhiteSpace(const ReadableString &text) { intptr_t first = findFirstNonWhite(text); intptr_t last = findLastNonWhite(text); if (first == -1) { // Only white space return ReadableString(); } else { // Subset return string_inclusiveRange(text, first, last); } } String dsr::string_mangleQuote(const ReadableString &rawText) { String result; string_reserve(result, rawText.view.length + 2); string_appendChar(result, U'\"'); // Begin quote for (intptr_t i = 0; i < rawText.view.length; i++) { DsrChar c = rawText[i]; if (c == U'\"') { // Double quote string_append(result, U"\\\""); } else if (c == U'\\') { // Backslash string_append(result, U"\\\\"); } else if (c == U'\a') { // Audible bell string_append(result, U"\\a"); } else if (c == U'\b') { // Backspace string_append(result, U"\\b"); } else if (c == U'\f') { // Form feed string_append(result, U"\\f"); } else if (c == U'\n') { // Line feed string_append(result, U"\\n"); } else if (c == U'\r') { // Carriage return string_append(result, U"\\r"); } else if (c == U'\t') { // Horizontal tab string_append(result, U"\\t"); } else if (c == U'\v') { // Vertical tab string_append(result, U"\\v"); } else if (c == U'\0') { // Null terminator string_append(result, U"\\0"); } else { string_appendChar(result, c); } } string_appendChar(result, U'\"'); // End quote return result; } String dsr::string_unmangleQuote(const ReadableString& mangledText) { intptr_t firstQuote = string_findFirst(mangledText, '\"'); intptr_t lastQuote = string_findLast(mangledText, '\"'); String result; if (firstQuote == -1 || lastQuote == -1 || firstQuote == lastQuote) { throwError(U"Cannot unmangle using string_unmangleQuote without beginning and ending with quote signs!\n", mangledText, U"\n"); } else { for (intptr_t i = firstQuote + 1; i < lastQuote; i++) { DsrChar c = mangledText[i]; if (c == U'\\') { // Escape character DsrChar c2 = mangledText[i + 1]; if (c2 == U'\"') { // Double quote string_appendChar(result, U'\"'); } else if (c2 == U'\\') { // Back slash string_appendChar(result, U'\\'); } else if (c2 == U'a') { // Audible bell string_appendChar(result, U'\a'); } else if (c2 == U'b') { // Backspace string_appendChar(result, U'\b'); } else if (c2 == U'f') { // Form feed string_appendChar(result, U'\f'); } else if (c2 == U'n') { // Line feed string_appendChar(result, U'\n'); } else if (c2 == U'r') { // Carriage return string_appendChar(result, U'\r'); } else if (c2 == U't') { // Horizontal tab string_appendChar(result, U'\t'); } else if (c2 == U'v') { // Vertical tab string_appendChar(result, U'\v'); } else if (c2 == U'0') { // Null terminator string_appendChar(result, U'\0'); } i++; // Consume both characters } else { // Detect bad input if (c == U'\"') { // Double quote throwError(U"Unmangled double quote sign detected in string_unmangleQuote!\n", mangledText, U"\n"); } else if (c == U'\a') { // Audible bell throwError(U"Unmangled audible bell detected in string_unmangleQuote!\n", mangledText, U"\n"); } else if (c == U'\b') { // Backspace throwError(U"Unmangled backspace detected in string_unmangleQuote!\n", mangledText, U"\n"); } else if (c == U'\f') { // Form feed throwError(U"Unmangled form feed detected in string_unmangleQuote!\n", mangledText, U"\n"); } else if (c == U'\n') { // Line feed throwError(U"Unmangled line feed detected in string_unmangleQuote!\n", mangledText, U"\n"); } else if (c == U'\r') { // Carriage return throwError(U"Unmangled carriage return detected in string_unmangleQuote!\n", mangledText, U"\n"); } else if (c == U'\0') { // Null terminator throwError(U"Unmangled null terminator detected in string_unmangleQuote!\n", mangledText, U"\n"); } else { string_appendChar(result, c); } } } } return result; } void dsr::string_fromUnsigned(String& target, uint64_t value) { static const int bufferSize = 20; DsrChar digits[bufferSize]; int64_t usedSize = 0; if (value == 0) { string_appendChar(target, U'0'); } else { while (usedSize < bufferSize) { DsrChar digit = U'0' + (value % 10u); digits[usedSize] = digit; usedSize++; value /= 10u; if (value == 0) { break; } } while (usedSize > 0) { usedSize--; string_appendChar(target, digits[usedSize]); } } } void dsr::string_fromSigned(String& target, int64_t value, DsrChar negationCharacter) { if (value >= 0) { string_fromUnsigned(target, (uint64_t)value); } else { string_appendChar(target, negationCharacter); string_fromUnsigned(target, (uint64_t)(-value)); } } static const int MAX_DECIMALS = 16; static double decimalMultipliers[MAX_DECIMALS] = { 10.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0, 100000000000.0, 1000000000000.0, 10000000000000.0, 100000000000000.0, 1000000000000000.0, 10000000000000000.0 }; static double roundingOffsets[MAX_DECIMALS] = { 0.05, 0.005, 0.0005, 0.00005, 0.000005, 0.0000005, 0.00000005, 0.000000005, 0.0000000005, 0.00000000005, 0.000000000005, 0.0000000000005, 0.00000000000005, 0.000000000000005, 0.0000000000000005, 0.00000000000000005 }; static uint64_t decimalLimits[MAX_DECIMALS] = { 9, 99, 999, 9999, 99999, 999999, 9999999, 99999999, 999999999, 9999999999, 99999999999, 999999999999, 9999999999999, 99999999999999, 999999999999999, 9999999999999999 }; void dsr::string_fromDouble(String& target, double value, int decimalCount, bool removeTrailingZeroes, DsrChar decimalCharacter, DsrChar negationCharacter) { if (decimalCount < 1) decimalCount = 1; if (decimalCount > MAX_DECIMALS) decimalCount = MAX_DECIMALS; double remainder = value; // Get negation if (remainder < 0.0) { string_appendChar(target, negationCharacter); remainder = -remainder; } // Apply an offset to make the following truncation round to the closest printable decimal. int offsetIndex = decimalCount - 1; remainder += roundingOffsets[offsetIndex]; // Get whole part uint64_t whole = (uint64_t)remainder; string_fromUnsigned(target, whole); // Remove the whole part from the remainder. remainder = remainder - whole; // Print the decimal string_appendChar(target, decimalCharacter); // Get decimals uint64_t scaledDecimals = uint64_t(remainder * decimalMultipliers[offsetIndex]); // Limit decimals to all nines prevent losing a whole unit from fraction overflow. uint64_t limit = decimalLimits[offsetIndex]; if (scaledDecimals > limit) scaledDecimals = limit; DsrChar digits[MAX_DECIMALS]; // Using 0 to decimalCount - 1 int writeIndex = decimalCount - 1; for (int d = 0; d < decimalCount; d++) { int digit = scaledDecimals % 10; digits[writeIndex] = U'0' + digit; scaledDecimals = scaledDecimals / 10; writeIndex--; } if (removeTrailingZeroes) { // Find the last non-zero decimal, but keep at least one zero. int lastValue = 0; for (int d = 0; d < decimalCount; d++) { if (digits[d] != U'0') lastValue = d; } // Print until the last value or the only zero. for (int d = 0; d <= lastValue; d++) { string_appendChar(target, digits[d]); } } else { // Print fixed decimals. for (int d = 0; d < decimalCount; d++) { string_appendChar(target, digits[d]); } } } #define TO_RAW_ASCII(TARGET, SOURCE) \ char TARGET[SOURCE.view.length + 1]; \ for (intptr_t i = 0; i < SOURCE.view.length; i++) { \ TARGET[i] = toAscii(SOURCE[i]); \ } \ TARGET[SOURCE.view.length] = '\0'; // A function definition for receiving a stream of bytes // Instead of using std's messy inheritance using ByteWriterFunction = std::function; // A function definition for receiving a stream of UTF-32 characters // Instead of using std's messy inheritance using UTF32WriterFunction = std::function; // Filter out unwanted characters for improved portability static void feedCharacter(const UTF32WriterFunction &receiver, DsrChar character) { if (character != U'\0' && character != U'\r') { receiver(character); } } // Appends the content of buffer as a BOM-free Latin-1 file into target // fileLength is ignored when nullTerminated is true template static void feedStringFromFileBuffer_Latin1(const UTF32WriterFunction &receiver, const uint8_t* buffer, intptr_t fileLength = 0) { for (intptr_t i = 0; i < fileLength || nullTerminated; i++) { DsrChar character = (DsrChar)(buffer[i]); if (nullTerminated && character == 0) { return; } feedCharacter(receiver, character); } } // Appends the content of buffer as a BOM-free UTF-8 file into target // fileLength is ignored when nullTerminated is true template static void feedStringFromFileBuffer_UTF8(const UTF32WriterFunction &receiver, const uint8_t* buffer, intptr_t fileLength = 0) { for (intptr_t i = 0; i < fileLength || nullTerminated; i++) { uint8_t byteA = buffer[i]; if (byteA < (uint32_t)0b10000000) { // Single byte (1xxxxxxx) if (nullTerminated && byteA == 0) { return; } feedCharacter(receiver, (DsrChar)byteA); } else { uint32_t character = 0; int extraBytes = 0; if (byteA >= (uint32_t)0b11000000) { // At least two leading ones if (byteA < (uint32_t)0b11100000) { // Less than three leading ones character = byteA & (uint32_t)0b00011111; extraBytes = 1; } else if (byteA < (uint32_t)0b11110000) { // Less than four leading ones character = byteA & (uint32_t)0b00001111; extraBytes = 2; } else if (byteA < (uint32_t)0b11111000) { // Less than five leading ones character = byteA & (uint32_t)0b00000111; extraBytes = 3; } else { // Invalid UTF-8 format throwError(U"Invalid UTF-8 multi-chatacter beginning with 0b111111xx!"); } } else { // Invalid UTF-8 format throwError(U"Invalid UTF-8 multi-chatacter beginning with 0b10xxxxxx!"); } while (extraBytes > 0) { i += 1; uint32_t nextByte = buffer[i]; character = (character << 6) | (nextByte & 0b00111111); extraBytes--; } feedCharacter(receiver, (DsrChar)character); } } } template uint16_t read16bits(const uint8_t* buffer, intptr_t startOffset) { uint16_t byteA = buffer[startOffset]; uint16_t byteB = buffer[startOffset + 1]; if (LittleEndian) { return (byteB << 8) | byteA; } else { return (byteA << 8) | byteB; } } // Appends the content of buffer as a BOM-free UTF-16 file into target as UTF-32 // fileLength is ignored when nullTerminated is true template static void feedStringFromFileBuffer_UTF16(const UTF32WriterFunction &receiver, const uint8_t* buffer, intptr_t fileLength = 0) { for (intptr_t i = 0; i < fileLength || nullTerminated; i += 2) { // Read the first 16-bit word uint16_t wordA = read16bits(buffer, i); // Check if another word is needed // Assuming that wordA >= 0x0000 and wordA <= 0xFFFF as uint16_t, // we can just check if it's within the range reserved for 32-bit encoding if (wordA <= 0xD7FF || wordA >= 0xE000) { // Not in the reserved range, just a single 16-bit character if (nullTerminated && wordA == 0) { return; } feedCharacter(receiver, (DsrChar)wordA); } else { // The given range was reserved and therefore using 32 bits i += 2; uint16_t wordB = read16bits(buffer, i); uint32_t higher10Bits = wordA & (uint32_t)0b1111111111; uint32_t lower10Bits = wordB & (uint32_t)0b1111111111; DsrChar finalChar = (DsrChar)(((higher10Bits << 10) | lower10Bits) + (uint32_t)0x10000); feedCharacter(receiver, finalChar); } } } // Sends the decoded UTF-32 characters from the encoded buffer into target. // The text encoding should be specified using a BOM at the start of buffer, otherwise Latin-1 is assumed. static void feedStringFromFileBuffer(const UTF32WriterFunction &receiver, const uint8_t* buffer, intptr_t fileLength) { // After removing the BOM bytes, the rest can be seen as a BOM-free text file with a known format if (fileLength >= 3 && buffer[0] == 0xEF && buffer[1] == 0xBB && buffer[2] == 0xBF) { // UTF-8 feedStringFromFileBuffer_UTF8(receiver, buffer + 3, fileLength - 3); } else if (fileLength >= 2 && buffer[0] == 0xFE && buffer[1] == 0xFF) { // UTF-16 BE feedStringFromFileBuffer_UTF16(receiver, buffer + 2, fileLength - 2); } else if (fileLength >= 2 && buffer[0] == 0xFF && buffer[1] == 0xFE) { // UTF-16 LE feedStringFromFileBuffer_UTF16(receiver, buffer + 2, fileLength - 2); } else if (fileLength >= 4 && buffer[0] == 0x00 && buffer[1] == 0x00 && buffer[2] == 0xFE && buffer[3] == 0xFF) { // UTF-32 BE //feedStringFromFileBuffer_UTF32BE(receiver, buffer + 4, fileLength - 4); throwError(U"UTF-32 BE format is not yet supported!\n"); } else if (fileLength >= 4 && buffer[0] == 0xFF && buffer[1] == 0xFE && buffer[2] == 0x00 && buffer[3] == 0x00) { // UTF-32 LE //feedStringFromFileBuffer_UTF32BE(receiver, buffer + 4, fileLength - 4); throwError(U"UTF-32 LE format is not yet supported!\n"); } else if (fileLength >= 3 && buffer[0] == 0xF7 && buffer[1] == 0x64 && buffer[2] == 0x4C) { // UTF-1 //feedStringFromFileBuffer_UTF1(receiver, buffer + 3, fileLength - 3); throwError(U"UTF-1 format is not yet supported!\n"); } else if (fileLength >= 3 && buffer[0] == 0x0E && buffer[1] == 0xFE && buffer[2] == 0xFF) { // SCSU //feedStringFromFileBuffer_SCSU(receiver, buffer + 3, fileLength - 3); throwError(U"SCSU format is not yet supported!\n"); } else if (fileLength >= 3 && buffer[0] == 0xFB && buffer[1] == 0xEE && buffer[2] == 0x28) { // BOCU //feedStringFromFileBuffer_BOCU-1(receiver, buffer + 3, fileLength - 3); throwError(U"BOCU-1 format is not yet supported!\n"); } else if (fileLength >= 4 && buffer[0] == 0x2B && buffer[1] == 0x2F && buffer[2] == 0x76) { // UTF-7 // Ignoring fourth byte with the dialect of UTF-7 when just showing the error message throwError(U"UTF-7 format is not yet supported!\n"); } else { // No BOM detected, assuming Latin-1 (because it directly corresponds to a unicode sub-set) feedStringFromFileBuffer_Latin1(receiver, buffer, fileLength); } } // Sends the decoded UTF-32 characters from the encoded null terminated buffer into target. // buffer may not contain any BOM, and must be null terminated in the specified encoding. static void feedStringFromRawData(const UTF32WriterFunction &receiver, const uint8_t* buffer, CharacterEncoding encoding) { if (encoding == CharacterEncoding::Raw_Latin1) { feedStringFromFileBuffer_Latin1(receiver, buffer); } else if (encoding == CharacterEncoding::BOM_UTF8) { feedStringFromFileBuffer_UTF8(receiver, buffer); } else if (encoding == CharacterEncoding::BOM_UTF16BE) { feedStringFromFileBuffer_UTF16(receiver, buffer); } else if (encoding == CharacterEncoding::BOM_UTF16LE) { feedStringFromFileBuffer_UTF16(receiver, buffer); } else { throwError(U"Unhandled encoding in feedStringFromRawData!\n"); } } String dsr::string_dangerous_decodeFromData(const void* data, CharacterEncoding encoding) { String result; // Measure the size of the result by scanning the content in advance intptr_t characterCount = 0; UTF32WriterFunction measurer = [&characterCount](DsrChar character) { characterCount++; }; feedStringFromRawData(measurer, (const uint8_t*)data, encoding); // Pre-allocate the correct amount of memory based on the simulation string_reserve(result, characterCount); // Stream output to the result string UTF32WriterFunction receiver = [&result](DsrChar character) { string_appendChar(result, character); }; feedStringFromRawData(receiver, (const uint8_t*)data, encoding); return result; } String dsr::string_loadFromMemory(Buffer fileContent) { String result; // Measure the size of the result by scanning the content in advance intptr_t characterCount = 0; UTF32WriterFunction measurer = [&characterCount](DsrChar character) { characterCount++; }; feedStringFromFileBuffer(measurer, fileContent.getUnsafe(), fileContent.getUsedSize()); // Pre-allocate the correct amount of memory based on the simulation string_reserve(result, characterCount); // Stream output to the result string UTF32WriterFunction receiver = [&result](DsrChar character) { string_appendChar(result, character); }; feedStringFromFileBuffer(receiver, fileContent.getUnsafe(), fileContent.getUsedSize()); return result; } // Loads a text file of unknown format // Removes carriage-return characters to make processing easy with only line-feed for breaking lines String dsr::string_load(const ReadableString& filename, bool mustExist) { Buffer encoded = file_loadBuffer(filename, mustExist); if (!buffer_exists(encoded)) { return String(); } else { return string_loadFromMemory(encoded); } } template static void encodeCharacter(const ByteWriterFunction &receiver, DsrChar character) { if (characterEncoding == CharacterEncoding::Raw_Latin1) { // Replace any illegal characters with questionmarks if (character > 255) { character = U'?'; } receiver(character); } else if (characterEncoding == CharacterEncoding::BOM_UTF8) { // Replace any illegal characters with questionmarks if (character > 0x10FFFF) { character = U'?'; } if (character < (1 << 7)) { // 0xxxxxxx receiver(character); } else if (character < (1 << 11)) { // 110xxxxx 10xxxxxx receiver((uint32_t)0b11000000 | ((character & ((uint32_t)0b11111 << 6)) >> 6)); receiver((uint32_t)0b10000000 | (character & (uint32_t)0b111111)); } else if (character < (1 << 16)) { // 1110xxxx 10xxxxxx 10xxxxxx receiver((uint32_t)0b11100000 | ((character & ((uint32_t)0b1111 << 12)) >> 12)); receiver((uint32_t)0b10000000 | ((character & ((uint32_t)0b111111 << 6)) >> 6)); receiver((uint32_t)0b10000000 | (character & (uint32_t)0b111111)); } else if (character < (1 << 21)) { // 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx receiver((uint32_t)0b11110000 | ((character & ((uint32_t)0b111 << 18)) >> 18)); receiver((uint32_t)0b10000000 | ((character & ((uint32_t)0b111111 << 12)) >> 12)); receiver((uint32_t)0b10000000 | ((character & ((uint32_t)0b111111 << 6)) >> 6)); receiver((uint32_t)0b10000000 | (character & (uint32_t)0b111111)); } } else { // Assuming UTF-16 if (character > 0x10FFFF) { character = U'?'; } if (character <= 0xD7FF || (character >= 0xE000 && character <= 0xFFFF)) { // xxxxxxxx xxxxxxxx (Limited range) uint32_t higher8Bits = (character & (uint32_t)0b1111111100000000) >> 8; uint32_t lower8Bits = character & (uint32_t)0b0000000011111111; if (characterEncoding == CharacterEncoding::BOM_UTF16BE) { receiver(higher8Bits); receiver(lower8Bits); } else { // Assuming UTF-16 LE receiver(lower8Bits); receiver(higher8Bits); } } else if (character >= 0x010000 && character <= 0x10FFFF) { // 110110xxxxxxxxxx 110111xxxxxxxxxx uint32_t code = character - (uint32_t)0x10000; uint32_t byteA = ((code & (uint32_t)0b11000000000000000000) >> 18) | (uint32_t)0b11011000; uint32_t byteB = (code & (uint32_t)0b00111111110000000000) >> 10; uint32_t byteC = ((code & (uint32_t)0b00000000001100000000) >> 8) | (uint32_t)0b11011100; uint32_t byteD = code & (uint32_t)0b00000000000011111111; if (characterEncoding == CharacterEncoding::BOM_UTF16BE) { receiver(byteA); receiver(byteB); receiver(byteC); receiver(byteD); } else { // Assuming UTF-16 LE receiver(byteB); receiver(byteA); receiver(byteD); receiver(byteC); } } } } // Template for encoding a whole string template static void encodeText(const ByteWriterFunction &receiver, String content, bool writeBOM, bool writeNullTerminator) { if (writeBOM) { // Write byte order marks if (characterEncoding == CharacterEncoding::BOM_UTF8) { receiver(0xEF); receiver(0xBB); receiver(0xBF); } else if (characterEncoding == CharacterEncoding::BOM_UTF16BE) { receiver(0xFE); receiver(0xFF); } else if (characterEncoding == CharacterEncoding::BOM_UTF16LE) { receiver(0xFF); receiver(0xFE); } } // Write encoded content for (intptr_t i = 0; i < string_length(content); i++) { DsrChar character = content[i]; if (character == U'\n') { if (lineEncoding == LineEncoding::CrLf) { encodeCharacter(receiver, U'\r'); encodeCharacter(receiver, U'\n'); } else { // Assuming that lineEncoding == LineEncoding::Lf encodeCharacter(receiver, U'\n'); } } else { encodeCharacter(receiver, character); } } if (writeNullTerminator) { // Terminate internal strings with \0 to prevent getting garbage data after unpadded buffers if (characterEncoding == CharacterEncoding::BOM_UTF16BE || characterEncoding == CharacterEncoding::BOM_UTF16LE) { receiver(0); receiver(0); } else { receiver(0); } } } // Macro for converting run-time arguments into template arguments for encodeText #define ENCODE_TEXT(RECEIVER, CONTENT, CHAR_ENCODING, LINE_ENCODING, WRITE_BOM, WRITE_NULL_TERMINATOR) \ if (CHAR_ENCODING == CharacterEncoding::Raw_Latin1) { \ if (LINE_ENCODING == LineEncoding::CrLf) { \ encodeText(RECEIVER, CONTENT, false, WRITE_NULL_TERMINATOR); \ } else if (LINE_ENCODING == LineEncoding::Lf) { \ encodeText(RECEIVER, CONTENT, false, WRITE_NULL_TERMINATOR); \ } \ } else if (CHAR_ENCODING == CharacterEncoding::BOM_UTF8) { \ if (LINE_ENCODING == LineEncoding::CrLf) { \ encodeText(RECEIVER, CONTENT, WRITE_BOM, WRITE_NULL_TERMINATOR); \ } else if (LINE_ENCODING == LineEncoding::Lf) { \ encodeText(RECEIVER, CONTENT, WRITE_BOM, WRITE_NULL_TERMINATOR); \ } \ } else if (CHAR_ENCODING == CharacterEncoding::BOM_UTF16BE) { \ if (LINE_ENCODING == LineEncoding::CrLf) { \ encodeText(RECEIVER, CONTENT, WRITE_BOM, WRITE_NULL_TERMINATOR); \ } else if (LINE_ENCODING == LineEncoding::Lf) { \ encodeText(RECEIVER, CONTENT, WRITE_BOM, WRITE_NULL_TERMINATOR); \ } \ } else if (CHAR_ENCODING == CharacterEncoding::BOM_UTF16LE) { \ if (LINE_ENCODING == LineEncoding::CrLf) { \ encodeText(RECEIVER, CONTENT, WRITE_BOM, WRITE_NULL_TERMINATOR); \ } else if (LINE_ENCODING == LineEncoding::Lf) { \ encodeText(RECEIVER, CONTENT, WRITE_BOM, WRITE_NULL_TERMINATOR); \ } \ } // Encoding to a buffer before saving all at once as a binary file. // This tells the operating system how big the file is in advance and prevent the worst case of stalling for minutes! bool dsr::string_save(const ReadableString& filename, const ReadableString& content, CharacterEncoding characterEncoding, LineEncoding lineEncoding) { Buffer buffer = string_saveToMemory(content, characterEncoding, lineEncoding); if (buffer_exists(buffer)) { return file_saveBuffer(filename, buffer); } else { return false; } } Buffer dsr::string_saveToMemory(const ReadableString& content, CharacterEncoding characterEncoding, LineEncoding lineEncoding, bool writeByteOrderMark, bool writeNullTerminator) { intptr_t byteCount = 0; ByteWriterFunction counter = [&byteCount](uint8_t value) { byteCount++; }; ENCODE_TEXT(counter, content, characterEncoding, lineEncoding, writeByteOrderMark, writeNullTerminator); Buffer result = buffer_create(byteCount).setName("Buffer holding an encoded string"); SafePointer byteWriter = buffer_getSafeData(result, "Buffer for string encoding"); ByteWriterFunction receiver = [&byteWriter](uint8_t value) { *byteWriter = value; byteWriter += 1; }; ENCODE_TEXT(receiver, content, characterEncoding, lineEncoding, writeByteOrderMark, writeNullTerminator); return result; } static uintptr_t getStartOffset(const ReadableString &source) { // Get the allocation const uint8_t* origin = (uint8_t*)(source.characters.getUnsafe()); const uint8_t* start = (uint8_t*)(source.view.getUnchecked()); assert(start <= origin); // Get the offset from the parent return (start - origin) / sizeof(DsrChar); } #ifdef SAFE_POINTER_CHECKS static void serializeCharacterBuffer(PrintCharacter target, void const * const allocation, uintptr_t maxLength) { uintptr_t characterCount = heap_getUsedSize(allocation) / sizeof(DsrChar); target(U'\"'); for (uintptr_t c = 0; c < characterCount; c++) { if (c == maxLength) { target(U'\"'); target(U'.'); target(U'.'); target(U'.'); return; } target(((DsrChar *)allocation)[c]); } target(U'\"'); } #endif static Handle allocateCharacters(intptr_t minimumLength) { // Allocate memory. Handle result = handle_createArray(AllocationInitialization::Uninitialized, minimumLength).setName("String characters"); #ifdef SAFE_POINTER_CHECKS setAllocationSerialization(result.getUnsafe(), &serializeCharacterBuffer); #endif // Check how much space we got. uintptr_t availableSpace = heap_getAllocationSize(result.getUnsafe()); // Expand to use all available memory in the allocation. uintptr_t newSize = heap_setUsedSize(result.getUnsafe(), availableSpace); // Clear the memory to zeroes, just to be safe against non-deterministic bugs. safeMemorySet(result.getSafe("Cleared String pointer"), 0, newSize); return result; } // Replaces the buffer with a new buffer holding at least minimumLength characters // Guarantees that the new buffer is not shared by other strings, so that it may be written to freely static void reallocateBuffer(String &target, intptr_t minimumLength, bool preserve) { // Holding oldData alive while copying to the new buffer Handle oldBuffer = target.characters; // Kept for reference counting only, do not remove. Impl_CharacterView oldData = target.view; target.characters = allocateCharacters(minimumLength); target.view = Impl_CharacterView(target.characters.getUnsafe(), oldData.length); if (preserve && oldData.length > 0) { safeMemoryCopy(target.view.getSafe("New characters being copied from an old buffer"), oldData.getSafe("Old characters being copied to a new buffer"), oldData.length * sizeof(DsrChar)); } } // Call before writing to the buffer. // This hides that Strings share buffers when assigning by value or taking partial strings. static void cloneIfNeeded(String &target) { // If there is no buffer or the buffer is shared, it needs to allocate its own buffer. if (target.characters.isNull() || target.characters.getUseCount() > 1) { reallocateBuffer(target, target.view.length, true); } } void dsr::string_clear(String& target) { // We we start writing from the beginning, then we must have our own allocation to avoid overwriting the characters in other strings. cloneIfNeeded(target); target.view.length = 0; } // The number of DsrChar characters that can be contained in the allocation before reaching the buffer's end // This doesn't imply that it's always okay to write to the remaining space, because the buffer may be shared static intptr_t getCapacity(const ReadableString &source) { if (source.characters.isNotNull()) { uintptr_t bufferElements = source.characters.getElementCount(); // Subtract offset from the buffer size to get the remaining space return bufferElements - getStartOffset(source); } else { return 0; } } static void expand(String &target, intptr_t newLength, bool affectUsedLength) { cloneIfNeeded(target); if (newLength > target.view.length) { if (newLength > getCapacity(target)) { reallocateBuffer(target, newLength, true); } if (affectUsedLength) { target.view.length = newLength; } } } void dsr::string_reserve(String& target, intptr_t minimumLength) { expand(target, minimumLength, false); } // This macro has to be used because a static template wouldn't be able to inherit access to private methods from the target class. // Better to use a macro without type safety in the implementation than to expose yet another template in a global header. // Proof that appending to one string doesn't affect another: // If it has to reallocate // * Then it will have its own buffer without conflicts // If it doesn't have to reallocate // If it shares the buffer // If source is empty // * Then no risk of overwriting neighbor strings if we don't write // If source isn't empty // * Then the buffer will be cloned when the first character is written // If it doesn't share the buffer // * Then no risk of writing #define APPEND(TARGET, SOURCE, LENGTH, MASK) { \ intptr_t oldLength = (TARGET).view.length; \ expand((TARGET), oldLength + (intptr_t)(LENGTH), true); \ for (intptr_t i = 0; i < (intptr_t)(LENGTH); i++) { \ (TARGET).view.writeCharacter(oldLength + i, ((SOURCE)[i]) & MASK); \ } \ } // TODO: See if ascii litterals can be checked for values above 127 in compile-time static void atomic_append_ascii(String &target, const char* source) { APPEND(target, source, strlen(source), 0xFF); } // TODO: Use memcpy when appending input of the same format static void atomic_append_readable(String &target, const ReadableString& source) { APPEND(target, source, source.view.length, 0xFFFFFFFF); } static void atomic_append_utf32(String &target, const DsrChar* source) { APPEND(target, source, strlen_utf32(source), 0xFFFFFFFF); } void dsr::string_appendChar(String& target, DsrChar value) { APPEND(target, &value, 1, 0xFFFFFFFF); } String& dsr::impl_toStreamIndented_ascii(String& target, const char *value, const ReadableString& indentation) { atomic_append_readable(target, indentation); atomic_append_ascii(target, value); return target; } String& dsr::impl_toStreamIndented_utf32(String& target, const char32_t *value, const ReadableString& indentation) { atomic_append_readable(target, indentation); atomic_append_utf32(target, value); return target; } String& dsr::impl_toStreamIndented_readable(String& target, const ReadableString& value, const ReadableString& indentation) { atomic_append_readable(target, indentation); atomic_append_readable(target, value); return target; } String& dsr::impl_toStreamIndented_double(String& target, const double &value, const ReadableString& indentation) { atomic_append_readable(target, indentation); string_fromDouble(target, (double)value); return target; } String& dsr::impl_toStreamIndented_int64(String& target, const int64_t &value, const ReadableString& indentation) { atomic_append_readable(target, indentation); string_fromSigned(target, value); return target; } String& dsr::impl_toStreamIndented_uint64(String& target, const uint64_t &value, const ReadableString& indentation) { atomic_append_readable(target, indentation); string_fromUnsigned(target, value); return target; } // The print mutex makes sure that messages from multiple threads don't get mixed up. static std::mutex printMutex; static std::ostream& toStream(std::ostream& out, const ReadableString &source) { for (intptr_t i = 0; i < source.view.length; i++) { out.put(toAscii(source.view[i])); } return out; } static const std::function defaultMessageAction = [](const ReadableString &message, MessageType type) { if (type == MessageType::Error) { #ifdef DSR_HARD_EXIT_ON_ERROR // Print the error. toStream(std::cerr, message); // Free all heap allocations. heap_hardExitCleaning(); // Terminate with a non-zero value to indicate failure. std::exit(1); #else Buffer ascii = string_saveToMemory(message, CharacterEncoding::Raw_Latin1, LineEncoding::CrLf, false, true); throw std::runtime_error((char*)ascii.getUnsafe()); #endif } else { printMutex.lock(); toStream(std::cout, message); printMutex.unlock(); } }; static std::function globalMessageAction = defaultMessageAction; void dsr::string_sendMessage(const ReadableString &message, MessageType type) { globalMessageAction(message, type); } void dsr::string_sendMessage_default(const ReadableString &message, MessageType type) { defaultMessageAction(message, type); } void dsr::string_assignMessageHandler(std::function newHandler) { globalMessageAction = newHandler; } void dsr::string_unassignMessageHandler() { globalMessageAction = defaultMessageAction; } void dsr::string_split_callback(std::function action, const ReadableString& source, DsrChar separator, bool removeWhiteSpace) { intptr_t sectionStart = 0; for (intptr_t i = 0; i < source.view.length; i++) { DsrChar c = source[i]; if (c == separator) { ReadableString element = string_exclusiveRange(source, sectionStart, i); if (removeWhiteSpace) { action(string_removeOuterWhiteSpace(element)); } else { action(element); } sectionStart = i + 1; } } if (source.view.length > sectionStart) { if (removeWhiteSpace) { action(string_removeOuterWhiteSpace(string_exclusiveRange(source, sectionStart, source.view.length))); } else { action(string_exclusiveRange(source, sectionStart, source.view.length)); } } } static String createSubString(const Handle &characters, const Impl_CharacterView &view) { String result; result.characters = characters; result.view = view; return result; } List dsr::string_split(const ReadableString& source, DsrChar separator, bool removeWhiteSpace) { List result; if (source.view.length > 0) { // Re-use the existing buffer String commonBuffer = createSubString(source.characters, source.view); // Source is allocated as String string_split_callback([&result, removeWhiteSpace](String element) { if (removeWhiteSpace) { result.push(string_removeOuterWhiteSpace(element)); } else { result.push(element); } }, commonBuffer, separator, removeWhiteSpace); } return result; } intptr_t dsr::string_splitCount(const ReadableString& source, DsrChar separator) { intptr_t result = 0; string_split_callback([&result](ReadableString element) { result++; }, source, separator); return result; } int64_t dsr::string_toInteger(const ReadableString& source) { int64_t result; bool negated; result = 0; negated = false; for (intptr_t i = 0; i < source.view.length; i++) { DsrChar c = source[i]; if (c == '-' || c == '~') { negated = !negated; } else if (c >= '0' && c <= '9') { result = (result * 10) + (int)(c - '0'); } else if (c == ',' || c == '.') { // Truncate any decimals by ignoring them break; } } if (negated) { return -result; } else { return result; } } double dsr::string_toDouble(const ReadableString& source) { double result; bool negated; bool reachedDecimal; int64_t digitDivider; result = 0.0; negated = false; reachedDecimal = false; digitDivider = 1; for (intptr_t i = 0; i < source.view.length; i++) { DsrChar c = source[i]; if (c == '-' || c == '~') { negated = !negated; } else if (c >= '0' && c <= '9') { if (reachedDecimal) { digitDivider = digitDivider * 10; result = result + ((double)(c - '0') / (double)digitDivider); } else { result = (result * 10) + (double)(c - '0'); } } else if (c == ',' || c == '.') { reachedDecimal = true; } else if (c == 'e' || c == 'E') { // Apply the exponent after 'e'. result *= std::pow(10.0, string_toInteger(string_after(source, i))); // Skip remaining characters. i = source.view.length; } } if (negated) { return -result; } else { return result; } } intptr_t dsr::string_length(const ReadableString& source) { return source.view.length; } intptr_t dsr::string_findFirst(const ReadableString& source, DsrChar toFind, intptr_t startIndex) { for (intptr_t i = startIndex; i < source.view.length; i++) { if (source[i] == toFind) { return i; } } return -1; } intptr_t dsr::string_findLast(const ReadableString& source, DsrChar toFind) { for (intptr_t i = source.view.length - 1; i >= 0; i--) { if (source[i] == toFind) { return i; } } return -1; } ReadableString dsr::string_exclusiveRange(const ReadableString& source, intptr_t inclusiveStart, intptr_t exclusiveEnd) { // Return empty string for each complete miss if (inclusiveStart >= source.view.length || exclusiveEnd <= 0) { return ReadableString(); } // Automatically clamping to valid range if (inclusiveStart < 0) { inclusiveStart = 0; } if (exclusiveEnd > source.view.length) { exclusiveEnd = source.view.length; } // Return the overlapping interval return createSubString(source.characters, Impl_CharacterView(source.view.getUnchecked() + inclusiveStart, exclusiveEnd - inclusiveStart)); } ReadableString dsr::string_inclusiveRange(const ReadableString& source, intptr_t inclusiveStart, intptr_t inclusiveEnd) { return string_exclusiveRange(source, inclusiveStart, inclusiveEnd + 1); } ReadableString dsr::string_before(const ReadableString& source, intptr_t exclusiveEnd) { return string_exclusiveRange(source, 0, exclusiveEnd); } ReadableString dsr::string_until(const ReadableString& source, intptr_t inclusiveEnd) { return string_inclusiveRange(source, 0, inclusiveEnd); } ReadableString dsr::string_from(const ReadableString& source, intptr_t inclusiveStart) { return string_exclusiveRange(source, inclusiveStart, source.view.length); } ReadableString dsr::string_after(const ReadableString& source, intptr_t exclusiveStart) { return string_from(source, exclusiveStart + 1); } bool dsr::character_isDigit(DsrChar c) { return c >= U'0' && c <= U'9'; } bool dsr::character_isIntegerCharacter(DsrChar c) { return c == U'-' || character_isDigit(c); } bool dsr::character_isValueCharacter(DsrChar c) { return c == U'.' || character_isIntegerCharacter(c); } bool dsr::character_isWhiteSpace(DsrChar c) { return c == U' ' || c == U'\t' || c == U'\v' || c == U'\f' || c == U'\n' || c == U'\r'; } // Macros for implementing regular expressions with a greedy approach consuming the first match // Optional accepts 0 or 1 occurence // Forced accepts 1 occurence // Star accepts 0..N occurence // Plus accepts 1..N occurence #define CHARACTER_OPTIONAL(CHARACTER) if (source[readIndex] == CHARACTER) { readIndex++; } #define CHARACTER_FORCED(CHARACTER) if (source[readIndex] == CHARACTER) { readIndex++; } else { return false; } #define CHARACTER_STAR(CHARACTER) while (source[readIndex] == CHARACTER) { readIndex++; } #define CHARACTER_PLUS(CHARACTER) CHARACTER_FORCED(CHARACTER) CHARACTER_STAR(CHARACTER) #define PATTERN_OPTIONAL(PATTERN) if (character_is##PATTERN(source[readIndex])) { readIndex++; } #define PATTERN_FORCED(PATTERN) if (character_is##PATTERN(source[readIndex])) { readIndex++; } else { return false; } #define PATTERN_STAR(PATTERN) while (character_is##PATTERN(source[readIndex])) { readIndex++; } #define PATTERN_PLUS(PATTERN) PATTERN_FORCED(PATTERN) PATTERN_STAR(PATTERN) // The greedy approach works here, because there's no ambiguity bool dsr::string_isInteger(const ReadableString& source, bool allowWhiteSpace) { intptr_t readIndex = 0; if (allowWhiteSpace) { PATTERN_STAR(WhiteSpace); } CHARACTER_OPTIONAL(U'-'); // At least one digit required PATTERN_PLUS(IntegerCharacter); if (allowWhiteSpace) { PATTERN_STAR(WhiteSpace); } return readIndex == source.view.length; } // To avoid consuming the all digits on Digit* before reaching Digit+ when there is no decimal, whole integers are judged by string_isInteger bool dsr::string_isDouble(const ReadableString& source, bool allowWhiteSpace) { // Solving the UnsignedDouble <- Digit+ | Digit* '.' Digit+ ambiguity is done easiest by checking if there's a decimal before handling the white-space and negation if (string_findFirst(source, U'.') == -1) { // No decimal detected return string_isInteger(source, allowWhiteSpace); } else { intptr_t readIndex = 0; if (allowWhiteSpace) { PATTERN_STAR(WhiteSpace); } // Double <- UnsignedDouble | '-' UnsignedDouble CHARACTER_OPTIONAL(U'-'); // UnsignedDouble <- Digit* '.' Digit+ // Any number of integer digits PATTERN_STAR(IntegerCharacter); // Only dot for decimal CHARACTER_FORCED(U'.') // At least one decimal digit PATTERN_PLUS(IntegerCharacter); if (allowWhiteSpace) { PATTERN_STAR(WhiteSpace); } return readIndex == source.view.length; } } uintptr_t dsr::string_getBufferUseCount(const ReadableString& text) { return text.characters.getUseCount(); }