#include "spriteAPI.h" #include "Octree.h" #include "../../../DFPSR/render/ITriangle2D.h" namespace dsr { struct SpriteConfig { int centerX, centerY; // The sprite's origin in pixels relative to the upper left corner int frameRows; // The atlas has one row for each frame int propertyColumns; // The atlas has one column for each type of information // The 3D model's bound in tile units // The height image goes from 0 at minimum Y to 255 at maximum Y FVector3D minBound, maxBound; // Shadow shapes List points; // 3D points for the triangles to refer to by index List triangleIndices; // Triangle indices stored in multiples of three integers // Construction SpriteConfig(int centerX, int centerY, int frameRows, int propertyColumns, FVector3D minBound, FVector3D maxBound) : centerX(centerX), centerY(centerY), frameRows(frameRows), propertyColumns(propertyColumns), minBound(minBound), maxBound(maxBound) {} explicit SpriteConfig(const ReadableString& content) { config_parse_ini(content, [this](const ReadableString& block, const ReadableString& key, const ReadableString& value) { if (string_length(block) == 0) { if (string_caseInsensitiveMatch(key, U"CenterX")) { this->centerX = string_parseInteger(value); } else if (string_caseInsensitiveMatch(key, U"CenterY")) { this->centerY = string_parseInteger(value); } else if (string_caseInsensitiveMatch(key, U"FrameRows")) { this->frameRows = string_parseInteger(value); } else if (string_caseInsensitiveMatch(key, U"PropertyColumns")) { this->propertyColumns = string_parseInteger(value); } else if (string_caseInsensitiveMatch(key, U"MinBound")) { this->minBound = parseFVector3D(value); } else if (string_caseInsensitiveMatch(key, U"MaxBound")) { this->maxBound = parseFVector3D(value); } else if (string_caseInsensitiveMatch(key, U"Points")) { List values = string_split(value, U','); if (values.length() % 3 != 0) { throwError("Points contained ", values.length(), " values, which is not evenly divisible by three!"); } else { this->points.clear(); this->points.reserve(values.length() / 3); for (int v = 0; v < values.length(); v += 3) { this->points.push(FVector3D(string_parseDouble(values[v]), string_parseDouble(values[v+1]), string_parseDouble(values[v+2]))); } } } else if (string_caseInsensitiveMatch(key, U"TriangleIndices")) { List values = string_split(value, U','); if (values.length() % 3 != 0) { throwError("TriangleIndices contained ", values.length(), " values, which is not evenly divisible by three!"); } else { this->triangleIndices.clear(); this->triangleIndices.reserve(values.length()); for (int v = 0; v < values.length(); v++) { this->triangleIndices.push(string_parseInteger(values[v])); } } } else { printText("Unrecognized key \"", key, "\" in sprite configuration file.\n"); } } else { printText("Unrecognized block \"", block, "\" in sprite configuration file.\n"); } }); } // Add model as a persistent shadow caster in the sprite configuration void appendShadow(const Model& model) { points.reserve(this->points.length() + model_getNumberOfPoints(model)); for (int p = 0; p < model_getNumberOfPoints(model); p++) { this->points.push(model_getPoint(model, p)); } for (int part = 0; part < model_getNumberOfParts(model); part++) { for (int poly = 0; poly < model_getNumberOfPolygons(model, part); poly++) { int vertexCount = model_getPolygonVertexCount(model, part, poly); int vertA = 0; int indexA = model_getVertexPointIndex(model, part, poly, vertA); for (int vertB = 1; vertB < vertexCount - 1; vertB++) { int vertC = vertB + 1; int indexB = model_getVertexPointIndex(model, part, poly, vertB); int indexC = model_getVertexPointIndex(model, part, poly, vertC); triangleIndices.push(indexA); triangleIndices.push(indexB); triangleIndices.push(indexC); } } } } String toIni() { // General information String result = string_combine( U"; Sprite configuration file\n", U"CenterX=", this->centerX, "\n", U"CenterY=", this->centerY, "\n", U"FrameRows=", this->frameRows, "\n", U"PropertyColumns=", this->propertyColumns, "\n", U"MinBound=", this->minBound, "\n", U"MaxBound=", this->maxBound, "\n" ); // Low-resolution 3D shape if (this->points.length() > 0) { string_append(result, U"Points="); for (int p = 0; p < this->points.length(); p++) { if (p > 0) { string_append(result, U", "); } string_append(result, this->points[p]); } string_append(result, U"\n"); string_append(result, U"TriangleIndices="); for (int i = 0; i < this->triangleIndices.length(); i+=3) { if (i > 0) { string_append(result, U", "); } string_append(result, this->triangleIndices[i], U",", this->triangleIndices[i+1], U",", this->triangleIndices[i+2]); } string_append(result, U"\n"); } return result; } }; static ImageF32 scaleHeightImage(const ImageRgbaU8& heightImage, float minHeight, float maxHeight, const ImageRgbaU8& colorImage) { float scale = (maxHeight - minHeight) / 255.0f; float offset = minHeight; int width = image_getWidth(heightImage); int height = image_getHeight(heightImage); ImageF32 result = image_create_F32(width, height); for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { float value = image_readPixel_clamp(heightImage, x, y).red; if (image_readPixel_clamp(colorImage, x, y).alpha > 127) { image_writePixel(result, x, y, (value * scale) + offset); } else { image_writePixel(result, x, y, -std::numeric_limits::infinity()); } } } return result; } struct SpriteFrame { IVector2D centerPoint; ImageRgbaU8 colorImage; // (Red, Green, Blue, _) ImageRgbaU8 normalImage; // (NormalX, NormalY, NormalZ, _) ImageF32 heightImage; SpriteFrame(const IVector2D& centerPoint, const ImageRgbaU8& colorImage, const ImageRgbaU8& normalImage, const ImageF32& heightImage) : centerPoint(centerPoint), colorImage(colorImage), normalImage(normalImage), heightImage(heightImage) {} }; struct SpriteType { public: IVector3D minBoundMini, maxBoundMini; List frames; // TODO: Compress the data using a shadow-only model type of only positions and triangle indices in a single part. // The shadow model will have its own rendering method excluding the color target. // Shadow rendering can be a lot simpler by not calculating any vertex weights // just interpolate the depth using addition, compare to the old value and write the new depth value. Model shadowModel; public: // folderPath should end with a path separator SpriteType(const String& folderPath, const String& spriteName) { // Load the image atlas ImageRgbaU8 loadedAtlas = image_load_RgbaU8(string_combine(folderPath, spriteName, U".png")); // Load the settings const SpriteConfig configuration = SpriteConfig(string_load(string_combine(folderPath, spriteName, U".ini"))); this->minBoundMini = IVector3D( floor(configuration.minBound.x * ortho_miniUnitsPerTile), floor(configuration.minBound.y * ortho_miniUnitsPerTile), floor(configuration.minBound.z * ortho_miniUnitsPerTile) ); this->maxBoundMini = IVector3D( ceil(configuration.maxBound.x * ortho_miniUnitsPerTile), ceil(configuration.maxBound.y * ortho_miniUnitsPerTile), ceil(configuration.maxBound.z * ortho_miniUnitsPerTile) ); int width = image_getWidth(loadedAtlas) / configuration.propertyColumns; int height = image_getHeight(loadedAtlas) / configuration.frameRows; for (int a = 0; a < configuration.frameRows; a++) { ImageRgbaU8 colorImage = image_getSubImage(loadedAtlas, IRect(0, a * height, width, height)); ImageRgbaU8 heightImage = image_getSubImage(loadedAtlas, IRect(width, a * height, width, height)); ImageRgbaU8 normalImage = image_getSubImage(loadedAtlas, IRect(width * 2, a * height, width, height)); ImageF32 scaledHeightImage = scaleHeightImage(heightImage, configuration.minBound.y, configuration.maxBound.y, colorImage); this->frames.pushConstruct(IVector2D(configuration.centerX, configuration.centerY), colorImage, normalImage, scaledHeightImage); } // Create a model for rendering shadows if (configuration.points.length() > 0) { this->shadowModel = model_create(); for (int p = 0; p < configuration.points.length(); p++) { model_addPoint(this->shadowModel, configuration.points[p]); } model_addEmptyPart(this->shadowModel, U"Shadow"); for (int t = 0; t < configuration.triangleIndices.length(); t+=3) { model_addTriangle(this->shadowModel, 0, configuration.triangleIndices[t], configuration.triangleIndices[t+1], configuration.triangleIndices[t+2]); } } } public: // TODO: Force frame count to a power of two or replace modulo with look-up tables in sprite configurations. int getFrameIndex(Direction direction) { const int frameFromDir[dir360] = {4, 1, 5, 2, 6, 3, 7, 0}; return frameFromDir[correctDirection(direction)] % this->frames.length(); } }; // Global list of all sprite types ever loaded List types; static int getSpriteFrameIndex(const Sprite& sprite, OrthoView view) { return types[sprite.typeIndex].getFrameIndex(view.worldDirection + sprite.direction); } void drawSprite(const Sprite& sprite, const OrthoView& ortho, const IVector2D& worldCenter, ImageF32 targetHeight, ImageRgbaU8 targetColor, ImageRgbaU8 targetNormal) { int frameIndex = getSpriteFrameIndex(sprite, ortho); const SpriteFrame* frame = &types[sprite.typeIndex].frames[frameIndex]; IVector2D screenSpace = ortho.miniTilePositionToScreenPixel(sprite.location, worldCenter) - frame->centerPoint; float heightOffset = sprite.location.y * ortho_tilesPerMiniUnit; if (image_exists(targetColor)) { if (image_exists(targetNormal)) { draw_higher(targetHeight, frame->heightImage, targetColor, frame->colorImage, targetNormal, frame->normalImage, screenSpace.x, screenSpace.y, heightOffset); } else { draw_higher(targetHeight, frame->heightImage, targetColor, frame->colorImage, screenSpace.x, screenSpace.y, heightOffset); } } else { if (image_exists(targetNormal)) { draw_higher(targetHeight, frame->heightImage, targetNormal, frame->normalImage, screenSpace.x, screenSpace.y, heightOffset); } else { draw_higher(targetHeight, frame->heightImage, screenSpace.x, screenSpace.y, heightOffset); } } } // The camera transform for each direction FMatrix3x3 ShadowCubeMapSides[6] = { FMatrix3x3::makeAxisSystem(FVector3D( 1.0f, 0.0f, 0.0f), FVector3D(0.0f, 1.0f, 0.0f)), FMatrix3x3::makeAxisSystem(FVector3D(-1.0f, 0.0f, 0.0f), FVector3D(0.0f, 1.0f, 0.0f)), FMatrix3x3::makeAxisSystem(FVector3D( 0.0f, 1.0f, 0.0f), FVector3D(0.0f, 0.0f, 1.0f)), FMatrix3x3::makeAxisSystem(FVector3D( 0.0f,-1.0f, 0.0f), FVector3D(0.0f, 0.0f, 1.0f)), FMatrix3x3::makeAxisSystem(FVector3D( 0.0f, 0.0f, 1.0f), FVector3D(0.0f, 1.0f, 0.0f)), FMatrix3x3::makeAxisSystem(FVector3D( 0.0f, 0.0f,-1.0f), FVector3D(0.0f, 1.0f, 0.0f)) }; // TODO: Move to the ortho API using a safe getter in modulo FMatrix3x3 spriteDirections[8] = { FMatrix3x3::makeAxisSystem(FVector3D( 0.0f, 0.0f, 1.0f), FVector3D(0.0f, 1.0f, 0.0f)), FMatrix3x3::makeAxisSystem(FVector3D( 1.0f, 0.0f, 1.0f), FVector3D(0.0f, 1.0f, 0.0f)), FMatrix3x3::makeAxisSystem(FVector3D( 1.0f, 0.0f, 0.0f), FVector3D(0.0f, 1.0f, 0.0f)), FMatrix3x3::makeAxisSystem(FVector3D( 1.0f, 0.0f,-1.0f), FVector3D(0.0f, 1.0f, 0.0f)), FMatrix3x3::makeAxisSystem(FVector3D( 0.0f, 0.0f,-1.0f), FVector3D(0.0f, 1.0f, 0.0f)), FMatrix3x3::makeAxisSystem(FVector3D(-1.0f, 0.0f,-1.0f), FVector3D(0.0f, 1.0f, 0.0f)), FMatrix3x3::makeAxisSystem(FVector3D(-1.0f, 0.0f, 0.0f), FVector3D(0.0f, 1.0f, 0.0f)), FMatrix3x3::makeAxisSystem(FVector3D(-1.0f, 0.0f, 1.0f), FVector3D(0.0f, 1.0f, 0.0f)) }; struct CubeMapF32 { int resolution; // The width and height of each shadow depth image or 0 if no shadows are casted AlignedImageF32 cubeMap; // A vertical sequence of reciprocal depth images for the six sides of the cube ImageF32 cubeMapViews[6]; // Sub-images sharing their allocations with cubeMap as sub-images explicit CubeMapF32(int resolution) : resolution(resolution) { this->cubeMap = image_create_F32(resolution, resolution * 6); for (int s = 0; s < 6; s++) { this->cubeMapViews[s] = image_getSubImage(this->cubeMap, IRect(0, s * resolution, resolution, resolution)); } } void clear() { image_fill(this->cubeMap, 0.0f); } }; class PointLight { public: FVector3D position; // The world-space center in tile units float radius; // The light radius in tile units float intensity; // The color's brightness multiplier (using float to allow smooth fading) ColorRgbI32 color; // The color of the light (using integers to detect when the color is uniform) bool shadowCasting; // Casting shadows when enabled public: PointLight(FVector3D position, float radius, float intensity, ColorRgbI32 color, bool shadowCasting) : position(position), radius(radius), intensity(intensity), color(color), shadowCasting(shadowCasting) {} public: void renderSpriteShadow(CubeMapF32& shadowTarget, const Sprite& sprite, const FMatrix3x3& normalToWorld) const { if (sprite.shadowCasting) { Model model = types[sprite.typeIndex].shadowModel; if (model_exists(model)) { // Place the model relative to the light source's position, to make rendering in light-space easier Transform3D modelToWorldTransform = Transform3D(ortho_miniToFloatingTile(sprite.location) - this->position, spriteDirections[sprite.direction]); for (int s = 0; s < 6; s++) { Camera camera = Camera::createPerspective(Transform3D(FVector3D(), ShadowCubeMapSides[s] * normalToWorld), shadowTarget.resolution, shadowTarget.resolution); model_renderDepth(model, modelToWorldTransform, shadowTarget.cubeMapViews[s], camera); } } } } void renderSpriteShadows(CubeMapF32& shadowTarget, Octree& sprites, const FMatrix3x3& normalToWorld) const { IVector3D center = ortho_floatingTileToMini(this->position); IVector3D minBound = center - ortho_floatingTileToMini(radius); IVector3D maxBound = center + ortho_floatingTileToMini(radius); sprites.map(minBound, maxBound, [this, shadowTarget, normalToWorld](Sprite& sprite, const IVector3D origin, const IVector3D minBound, const IVector3D maxBound) mutable { this->renderSpriteShadow(shadowTarget, sprite, normalToWorld); }); } public: void illuminate(const OrthoView& camera, const IVector2D& worldCenter, OrderedImageRgbaU8& lightBuffer, const OrderedImageRgbaU8& normalBuffer, const AlignedImageF32& heightBuffer, const CubeMapF32& shadowSource) const { if (this->shadowCasting) { addPointLight(camera, worldCenter, lightBuffer, normalBuffer, heightBuffer, this->position, this->radius, this->intensity, this->color, shadowSource.cubeMap); } else { addPointLight(camera, worldCenter, lightBuffer, normalBuffer, heightBuffer, this->position, this->radius, this->intensity, this->color); } } }; class DirectedLight { public: FVector3D direction; // The world-space direction float intensity; // The color's brightness multiplier (using float to allow smooth fading) ColorRgbI32 color; // The color of the light (using integers to detect when the color is uniform) public: DirectedLight(FVector3D direction, float intensity, ColorRgbI32 color) : direction(direction), intensity(intensity), color(color) {} public: void illuminate(const OrthoView& camera, const IVector2D& worldCenter, OrderedImageRgbaU8& lightBuffer, const OrderedImageRgbaU8& normalBuffer, bool overwrite = false) const { if (overwrite) { setDirectedLight(camera, lightBuffer, normalBuffer, this->direction, this->intensity, this->color); } else { addDirectedLight(camera, lightBuffer, normalBuffer, this->direction, this->intensity, this->color); } } }; enum class BlockState { Unused, Ready, Dirty }; class BackgroundBlock { public: static const int blockSize = 512; static const int maxDistance = blockSize * 2; IRect worldRegion; int cameraId = 0; BlockState state = BlockState::Unused; OrderedImageRgbaU8 diffuseBuffer; OrderedImageRgbaU8 normalBuffer; AlignedImageF32 heightBuffer; private: IVector3D getBoxCorner(const IVector3D& minBound, const IVector3D& maxBound, int cornerIndex) { assert(cornerIndex >= 0 && cornerIndex < 8); return IVector3D( ((uint32_t)cornerIndex & 1u) ? maxBound.x : minBound.x, ((uint32_t)cornerIndex & 2u) ? maxBound.y : minBound.y, ((uint32_t)cornerIndex & 4u) ? maxBound.z : minBound.z ); } // Pre-condition: diffuseBuffer must be cleared unless sprites cover the whole block void draw(Octree& sprites, const OrthoView& ortho) { image_fill(this->normalBuffer, ColorRgbaI32(128)); image_fill(this->heightBuffer, -std::numeric_limits::max()); sprites.map( [ortho,this](const IVector3D& minBound, const IVector3D& maxBound){ IVector2D corners[8]; for (int c = 0; c < 8; c++) { corners[c] = ortho.miniTileOffsetToScreenPixel(getBoxCorner(minBound, maxBound, c)); } if (corners[0].x < this->worldRegion.left() && corners[1].x < this->worldRegion.left() && corners[2].x < this->worldRegion.left() && corners[3].x < this->worldRegion.left() && corners[4].x < this->worldRegion.left() && corners[5].x < this->worldRegion.left() && corners[6].x < this->worldRegion.left() && corners[7].x < this->worldRegion.left()) { return false; } if (corners[0].x > this->worldRegion.right() && corners[1].x > this->worldRegion.right() && corners[2].x > this->worldRegion.right() && corners[3].x > this->worldRegion.right() && corners[4].x > this->worldRegion.right() && corners[5].x > this->worldRegion.right() && corners[6].x > this->worldRegion.right() && corners[7].x > this->worldRegion.right()) { return false; } if (corners[0].y < this->worldRegion.top() && corners[1].y < this->worldRegion.top() && corners[2].y < this->worldRegion.top() && corners[3].y < this->worldRegion.top() && corners[4].y < this->worldRegion.top() && corners[5].y < this->worldRegion.top() && corners[6].y < this->worldRegion.top() && corners[7].y < this->worldRegion.top()) { return false; } if (corners[0].y > this->worldRegion.bottom() && corners[1].y > this->worldRegion.bottom() && corners[2].y > this->worldRegion.bottom() && corners[3].y > this->worldRegion.bottom() && corners[4].y > this->worldRegion.bottom() && corners[5].y > this->worldRegion.bottom() && corners[6].y > this->worldRegion.bottom() && corners[7].y > this->worldRegion.bottom()) { return false; } return true; }, [this, ortho](Sprite& sprite, const IVector3D origin, const IVector3D minBound, const IVector3D maxBound){ drawSprite(sprite, ortho, -this->worldRegion.upperLeft(), this->heightBuffer, this->diffuseBuffer, this->normalBuffer); }); } public: BackgroundBlock(Octree& sprites, const IRect& worldRegion, const OrthoView& ortho) : worldRegion(worldRegion), cameraId(ortho.id), state(BlockState::Ready), diffuseBuffer(image_create_RgbaU8(blockSize, blockSize)), normalBuffer(image_create_RgbaU8(blockSize, blockSize)), heightBuffer(image_create_F32(blockSize, blockSize)) { this->draw(sprites, ortho); } void update(Octree& sprites, const IRect& worldRegion, const OrthoView& ortho) { this->worldRegion = worldRegion; this->cameraId = ortho.id; image_fill(this->diffuseBuffer, ColorRgbaI32(0)); this->draw(sprites, ortho); this->state = BlockState::Ready; } void draw(OrderedImageRgbaU8& diffuseTarget, OrderedImageRgbaU8& normalTarget, AlignedImageF32& heightTarget, const IRect& seenRegion) const { if (this->state != BlockState::Unused) { int left = this->worldRegion.left() - seenRegion.left(); int top = this->worldRegion.top() - seenRegion.top(); draw_copy(diffuseTarget, this->diffuseBuffer, left, top); draw_copy(normalTarget, this->normalBuffer, left, top); draw_copy(heightTarget, this->heightBuffer, left, top); } } void recycle() { //printText("Recycle block at ", this->worldRegion, "\n"); this->state = BlockState::Unused; this->worldRegion = IRect(); this->cameraId = -1; } }; // TODO: A way to delete passive sprites using search criterias for bounding box and leaf content using a boolean lambda class SpriteWorldImpl { public: // World OrthoSystem ortho; // Sprites that rarely change and can be stored in a background image. (no animations allowed) // TODO: Don't store the position twice, by keeping it separate from the Sprite struct. Octree passiveSprites; // Temporary things are deleted when spriteWorld_clearTemporary is called List temporarySprites; List temporaryPointLights; List temporaryDirectedLights; // View int cameraIndex = 0; IVector3D cameraLocation; // Deferred rendering OrderedImageRgbaU8 diffuseBuffer; OrderedImageRgbaU8 normalBuffer; AlignedImageF32 heightBuffer; OrderedImageRgbaU8 lightBuffer; // Passive background // TODO: How can split-screen use multiple cameras without duplicate blocks or deleting the other camera's blocks by distance? List backgroundBlocks; private: // Reused buffers int shadowResolution; CubeMapF32 temporaryShadowMap; public: SpriteWorldImpl(const OrthoSystem &ortho, int shadowResolution) : ortho(ortho), passiveSprites(ortho_miniUnitsPerTile * 64), shadowResolution(shadowResolution), temporaryShadowMap(shadowResolution) {} public: void updateBlockAt(const IRect& blockRegion, const IRect& seenRegion) { int unusedBlockIndex = -1; // Find an existing block for (int b = 0; b < this->backgroundBlocks.length(); b++) { BackgroundBlock* currentBlockPtr = &this->backgroundBlocks[b]; if (currentBlockPtr->state != BlockState::Unused) { // Check direction if (currentBlockPtr->cameraId == this->ortho.view[this->cameraIndex].id) { // Check location if (currentBlockPtr->worldRegion.left() == blockRegion.left() && currentBlockPtr->worldRegion.top() == blockRegion.top()) { // Update if needed if (currentBlockPtr->state == BlockState::Dirty) { currentBlockPtr->update(this->passiveSprites, blockRegion, this->ortho.view[this->cameraIndex]); } // Use the block return; } else { // See if the block is too far from the camera if (currentBlockPtr->worldRegion.right() < seenRegion.left() - BackgroundBlock::maxDistance || currentBlockPtr->worldRegion.left() > seenRegion.right() + BackgroundBlock::maxDistance || currentBlockPtr->worldRegion.bottom() < seenRegion.top() - BackgroundBlock::maxDistance || currentBlockPtr->worldRegion.top() > seenRegion.bottom() + BackgroundBlock::maxDistance) { // Recycle because it's too far away currentBlockPtr->recycle(); unusedBlockIndex = b; } } } else{ // Recycle directly when another camera angle is used currentBlockPtr->recycle(); unusedBlockIndex = b; } } else { unusedBlockIndex = b; } } // If none of them matched, we should've passed by any unused block already if (unusedBlockIndex > -1) { // We have a block to reuse this->backgroundBlocks[unusedBlockIndex].update(this->passiveSprites, blockRegion, this->ortho.view[this->cameraIndex]); } else { // Create a new block this->backgroundBlocks.pushConstruct(this->passiveSprites, blockRegion, this->ortho.view[this->cameraIndex]); } } void invalidateBlockAt(int left, int top) { // Find an existing block for (int b = 0; b < this->backgroundBlocks.length(); b++) { BackgroundBlock* currentBlockPtr = &this->backgroundBlocks[b]; // Assuming that alternative camera angles will be removed when drawing next time if (currentBlockPtr->state == BlockState::Ready && currentBlockPtr->worldRegion.left() == left && currentBlockPtr->worldRegion.top() == top) { // Make dirty to force an update currentBlockPtr->state = BlockState::Dirty; } } } // Make sure that each pixel in seenRegion is occupied by an updated background block void updateBlocks(const IRect& seenRegion) { // Round inclusive pixel indices down to containing blocks and iterate over them in strides along x and y int64_t roundedLeft = roundDown(seenRegion.left(), BackgroundBlock::blockSize); int64_t roundedTop = roundDown(seenRegion.top(), BackgroundBlock::blockSize); int64_t roundedRight = roundDown(seenRegion.right() - 1, BackgroundBlock::blockSize); int64_t roundedBottom = roundDown(seenRegion.bottom() - 1, BackgroundBlock::blockSize); for (int64_t y = roundedTop; y <= roundedBottom; y += BackgroundBlock::blockSize) { for (int64_t x = roundedLeft; x <= roundedRight; x += BackgroundBlock::blockSize) { // Make sure that a block is allocated and pre-drawn at this location this->updateBlockAt(IRect(x, y, BackgroundBlock::blockSize, BackgroundBlock::blockSize), seenRegion); } } } void drawDeferred(OrderedImageRgbaU8& diffuseTarget, OrderedImageRgbaU8& normalTarget, AlignedImageF32& heightTarget, const IRect& seenRegion) { // Check image dimensions assert(image_getWidth(diffuseTarget) == seenRegion.width() && image_getHeight(diffuseTarget) == seenRegion.height()); assert(image_getWidth(normalTarget) == seenRegion.width() && image_getHeight(normalTarget) == seenRegion.height()); assert(image_getWidth(heightTarget) == seenRegion.width() && image_getHeight(heightTarget) == seenRegion.height()); // Draw passive sprites to blocks this->updateBlocks(seenRegion); // Draw blocks to the targets for (int b = 0; b < this->backgroundBlocks.length(); b++) { this->backgroundBlocks[b].draw(diffuseTarget, normalTarget, heightTarget, seenRegion); } // Draw active sprites to the targets for (int s = 0; s < this->temporarySprites.length(); s++) { drawSprite(this->temporarySprites[s], this->ortho.view[this->cameraIndex], -seenRegion.upperLeft(), heightTarget, diffuseTarget, normalTarget); } } public: void updatePassiveRegion(const IRect& modifiedRegion) { int64_t roundedLeft = roundDown(modifiedRegion.left(), BackgroundBlock::blockSize); int64_t roundedTop = roundDown(modifiedRegion.top(), BackgroundBlock::blockSize); int64_t roundedRight = roundDown(modifiedRegion.right() - 1, BackgroundBlock::blockSize); int64_t roundedBottom = roundDown(modifiedRegion.bottom() - 1, BackgroundBlock::blockSize); for (int64_t y = roundedTop; y <= roundedBottom; y += BackgroundBlock::blockSize) { for (int64_t x = roundedLeft; x <= roundedRight; x += BackgroundBlock::blockSize) { // Make sure that a block is allocated and pre-drawn at this location this->invalidateBlockAt(x, y); } } } IVector2D findWorldCenter(const AlignedImageRgbaU8& colorTarget) const { return IVector2D(image_getWidth(colorTarget) / 2, image_getHeight(colorTarget) / 2) - this->ortho.miniTileOffsetToScreenPixel(this->cameraLocation, this->cameraIndex); } void draw(AlignedImageRgbaU8& colorTarget) { double startTime; IVector2D worldCenter = this->findWorldCenter(colorTarget); // Resize when the window has resized or the buffers haven't been allocated before int width = image_getWidth(colorTarget); int height = image_getHeight(colorTarget); if (image_getWidth(this->diffuseBuffer) != width || image_getHeight(this->diffuseBuffer) != height) { this->diffuseBuffer = image_create_RgbaU8(width, height); this->normalBuffer = image_create_RgbaU8(width, height); this->lightBuffer = image_create_RgbaU8(width, height); this->heightBuffer = image_create_F32(width, height); } IRect worldRegion = IRect(-worldCenter.x, -worldCenter.y, width, height); startTime = time_getSeconds(); this->drawDeferred(this->diffuseBuffer, this->normalBuffer, this->heightBuffer, worldRegion); debugText("Draw deferred: ", (time_getSeconds() - startTime) * 1000.0, " ms\n"); // Illuminate using directed lights if (this->temporaryDirectedLights.length() > 0) { startTime = time_getSeconds(); // Overwriting any light from the previous frame for (int p = 0; p < this->temporaryDirectedLights.length(); p++) { this->temporaryDirectedLights[p].illuminate(this->ortho.view[this->cameraIndex], worldCenter, this->lightBuffer, this->normalBuffer, p == 0); } debugText("Sun light: ", (time_getSeconds() - startTime) * 1000.0, " ms\n"); } else { startTime = time_getSeconds(); image_fill(this->lightBuffer, ColorRgbaI32(0)); // Set light to black debugText("Clear light: ", (time_getSeconds() - startTime) * 1000.0, " ms\n"); } // Illuminate using point lights for (int p = 0; p < this->temporaryPointLights.length(); p++) { PointLight *currentLight = &this->temporaryPointLights[p]; if (currentLight->shadowCasting) { startTime = time_getSeconds(); this->temporaryShadowMap.clear(); currentLight->renderSpriteShadows(this->temporaryShadowMap, this->passiveSprites, ortho.view[this->cameraIndex].normalToWorldSpace); for (int s = 0; s < this->temporarySprites.length(); s++) { currentLight->renderSpriteShadow(this->temporaryShadowMap, this->temporarySprites[s], ortho.view[this->cameraIndex].normalToWorldSpace); } debugText("Cast point-light shadows: ", (time_getSeconds() - startTime) * 1000.0, " ms\n"); } startTime = time_getSeconds(); currentLight->illuminate(this->ortho.view[this->cameraIndex], worldCenter, this->lightBuffer, this->normalBuffer, this->heightBuffer, this->temporaryShadowMap); debugText("Illuminate from point-light: ", (time_getSeconds() - startTime) * 1000.0, " ms\n"); } // Draw the final image to the target by multiplying diffuse with light startTime = time_getSeconds(); blendLight(colorTarget, this->diffuseBuffer, this->lightBuffer); debugText("Blend light: ", (time_getSeconds() - startTime) * 1000.0, " ms\n"); } }; int sprite_loadTypeFromFile(const String& folderPath, const String& spriteName) { types.pushConstruct(folderPath, spriteName); return types.length() - 1; } int sprite_getTypeCount() { return types.length(); } SpriteWorld spriteWorld_create(OrthoSystem ortho, int shadowResolution) { return std::make_shared(ortho, shadowResolution); } #define MUST_EXIST(OBJECT, METHOD) if (OBJECT.get() == nullptr) { throwError("The " #OBJECT " handle was null in " #METHOD "\n"); } void spriteWorld_addBackgroundSprite(SpriteWorld& world, const Sprite& sprite) { MUST_EXIST(world, spriteWorld_addBackgroundSprite); // TODO: Validate type index before looking up the bounding box, for easy debugging // TODO: Replace sprite.location with a separate position argument, possibly constructing in place using the API // Add the passive sprite to the octree IVector3D origin = sprite.location; IVector3D minBound = origin + types[sprite.typeIndex].minBoundMini; IVector3D maxBound = origin + types[sprite.typeIndex].maxBoundMini; world->passiveSprites.insert(sprite, origin, minBound, maxBound); // Find the affected passive region and make it dirty int frameIndex = getSpriteFrameIndex(sprite, world->ortho.view[world->cameraIndex]); const SpriteFrame* frame = &types[sprite.typeIndex].frames[frameIndex]; IVector2D upperLeft = world->ortho.miniTilePositionToScreenPixel(sprite.location, world->cameraIndex, IVector2D()) - frame->centerPoint; IRect region = IRect(upperLeft.x, upperLeft.y, image_getWidth(frame->colorImage), image_getHeight(frame->colorImage)); world->updatePassiveRegion(region); } void spriteWorld_addTemporarySprite(SpriteWorld& world, const Sprite& sprite) { MUST_EXIST(world, spriteWorld_addTemporarySprite); // Add the temporary sprite world->temporarySprites.push(sprite); } void spriteWorld_createTemporary_pointLight(SpriteWorld& world, const FVector3D position, float radius, float intensity, ColorRgbI32 color, bool shadowCasting) { MUST_EXIST(world, spriteWorld_createTemporary_pointLight); world->temporaryPointLights.pushConstruct(position, radius, intensity, color, shadowCasting); } void spriteWorld_createTemporary_directedLight(SpriteWorld& world, const FVector3D direction, float intensity, ColorRgbI32 color) { MUST_EXIST(world, spriteWorld_createTemporary_pointLight); world->temporaryDirectedLights.pushConstruct(direction, intensity, color); } void spriteWorld_clearTemporary(SpriteWorld& world) { MUST_EXIST(world, spriteWorld_clearTemporary); world->temporarySprites.clear(); world->temporaryPointLights.clear(); world->temporaryDirectedLights.clear(); } void spriteWorld_draw(SpriteWorld& world, AlignedImageRgbaU8& colorTarget) { MUST_EXIST(world, spriteWorld_draw); world->draw(colorTarget); } IVector3D spriteWorld_findGroundAtPixel(SpriteWorld& world, const AlignedImageRgbaU8& colorBuffer, const IVector2D& pixelLocation) { MUST_EXIST(world, spriteWorld_findGroundAtPixel); return world->ortho.pixelToMiniPosition(pixelLocation, world->cameraIndex, world->findWorldCenter(colorBuffer)); } void spriteWorld_moveCameraInPixels(SpriteWorld& world, const IVector2D& pixelOffset) { MUST_EXIST(world, spriteWorld_moveCameraInPixels); world->cameraLocation = world->cameraLocation + world->ortho.pixelToMiniOffset(pixelOffset, world->cameraIndex); } AlignedImageRgbaU8 spriteWorld_getDiffuseBuffer(SpriteWorld& world) { MUST_EXIST(world, spriteWorld_getDiffuseBuffer); return world->diffuseBuffer; } OrderedImageRgbaU8 spriteWorld_getNormalBuffer(SpriteWorld& world) { MUST_EXIST(world, spriteWorld_getNormalBuffer); return world->normalBuffer; } OrderedImageRgbaU8 spriteWorld_getLightBuffer(SpriteWorld& world) { MUST_EXIST(world, spriteWorld_getLightBuffer); return world->lightBuffer; } AlignedImageF32 spriteWorld_getHeightBuffer(SpriteWorld& world) { MUST_EXIST(world, spriteWorld_getHeightBuffer); return world->heightBuffer; } int spriteWorld_getCameraDirectionIndex(SpriteWorld& world) { MUST_EXIST(world, spriteWorld_getCameraDirectionIndex); return world->cameraIndex; } void spriteWorld_setCameraDirectionIndex(SpriteWorld& world, int index) { MUST_EXIST(world, spriteWorld_setCameraDirectionIndex); world->cameraIndex = index; } static FVector3D normalFromPoints(const FVector3D& A, const FVector3D& B, const FVector3D& C) { return normalize(crossProduct(B - A, C - A)); } static FVector3D getAverageNormal(const Model& model, int part, int poly) { int vertexCount = model_getPolygonVertexCount(model, part, poly); FVector3D normalSum; for (int t = 0; t < vertexCount - 2; t++) { normalSum = normalSum + normalFromPoints( model_getVertexPosition(model, part, poly, 0), model_getVertexPosition(model, part, poly, t + 1), model_getVertexPosition(model, part, poly, t + 2) ); } return normalize(normalSum); } // Pre-conditions: // * All images must exist and have the same dimensions // * All triangles in model must be contained within the image bounds after being projected using view // TODO: Render directly with a location to a 16-bit depth buffer for background 3D models and brush preview static void sprite_render(Model model, OrthoView view, ImageF32 depthBuffer, ImageRgbaU8 diffuseTarget, ImageRgbaU8 normalTarget) { int pointCount = model_getNumberOfPoints(model); IRect clipBound = image_getBound(depthBuffer); FVector2D projectionOffset = FVector2D((float)clipBound.width() * 0.5f, (float)clipBound.height() * 0.5f); // TODO: Allow having length 0 for Arrays and Fields by preventing all access to elements in special cases Array projectedPoints(pointCount, FVector3D()); // pixel X, pixel Y, mini-tile height Array normalPoints(pointCount, FVector3D()); // normal X, Y, Z // TODO: Store an array of normals for each point, sum normal vectors for each included polygon and normalize the result // Interpolate and normalize again for each pixel for (int point = 0; point < pointCount; point++) { FVector3D projected = view.worldSpaceToScreenDepth.transform(model_getPoint(model, point)); projectedPoints[point] = FVector3D(projected.x + projectionOffset.x, projected.y + projectionOffset.y, projected.z); } // Calculate rounded normals in light-space. // TODO: Pre-generate normals in world space before transforming into light space. FMatrix3x3 normalToWorldSpace = view.normalToWorldSpace; for (int part = 0; part < model_getNumberOfParts(model); part++) { for (int poly = 0; poly < model_getNumberOfPolygons(model, part); poly++) { // Transform the normal into a coordinate system aligned with the camera. // Otherwise the rotation cannot be used for individual rotation to have a corner for each wall. FVector3D worldNormal = getAverageNormal(model, part, poly); FVector3D localNormal = normalToWorldSpace.transformTransposed(worldNormal); for (int vert = 0; vert < model_getPolygonVertexCount(model, part, poly); vert++) { int point = model_getVertexPointIndex(model, part, poly, vert); normalPoints[point] = normalPoints[point] + localNormal; } } } for (int point = 0; point < pointCount; point++) { normalPoints[point] = normalize(normalPoints[point]); } // Render polygons as triangle fans for (int part = 0; part < model_getNumberOfParts(model); part++) { for (int poly = 0; poly < model_getNumberOfPolygons(model, part); poly++) { int vertexCount = model_getPolygonVertexCount(model, part, poly); int vertA = 0; FVector4D vertexColorA = model_getVertexColor(model, part, poly, vertA) * 255.0f; int indexA = model_getVertexPointIndex(model, part, poly, vertA); FVector3D normalA = normalPoints[indexA]; FVector3D pointA = projectedPoints[indexA]; LVector2D subPixelA = LVector2D(safeRoundInt64(pointA.x * constants::unitsPerPixel), safeRoundInt64(pointA.y * constants::unitsPerPixel)); for (int vertB = 1; vertB < vertexCount - 1; vertB++) { int vertC = vertB + 1; int indexB = model_getVertexPointIndex(model, part, poly, vertB); int indexC = model_getVertexPointIndex(model, part, poly, vertC); FVector4D vertexColorB = model_getVertexColor(model, part, poly, vertB) * 255.0f; FVector4D vertexColorC = model_getVertexColor(model, part, poly, vertC) * 255.0f; FVector3D normalB = normalPoints[indexB]; FVector3D normalC = normalPoints[indexC]; FVector3D pointB = projectedPoints[indexB]; FVector3D pointC = projectedPoints[indexC]; LVector2D subPixelB = LVector2D(safeRoundInt64(pointB.x * constants::unitsPerPixel), safeRoundInt64(pointB.y * constants::unitsPerPixel)); LVector2D subPixelC = LVector2D(safeRoundInt64(pointC.x * constants::unitsPerPixel), safeRoundInt64(pointC.y * constants::unitsPerPixel)); IRect triangleBound = IRect::cut(clipBound, getTriangleBound(subPixelA, subPixelB, subPixelC)); int rowCount = triangleBound.height(); if (rowCount > 0) { // TODO: Fix the excess pixel bugs RowInterval rows[rowCount]; rasterizeTriangle(subPixelA, subPixelB, subPixelC, rows, triangleBound); for (int y = triangleBound.top(); y < triangleBound.bottom(); y++) { int rowIndex = y - triangleBound.top(); int left = rows[rowIndex].left; int right = rows[rowIndex].right; for (int x = left; x < right; x++) { FVector3D weight = getAffineWeight(FVector2D(pointA.x, pointA.y), FVector2D(pointB.x, pointB.y), FVector2D(pointC.x, pointC.y), FVector2D(x + 0.5f, y + 0.5f)); float height = interpolateUsingAffineWeight(pointA.z, pointB.z, pointC.z, weight); if (height > image_readPixel_clamp(depthBuffer, x, y)) { FVector4D vertexColor = interpolateUsingAffineWeight(vertexColorA, vertexColorB, vertexColorC, weight); FVector3D normal = (normalize(interpolateUsingAffineWeight(normalA, normalB, normalC, weight)) + 1.0f) * 127.5f; image_writePixel(depthBuffer, x, y, height); image_writePixel(diffuseTarget, x, y, ColorRgbaI32(vertexColor.x, vertexColor.y, vertexColor.z, 255)); image_writePixel(normalTarget, x, y, ColorRgbaI32(normal.x, normal.y, normal.z, 255)); } } } } } } } } void sprite_generateFromModel(ImageRgbaU8& targetAtlas, String& targetConfigText, const Model& visibleModel, const Model& shadowModel, const OrthoSystem& ortho, const String& targetPath, int cameraAngles) { // Validate input if (cameraAngles < 1) { printText(" Need at least one camera angle to generate a sprite!\n"); return; } else if (!model_exists(visibleModel)) { printText(" There's nothing to render, because visible model does not exist!\n"); return; } else if (model_getNumberOfParts(visibleModel) == 0) { printText(" There's nothing to render in the visible model, because there are no parts in the visible model!\n"); return; } else { // Measure the bounding cylinder for determining the uncropped image size FVector3D minBound = FVector3D(std::numeric_limits::max()); FVector3D maxBound = FVector3D(-std::numeric_limits::max()); for (int p = 0; p < model_getNumberOfPoints(visibleModel); p++) { FVector3D point = model_getPoint(visibleModel, p); if (point.x < minBound.x) { minBound.x = point.x; } if (point.y < minBound.y) { minBound.y = point.y; } if (point.z < minBound.z) { minBound.z = point.z; } if (point.x > maxBound.x) { maxBound.x = point.x; } if (point.y > maxBound.y) { maxBound.y = point.y; } if (point.z > maxBound.z) { maxBound.z = point.z; } } // Check if generating a bound failed if (minBound.x > maxBound.x) { printText(" There's nothing visible in the model, because the 3D bounding box had no points to be created from!\n"); return; } printText(" Representing height from ", minBound.y, " to ", maxBound.y, " encoded using 8-bits\n"); // Calculate initial image size float worstCaseDiameter = (std::max(maxBound.x, -minBound.x) + std::max(maxBound.y, -minBound.y) + std::max(maxBound.z, -minBound.z)) * 2; int maxRes = roundUp(worstCaseDiameter * ortho.pixelsPerTile, 2) + 4; // Round up to even pixels and add 4 padding pixels // Allocate square images from the pessimistic size estimation int width = maxRes; int height = maxRes; ImageF32 depthBuffer = image_create_F32(width, height); ImageRgbaU8 colorImage[cameraAngles]; ImageRgbaU8 heightImage[cameraAngles]; ImageRgbaU8 normalImage[cameraAngles]; for (int a = 0; a < cameraAngles; a++) { colorImage[a] = image_create_RgbaU8(width, height); heightImage[a] = image_create_RgbaU8(width, height); normalImage[a] = image_create_RgbaU8(width, height); } // Render the model to multiple render targets at once float heightScale = 255.0f / (maxBound.y - minBound.y); for (int a = 0; a < cameraAngles; a++) { image_fill(depthBuffer, -1000000000.0f); image_fill(colorImage[a], ColorRgbaI32(0, 0, 0, 0)); sprite_render(visibleModel, ortho.view[a], depthBuffer, colorImage[a], normalImage[a]); // Convert height into an 8 bit channel for saving for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { int32_t opacityPixel = image_readPixel_clamp(colorImage[a], x, y).alpha; int32_t heightPixel = (image_readPixel_clamp(depthBuffer, x, y) - minBound.y) * heightScale; image_writePixel(heightImage[a], x, y, ColorRgbaI32(heightPixel, 0, 0, opacityPixel)); } } } // Crop all images uniformly for easy atlas packing int32_t minX = width; int32_t minY = height; int32_t maxX = 0; int32_t maxY = 0; for (int a = 0; a < cameraAngles; a++) { for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { if (image_readPixel_border(colorImage[a], x, y).alpha) { if (x < minX) minX = x; if (x > maxX) maxX = x; if (y < minY) minY = y; if (y > maxY) maxY = y; } } } } // Check if cropping failed if (minX > maxX) { printText(" There's nothing visible in the model, because cropping the final images returned nothing!\n"); return; } IRect cropRegion = IRect(minX, minY, (maxX + 1) - minX, (maxY + 1) - minY); if (cropRegion.width() < 1 || cropRegion.height() < 1) { printText(" Cropping failed to find any drawn pixels!\n"); return; } for (int a = 0; a < cameraAngles; a++) { colorImage[a] = image_getSubImage(colorImage[a], cropRegion); heightImage[a] = image_getSubImage(heightImage[a], cropRegion); normalImage[a] = image_getSubImage(normalImage[a], cropRegion); } int croppedWidth = cropRegion.width(); int croppedHeight = cropRegion.height(); int centerX = width / 2 - cropRegion.left(); int centerY = height / 2 - cropRegion.top(); printText(" Cropped images of ", croppedWidth, "x", croppedHeight, " pixels with centers at (", centerX, ", ", centerY, ")\n"); // Pack everything into an image atlas targetAtlas = image_create_RgbaU8(croppedWidth * 3, croppedHeight * cameraAngles); for (int a = 0; a < cameraAngles; a++) { draw_copy(targetAtlas, colorImage[a], 0, a * croppedHeight); draw_copy(targetAtlas, heightImage[a], croppedWidth, a * croppedHeight); draw_copy(targetAtlas, normalImage[a], croppedWidth * 2, a * croppedHeight); } SpriteConfig config = SpriteConfig(centerX, centerY, cameraAngles, 3, minBound, maxBound); if (model_exists(shadowModel) && model_getNumberOfPoints(shadowModel) > 0) { config.appendShadow(shadowModel); } targetConfigText = config.toIni(); } } static bool isDigit(DsrChar c) { return c >= U'0' && c <= U'9'; } static bool isValue(DsrChar c) { return c == U'-' || c == U'.' || isDigit(c); } // Allowing the last decimals to deviate a bit because floating-point operations are rounded differently between computers static bool approximateTextMatch(const ReadableString &a, const ReadableString &b, double tolerance = 0.00002) { int readerA = 0, readerB = 0; while (readerA < string_length(a) && readerB < string_length(b)) { DsrChar charA = a[readerA]; DsrChar charB = b[readerB]; if (isValue(charA) && isValue(charB)) { // Scan forward on both sides while consuming content and comparing the actual value int startA = readerA; int startB = readerB; // Only move forward on valid characters if (a[readerA] == U'-') { readerA++; } if (b[readerB] == U'-') { readerB++; } while (isDigit(a[readerA])) { readerA++; } while (isDigit(b[readerB])) { readerB++; } if (a[readerA] == U'.') { readerA++; } if (b[readerB] == U'.') { readerB++; } while (isDigit(a[readerA])) { readerA++; } while (isDigit(b[readerB])) { readerB++; } // Approximate values double valueA = string_parseDouble(string_exclusiveRange(a, startA, readerA)); double valueB = string_parseDouble(string_exclusiveRange(b, startB, readerB)); // Check the difference double diff = valueB - valueA; if (diff > tolerance || diff < -tolerance) { // Too big difference, this is probably not a rounding error return false; } } else if (charA != charB) { // Difference with a non-value involved return false; } readerA++; readerB++; } if (readerA < string_length(a) - 1 || readerB < string_length(b) - 1) { // One text had unmatched remains after the other reached its end return false; } else { return true; } } void sprite_generateFromModel(const Model& visibleModel, const Model& shadowModel, const OrthoSystem& ortho, const String& targetPath, int cameraAngles, bool debug) { // Generate an image and a configuration file from the visible model ImageRgbaU8 atlasImage; String configText; sprite_generateFromModel(atlasImage, configText, visibleModel, shadowModel, ortho, targetPath, cameraAngles); // Save the result on success if (string_length(configText) > 0) { // Save the atlas String atlasPath = targetPath + U".png"; // Try loading any existing image ImageRgbaU8 existingAtlasImage = image_load_RgbaU8(atlasPath, false); if (image_exists(existingAtlasImage)) { int difference = image_maxDifference(atlasImage, existingAtlasImage); if (difference <= 2) { printText(" No significant changes against ", targetPath, ".\n"); } else { image_save(atlasImage, atlasPath); printText(" Updated ", targetPath, " with a deviation of ", difference, ".\n"); } } else { // Only save if there was no existing image or it differed significantly from the new result // This comparison is made to avoid flooding version history with changes from invisible differences in color rounding image_save(atlasImage, atlasPath); printText(" Saved atlas to ", targetPath, ".\n"); } // Save the configuration String configPath = targetPath + U".ini"; String oldConfixText = string_load(configPath, false); if (approximateTextMatch(configText, oldConfixText)) { printText(" No significant changes against ", targetPath, ".\n\n"); } else { string_save(targetPath + U".ini", configText); printText(" Saved sprite config to ", targetPath, ".\n\n"); } if (debug) { ImageRgbaU8 debugImage; String garbageText; // TODO: Show overlap between visible and shadow so that shadow outside of visible is displayed as bright red on a dark model. // The number of visible shadow pixels should be reported automatically // in an error message at the end of the total execution together with file names. sprite_generateFromModel(debugImage, garbageText, shadowModel, Model(), ortho, targetPath + U"Debug", 8); image_save(debugImage, targetPath + U"Debug.png"); } } } }