// zlib open source license // // Copyright (c) 2017 to 2019 David Forsgren Piuva // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. #ifndef DFPSR_GEOMETRY_FMATRIX2x2 #define DFPSR_GEOMETRY_FMATRIX2x2 #include #include "FVector.h" namespace dsr { struct FMatrix2x2 { FVector2D xAxis, yAxis; FMatrix2x2() : xAxis(FVector2D(1.0f, 0.0f)), yAxis(FVector2D(0.0f, 1.0f)) {} explicit FMatrix2x2(float uniformScale) : xAxis(FVector2D(uniformScale, 0.0f)), yAxis(FVector2D(0.0f, uniformScale)) {} FMatrix2x2(const FVector2D &xAxis, const FVector2D &yAxis) : xAxis(xAxis), yAxis(yAxis) {} // Transform the a vector by multiplying with the matrix FVector2D transform(const FVector2D &p) const { return FVector2D( p.x * this->xAxis.x + p.y * this->yAxis.x, p.x * this->xAxis.y + p.y * this->yAxis.y ); } // Transform the a vector by multiplying with the transpose of the matrix // The transpose is the inverse for axis aligned normalized matrices // Axis aligned: Each non-self axis dot-product equals zero. // Normalized: The length of each axis equals one. FVector2D transformTransposed(const FVector2D &p) const { return FVector2D( p.x * this->xAxis.x + p.y * this->xAxis.y, p.x * this->yAxis.x + p.y * this->yAxis.y ); } }; inline FMatrix2x2 operator*(const FMatrix2x2 &m, const float &scale) { return FMatrix2x2(m.xAxis * scale, m.yAxis * scale); } inline FMatrix2x2 operator*(const FMatrix2x2 &left, const FMatrix2x2 &right) { return FMatrix2x2(right.transform(left.xAxis), right.transform(left.yAxis)); } inline float determinant(const FMatrix2x2& m) { return m.xAxis.x * m.yAxis.y - m.xAxis.y * m.yAxis.x; } // The full matrix inverse for any matrix where the determinant is not zero inline FMatrix2x2 inverse(const FMatrix2x2& m) { return FMatrix2x2(FVector2D(m.yAxis.y, -m.xAxis.y), FVector2D(-m.yAxis.x, m.xAxis.x)) * (1.0f / determinant(m)); } inline String& string_toStreamIndented(String& target, const FMatrix2x2& source, const ReadableString& indentation) { string_append(target, indentation, U"XAxis(", source.xAxis, U"), YAxis(", source.yAxis, U")"); return target; } } #endif