Model.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. // zlib open source license
  2. //
  3. // Copyright (c) 2017 to 2019 David Forsgren Piuva
  4. //
  5. // This software is provided 'as-is', without any express or implied
  6. // warranty. In no event will the authors be held liable for any damages
  7. // arising from the use of this software.
  8. //
  9. // Permission is granted to anyone to use this software for any purpose,
  10. // including commercial applications, and to alter it and redistribute it
  11. // freely, subject to the following restrictions:
  12. //
  13. // 1. The origin of this software must not be misrepresented; you must not
  14. // claim that you wrote the original software. If you use this software
  15. // in a product, an acknowledgment in the product documentation would be
  16. // appreciated but is not required.
  17. //
  18. // 2. Altered source versions must be plainly marked as such, and must not be
  19. // misrepresented as being the original software.
  20. //
  21. // 3. This notice may not be removed or altered from any source
  22. // distribution.
  23. #define DFPSR_INTERNAL_ACCESS
  24. #include "Model.h"
  25. #include "../constants.h"
  26. #include "../../api/imageAPI.h"
  27. #include "../../image/ImageRgbaU8.h"
  28. #include "../../image/ImageF32.h"
  29. #include "../../base/virtualStack.h"
  30. using namespace dsr;
  31. #define CHECK_PART_INDEX(PART_INDEX, EXIT_STMT) if (PART_INDEX < 0 || PART_INDEX >= this->partBuffer.length()) { printText("Part index ", PART_INDEX, " is out of range 0..", this->partBuffer.length() - 1, "!\n"); EXIT_STMT; }
  32. #define CHECK_POLYGON_INDEX(PART_PTR, POLYGON_INDEX, EXIT_STMT) if (POLYGON_INDEX < 0 || POLYGON_INDEX >= PART_PTR->polygonBuffer.length()) { printText("Polygon index ", POLYGON_INDEX, " is out of range 0..", PART_PTR->polygonBuffer.length() - 1, "!\n"); EXIT_STMT; }
  33. #define CHECK_POINT_INDEX(POINT_INDEX, EXIT_STMT) if (POINT_INDEX < 0 || POINT_INDEX >= this->positionBuffer.length()) { printText("Position index ", POINT_INDEX, " is out of range 0..", this->positionBuffer.length() - 1, "!\n"); EXIT_STMT; }
  34. #define CHECK_PART_POLYGON_INDEX(PART_INDEX, POLYGON_INDEX, EXIT_STMT) { \
  35. CHECK_PART_INDEX(PART_INDEX, EXIT_STMT); \
  36. const Part *PartPtr = &(this->partBuffer[PART_INDEX]); \
  37. CHECK_POLYGON_INDEX(PartPtr, POLYGON_INDEX, EXIT_STMT); \
  38. }
  39. #define CHECK_VERTEX_INDEX(VERTEX_INDEX, EXIT_STMT) if (VERTEX_INDEX < 0 || VERTEX_INDEX > 3) { printText("Vertex index ", VERTEX_INDEX, " is out of the fixed range 0..3 for triangles and quads!\n"); EXIT_STMT; }
  40. Polygon::Polygon(const Vertex &vertA, const Vertex &vertB, const Vertex &vertC) {
  41. this->pointIndices[0] = vertA.pointIndex;
  42. this->pointIndices[1] = vertB.pointIndex;
  43. this->pointIndices[2] = vertC.pointIndex;
  44. this->pointIndices[3] = -1;
  45. this->texCoords[0] = vertA.data.texCoord;
  46. this->texCoords[1] = vertB.data.texCoord;
  47. this->texCoords[2] = vertC.data.texCoord;
  48. this->texCoords[3] = FVector4D();
  49. this->colors[0] = vertA.data.color;
  50. this->colors[1] = vertB.data.color;
  51. this->colors[2] = vertC.data.color;
  52. this->colors[3] = FVector4D();
  53. }
  54. Polygon::Polygon(const Vertex &vertA, const Vertex &vertB, const Vertex &vertC, const Vertex &vertD) {
  55. this->pointIndices[0] = vertA.pointIndex;
  56. this->pointIndices[1] = vertB.pointIndex;
  57. this->pointIndices[2] = vertC.pointIndex;
  58. this->pointIndices[3] = vertD.pointIndex;
  59. this->texCoords[0] = vertA.data.texCoord;
  60. this->texCoords[1] = vertB.data.texCoord;
  61. this->texCoords[2] = vertC.data.texCoord;
  62. this->texCoords[3] = vertD.data.texCoord;
  63. this->colors[0] = vertA.data.color;
  64. this->colors[1] = vertB.data.color;
  65. this->colors[2] = vertC.data.color;
  66. this->colors[3] = vertD.data.color;
  67. }
  68. Polygon::Polygon(int indexA, int indexB, int indexC) {
  69. this->pointIndices[0] = indexA;
  70. this->pointIndices[1] = indexB;
  71. this->pointIndices[2] = indexC;
  72. this->pointIndices[3] = -1;
  73. this->texCoords[0] = FVector4D(0.0f, 0.0f, 0.0f, 0.0f);
  74. this->texCoords[1] = FVector4D(1.0f, 0.0f, 1.0f, 0.0f);
  75. this->texCoords[2] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  76. this->texCoords[3] = FVector4D(0.0f, 1.0f, 0.0f, 1.0f);
  77. this->colors[0] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  78. this->colors[1] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  79. this->colors[2] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  80. this->colors[3] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  81. }
  82. Polygon::Polygon(int indexA, int indexB, int indexC, int indexD) {
  83. this->pointIndices[0] = indexA;
  84. this->pointIndices[1] = indexB;
  85. this->pointIndices[2] = indexC;
  86. this->pointIndices[3] = indexD;
  87. this->texCoords[0] = FVector4D(0.0f, 0.0f, 0.0f, 0.0f);
  88. this->texCoords[1] = FVector4D(1.0f, 0.0f, 1.0f, 0.0f);
  89. this->texCoords[2] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  90. this->texCoords[3] = FVector4D(0.0f, 1.0f, 0.0f, 1.0f);
  91. this->colors[0] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  92. this->colors[1] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  93. this->colors[2] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  94. this->colors[3] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  95. }
  96. int Polygon::getVertexCount() const {
  97. if (this->pointIndices[0] < 0) {
  98. return 0;
  99. } else if (this->pointIndices[1] < 0) {
  100. return 1;
  101. } else if (this->pointIndices[2] < 0) {
  102. return 2;
  103. } else if (this->pointIndices[3] < 0) {
  104. return 3;
  105. } else {
  106. return 4;
  107. }
  108. }
  109. Part::Part(String name) : name(name) {}
  110. Part::Part(const ImageRgbaU8 &diffuseMap, const ImageRgbaU8 &lightMap, const List<Polygon> &polygonBuffer, const String &name) :
  111. diffuseMap(diffuseMap), lightMap(lightMap), polygonBuffer(polygonBuffer), name(name) {}
  112. Part Part::clone() const { return Part(this->diffuseMap, this->lightMap, this->polygonBuffer, this->name); }
  113. int Part::getPolygonCount() const {
  114. return this->polygonBuffer.length();
  115. }
  116. int Part::getPolygonVertexCount(int polygonIndex) const {
  117. CHECK_POLYGON_INDEX(this, polygonIndex, return -1);
  118. return this->polygonBuffer[polygonIndex].getVertexCount();
  119. }
  120. // Precondition:
  121. // TODO: Make a "validated" flag to check reference integrity before drawing models
  122. // Only decreasing the length of the point buffer, changing a position index or adding new polygons should set it to false
  123. // Only running validation before rendering should set it from false to true
  124. // point indices may not go outside of projected's array range
  125. static void renderTriangleFromPolygon(CommandQueue *commandQueue, ImageRgbaU8Impl *targetImage, ImageF32Impl *depthBuffer, const Camera &camera, const Polygon &polygon, int triangleIndex, const ProjectedPoint *projected, Filter filter, const ImageRgbaU8Impl *diffuse, const ImageRgbaU8Impl *light) {
  126. // Triangle fan starting from the first vertex of the polygon
  127. int indexA = 0;
  128. int indexB = 1 + triangleIndex;
  129. int indexC = 2 + triangleIndex;
  130. ProjectedPoint posA = projected[polygon.pointIndices[indexA]];
  131. ProjectedPoint posB = projected[polygon.pointIndices[indexB]];
  132. ProjectedPoint posC = projected[polygon.pointIndices[indexC]];
  133. // Read texture coordinates and convert to planar format in the constructor
  134. TriangleTexCoords texCoords(polygon.texCoords[indexA], polygon.texCoords[indexB], polygon.texCoords[indexC]);
  135. // Read colors and convert to planar format in the constructor
  136. TriangleColors colors(polygon.colors[indexA], polygon.colors[indexB], polygon.colors[indexC]);
  137. renderTriangleFromData(commandQueue, targetImage, depthBuffer, camera, posA, posB, posC, filter, diffuse, light, texCoords, colors);
  138. }
  139. void Part::render(CommandQueue *commandQueue, ImageRgbaU8& targetImage, ImageF32& depthBuffer, const Transform3D &modelToWorldTransform, const Camera &camera, Filter filter, const ProjectedPoint* projected) const {
  140. // Get textures
  141. const ImageRgbaU8Impl *diffuse = this->diffuseMap.get();
  142. const ImageRgbaU8Impl *light = this->lightMap.get();
  143. for (int p = 0; p < this->polygonBuffer.length(); p++) {
  144. Polygon polygon = this->polygonBuffer[p];
  145. if (polygon.pointIndices[3] == -1) {
  146. // Render triangle
  147. renderTriangleFromPolygon(commandQueue, targetImage.get(), depthBuffer.get(), camera, polygon, 0, projected, filter, diffuse, light);
  148. } else {
  149. // Render quad
  150. renderTriangleFromPolygon(commandQueue, targetImage.get(), depthBuffer.get(), camera, polygon, 0, projected, filter, diffuse, light);
  151. renderTriangleFromPolygon(commandQueue, targetImage.get(), depthBuffer.get(), camera, polygon, 1, projected, filter, diffuse, light);
  152. }
  153. }
  154. }
  155. void Part::renderDepth(ImageF32& depthBuffer, const Transform3D &modelToWorldTransform, const Camera &camera, const ProjectedPoint* projected) const {
  156. for (int p = 0; p < this->polygonBuffer.length(); p++) {
  157. Polygon polygon = this->polygonBuffer[p];
  158. if (polygon.pointIndices[3] == -1) {
  159. // Render triangle
  160. ProjectedPoint posA = projected[polygon.pointIndices[0]];
  161. ProjectedPoint posB = projected[polygon.pointIndices[1]];
  162. ProjectedPoint posC = projected[polygon.pointIndices[2]];
  163. renderTriangleFromDataDepth(depthBuffer.get(), camera, posA, posB, posC);
  164. } else {
  165. // Render quad
  166. ProjectedPoint posA = projected[polygon.pointIndices[0]];
  167. ProjectedPoint posB = projected[polygon.pointIndices[1]];
  168. ProjectedPoint posC = projected[polygon.pointIndices[2]];
  169. ProjectedPoint posD = projected[polygon.pointIndices[3]];
  170. renderTriangleFromDataDepth(depthBuffer.get(), camera, posA, posB, posC);
  171. renderTriangleFromDataDepth(depthBuffer.get(), camera, posA, posC, posD);
  172. }
  173. }
  174. }
  175. void ModelImpl::render(CommandQueue *commandQueue, ImageRgbaU8& targetImage, ImageF32& depthBuffer, const Transform3D &modelToWorldTransform, const Camera &camera) const {
  176. if (camera.isBoxSeen(this->minBound, this->maxBound, modelToWorldTransform)) {
  177. // Transform and project all vertices
  178. int positionCount = positionBuffer.length();
  179. VirtualStackAllocation<ProjectedPoint> projected(positionCount);
  180. for (int vert = 0; vert < positionCount; vert++) {
  181. projected[vert] = camera.worldToScreen(modelToWorldTransform.transformPoint(positionBuffer[vert]));
  182. }
  183. for (int partIndex = 0; partIndex < this->partBuffer.length(); partIndex++) {
  184. this->partBuffer[partIndex].render(commandQueue, targetImage, depthBuffer, modelToWorldTransform, camera, this->filter, projected.getUnsafe());
  185. }
  186. }
  187. }
  188. void ModelImpl::renderDepth(ImageF32& depthBuffer, const Transform3D &modelToWorldTransform, const Camera &camera) const {
  189. if (camera.isBoxSeen(this->minBound, this->maxBound, modelToWorldTransform)) {
  190. // Transform and project all vertices
  191. int positionCount = positionBuffer.length();
  192. VirtualStackAllocation<ProjectedPoint> projected(positionCount);
  193. for (int vert = 0; vert < positionCount; vert++) {
  194. projected[vert] = camera.worldToScreen(modelToWorldTransform.transformPoint(positionBuffer[vert]));
  195. }
  196. for (int partIndex = 0; partIndex < this->partBuffer.length(); partIndex++) {
  197. this->partBuffer[partIndex].renderDepth(depthBuffer, modelToWorldTransform, camera, projected.getUnsafe());
  198. }
  199. }
  200. }
  201. ModelImpl::ModelImpl() {}
  202. ModelImpl::ModelImpl(Filter filter, const List<Part> &partBuffer, const List<FVector3D> &positionBuffer) :
  203. filter(filter),
  204. positionBuffer(positionBuffer),
  205. partBuffer(partBuffer) {}
  206. ModelImpl::ModelImpl(const ModelImpl &old) :
  207. filter(old.filter),
  208. positionBuffer(old.positionBuffer),
  209. partBuffer(old.partBuffer) {}
  210. int ModelImpl::addEmptyPart(const String& name) {
  211. return this->partBuffer.pushConstructGetIndex(name);
  212. }
  213. int ModelImpl::getNumberOfParts() const {
  214. return this->partBuffer.length();
  215. }
  216. void ModelImpl::setPartName(int partIndex, const String &name) {
  217. CHECK_PART_INDEX(partIndex, return);
  218. this->partBuffer[partIndex].name = name;
  219. }
  220. String ModelImpl::getPartName(int partIndex) const {
  221. CHECK_PART_INDEX(partIndex, return "");
  222. return this->partBuffer[partIndex].name;
  223. }
  224. ImageRgbaU8 ModelImpl::getDiffuseMap(int partIndex) const {
  225. CHECK_PART_INDEX(partIndex, return ImageRgbaU8());
  226. return this->partBuffer[partIndex].diffuseMap;
  227. }
  228. void ModelImpl::setDiffuseMap(const ImageRgbaU8 &diffuseMap, int partIndex) {
  229. CHECK_PART_INDEX(partIndex, return);
  230. if (image_exists(diffuseMap) && !image_isTexture(diffuseMap)) {
  231. printText("Cannot assign a non-texture image as a diffuse map!\n");
  232. } else {
  233. this->partBuffer[partIndex].diffuseMap = diffuseMap;
  234. }
  235. }
  236. void ModelImpl::setDiffuseMapByName(ResourcePool &pool, const String &filename, int partIndex) {
  237. CHECK_PART_INDEX(partIndex, return);
  238. const ImageRgbaU8 texture = pool.fetchImageRgba(filename);
  239. if (image_exists(texture)) {
  240. this->setDiffuseMap(texture, partIndex);
  241. }
  242. }
  243. ImageRgbaU8 ModelImpl::getLightMap(int partIndex) const {
  244. CHECK_PART_INDEX(partIndex, return ImageRgbaU8());
  245. return this->partBuffer[partIndex].lightMap;
  246. }
  247. void ModelImpl::setLightMap(const ImageRgbaU8 &lightMap, int partIndex) {
  248. CHECK_PART_INDEX(partIndex, return);
  249. if (image_exists(lightMap) && !image_isTexture(lightMap)) {
  250. printText("Cannot assign a non-texture image as a light map!\n");
  251. } else {
  252. this->partBuffer[partIndex].lightMap = lightMap;
  253. }
  254. }
  255. void ModelImpl::setLightMapByName(ResourcePool &pool, const String &filename, int partIndex) {
  256. CHECK_PART_INDEX(partIndex, return);
  257. const ImageRgbaU8 texture = pool.fetchImageRgba(filename);
  258. if (image_exists(texture)) {
  259. this->setLightMap(texture, partIndex);
  260. }
  261. }
  262. int ModelImpl::addPolygon(Polygon polygon, int partIndex) {
  263. CHECK_PART_INDEX(partIndex, return -1);
  264. return this->partBuffer[partIndex].polygonBuffer.pushGetIndex(polygon);
  265. }
  266. int ModelImpl::getNumberOfPolygons(int partIndex) const {
  267. CHECK_PART_INDEX(partIndex, return -1);
  268. return this->partBuffer[partIndex].getPolygonCount();
  269. }
  270. int ModelImpl::getPolygonVertexCount(int partIndex, int polygonIndex) const {
  271. CHECK_PART_INDEX(partIndex, return -1);
  272. return this->partBuffer[partIndex].getPolygonVertexCount(polygonIndex);
  273. }
  274. int ModelImpl::getNumberOfPoints() const {
  275. return this->positionBuffer.length();
  276. }
  277. void ModelImpl::expandBound(const FVector3D& point) {
  278. if (this->minBound.x > point.x) { this->minBound.x = point.x; }
  279. if (this->minBound.y > point.y) { this->minBound.y = point.y; }
  280. if (this->minBound.z > point.z) { this->minBound.z = point.z; }
  281. if (this->maxBound.x < point.x) { this->maxBound.x = point.x; }
  282. if (this->maxBound.y < point.y) { this->maxBound.y = point.y; }
  283. if (this->maxBound.z < point.z) { this->maxBound.z = point.z; }
  284. }
  285. int ModelImpl::findPoint(const FVector3D &position, float threshold) const {
  286. float bestDistance = threshold;
  287. int bestIndex = -1;
  288. for (int index = 0; index < this->positionBuffer.length(); index++) {
  289. float distance = length(position - this->getPoint(index));
  290. if (distance < bestDistance) {
  291. bestDistance = distance;
  292. bestIndex = index;
  293. }
  294. }
  295. return bestIndex;
  296. }
  297. FVector3D ModelImpl::getPoint(int pointIndex) const {
  298. CHECK_POINT_INDEX(pointIndex, return FVector3D());
  299. return this->positionBuffer[pointIndex];
  300. }
  301. void ModelImpl::setPoint(int pointIndex, const FVector3D& position) {
  302. CHECK_POINT_INDEX(pointIndex, return);
  303. this->expandBound(position);
  304. this->positionBuffer[pointIndex] = position;
  305. }
  306. int ModelImpl::addPoint(const FVector3D &position) {
  307. this->expandBound(position);
  308. return this->positionBuffer.pushGetIndex(position);
  309. }
  310. int ModelImpl::addPointIfNeeded(const FVector3D &position, float threshold) {
  311. int existingIndex = this->findPoint(position, threshold);
  312. if (existingIndex > -1) {
  313. return existingIndex;
  314. } else {
  315. return addPoint(position);
  316. }
  317. }
  318. int ModelImpl::getVertexPointIndex(int partIndex, int polygonIndex, int vertexIndex) const {
  319. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return -1);
  320. CHECK_VERTEX_INDEX(vertexIndex, return -1);
  321. return partBuffer[partIndex].polygonBuffer[polygonIndex].pointIndices[vertexIndex];
  322. }
  323. void ModelImpl::setVertexPointIndex(int partIndex, int polygonIndex, int vertexIndex, int pointIndex) {
  324. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return);
  325. CHECK_VERTEX_INDEX(vertexIndex, return);
  326. partBuffer[partIndex].polygonBuffer[polygonIndex].pointIndices[vertexIndex] = pointIndex;
  327. }
  328. FVector3D ModelImpl::getVertexPosition(int partIndex, int polygonIndex, int vertexIndex) const {
  329. int pointIndex = getVertexPointIndex(partIndex, polygonIndex, vertexIndex);
  330. if (pointIndex > -1 && pointIndex < this->getNumberOfPoints()) {
  331. return this->getPoint(pointIndex);
  332. } else {
  333. return FVector3D();
  334. }
  335. }
  336. FVector4D ModelImpl::getVertexColor(int partIndex, int polygonIndex, int vertexIndex) const {
  337. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return FVector4D());
  338. CHECK_VERTEX_INDEX(vertexIndex, return FVector4D());
  339. return partBuffer[partIndex].polygonBuffer[polygonIndex].colors[vertexIndex];
  340. }
  341. void ModelImpl::setVertexColor(int partIndex, int polygonIndex, int vertexIndex, const FVector4D& color) {
  342. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return);
  343. CHECK_VERTEX_INDEX(vertexIndex, return);
  344. partBuffer[partIndex].polygonBuffer[polygonIndex].colors[vertexIndex] = color;
  345. }
  346. FVector4D ModelImpl::getTexCoord(int partIndex, int polygonIndex, int vertexIndex) const {
  347. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return FVector4D());
  348. CHECK_VERTEX_INDEX(vertexIndex, return FVector4D());
  349. return partBuffer[partIndex].polygonBuffer[polygonIndex].texCoords[vertexIndex];
  350. }
  351. void ModelImpl::setTexCoord(int partIndex, int polygonIndex, int vertexIndex, const FVector4D& texCoord) {
  352. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return);
  353. CHECK_VERTEX_INDEX(vertexIndex, return);
  354. partBuffer[partIndex].polygonBuffer[polygonIndex].texCoords[vertexIndex] = texCoord;
  355. }