Model.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361
  1. // zlib open source license
  2. //
  3. // Copyright (c) 2017 to 2025 David Forsgren Piuva
  4. //
  5. // This software is provided 'as-is', without any express or implied
  6. // warranty. In no event will the authors be held liable for any damages
  7. // arising from the use of this software.
  8. //
  9. // Permission is granted to anyone to use this software for any purpose,
  10. // including commercial applications, and to alter it and redistribute it
  11. // freely, subject to the following restrictions:
  12. //
  13. // 1. The origin of this software must not be misrepresented; you must not
  14. // claim that you wrote the original software. If you use this software
  15. // in a product, an acknowledgment in the product documentation would be
  16. // appreciated but is not required.
  17. //
  18. // 2. Altered source versions must be plainly marked as such, and must not be
  19. // misrepresented as being the original software.
  20. //
  21. // 3. This notice may not be removed or altered from any source
  22. // distribution.
  23. #define DSR_INTERNAL_ACCESS
  24. #include "Model.h"
  25. #include "../constants.h"
  26. #include "../../../api/imageAPI.h"
  27. #include "../../../api/textureAPI.h"
  28. #include "../../../base/virtualStack.h"
  29. using namespace dsr;
  30. #define CHECK_PART_INDEX(PART_INDEX, EXIT_STMT) if (PART_INDEX < 0 || PART_INDEX >= this->partBuffer.length()) { printText("Part index ", PART_INDEX, " is out of range 0..", this->partBuffer.length() - 1, "!\n"); EXIT_STMT; }
  31. #define CHECK_POLYGON_INDEX(PART_PTR, POLYGON_INDEX, EXIT_STMT) if (POLYGON_INDEX < 0 || POLYGON_INDEX >= PART_PTR->polygonBuffer.length()) { printText("Polygon index ", POLYGON_INDEX, " is out of range 0..", PART_PTR->polygonBuffer.length() - 1, "!\n"); EXIT_STMT; }
  32. #define CHECK_POINT_INDEX(POINT_INDEX, EXIT_STMT) if (POINT_INDEX < 0 || POINT_INDEX >= this->positionBuffer.length()) { printText("Position index ", POINT_INDEX, " is out of range 0..", this->positionBuffer.length() - 1, "!\n"); EXIT_STMT; }
  33. #define CHECK_PART_POLYGON_INDEX(PART_INDEX, POLYGON_INDEX, EXIT_STMT) { \
  34. CHECK_PART_INDEX(PART_INDEX, EXIT_STMT); \
  35. const Part *PartPtr = &(this->partBuffer[PART_INDEX]); \
  36. CHECK_POLYGON_INDEX(PartPtr, POLYGON_INDEX, EXIT_STMT); \
  37. }
  38. #define CHECK_VERTEX_INDEX(VERTEX_INDEX, EXIT_STMT) if (VERTEX_INDEX < 0 || VERTEX_INDEX > 3) { printText("Vertex index ", VERTEX_INDEX, " is out of the fixed range 0..3 for triangles and quads!\n"); EXIT_STMT; }
  39. Polygon::Polygon(const Vertex &vertA, const Vertex &vertB, const Vertex &vertC) {
  40. this->pointIndices[0] = vertA.pointIndex;
  41. this->pointIndices[1] = vertB.pointIndex;
  42. this->pointIndices[2] = vertC.pointIndex;
  43. this->pointIndices[3] = -1;
  44. this->texCoords[0] = vertA.data.texCoord;
  45. this->texCoords[1] = vertB.data.texCoord;
  46. this->texCoords[2] = vertC.data.texCoord;
  47. this->texCoords[3] = FVector4D();
  48. this->colors[0] = vertA.data.color;
  49. this->colors[1] = vertB.data.color;
  50. this->colors[2] = vertC.data.color;
  51. this->colors[3] = FVector4D();
  52. }
  53. Polygon::Polygon(const Vertex &vertA, const Vertex &vertB, const Vertex &vertC, const Vertex &vertD) {
  54. this->pointIndices[0] = vertA.pointIndex;
  55. this->pointIndices[1] = vertB.pointIndex;
  56. this->pointIndices[2] = vertC.pointIndex;
  57. this->pointIndices[3] = vertD.pointIndex;
  58. this->texCoords[0] = vertA.data.texCoord;
  59. this->texCoords[1] = vertB.data.texCoord;
  60. this->texCoords[2] = vertC.data.texCoord;
  61. this->texCoords[3] = vertD.data.texCoord;
  62. this->colors[0] = vertA.data.color;
  63. this->colors[1] = vertB.data.color;
  64. this->colors[2] = vertC.data.color;
  65. this->colors[3] = vertD.data.color;
  66. }
  67. Polygon::Polygon(int indexA, int indexB, int indexC) {
  68. this->pointIndices[0] = indexA;
  69. this->pointIndices[1] = indexB;
  70. this->pointIndices[2] = indexC;
  71. this->pointIndices[3] = -1;
  72. this->texCoords[0] = FVector4D(0.0f, 0.0f, 0.0f, 0.0f);
  73. this->texCoords[1] = FVector4D(1.0f, 0.0f, 1.0f, 0.0f);
  74. this->texCoords[2] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  75. this->texCoords[3] = FVector4D(0.0f, 1.0f, 0.0f, 1.0f);
  76. this->colors[0] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  77. this->colors[1] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  78. this->colors[2] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  79. this->colors[3] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  80. }
  81. Polygon::Polygon(int indexA, int indexB, int indexC, int indexD) {
  82. this->pointIndices[0] = indexA;
  83. this->pointIndices[1] = indexB;
  84. this->pointIndices[2] = indexC;
  85. this->pointIndices[3] = indexD;
  86. this->texCoords[0] = FVector4D(0.0f, 0.0f, 0.0f, 0.0f);
  87. this->texCoords[1] = FVector4D(1.0f, 0.0f, 1.0f, 0.0f);
  88. this->texCoords[2] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  89. this->texCoords[3] = FVector4D(0.0f, 1.0f, 0.0f, 1.0f);
  90. this->colors[0] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  91. this->colors[1] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  92. this->colors[2] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  93. this->colors[3] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  94. }
  95. int Polygon::getVertexCount() const {
  96. if (this->pointIndices[0] < 0) {
  97. return 0;
  98. } else if (this->pointIndices[1] < 0) {
  99. return 1;
  100. } else if (this->pointIndices[2] < 0) {
  101. return 2;
  102. } else if (this->pointIndices[3] < 0) {
  103. return 3;
  104. } else {
  105. return 4;
  106. }
  107. }
  108. Part::Part(const ReadableString &name) : name(name) {}
  109. Part::Part(const TextureRgbaU8 &diffuseMap, const TextureRgbaU8 &lightMap, const List<Polygon> &polygonBuffer, const String &name) :
  110. diffuseMap(diffuseMap), lightMap(lightMap), polygonBuffer(polygonBuffer), name(name) {}
  111. Part Part::clone() const { return Part(this->diffuseMap, this->lightMap, this->polygonBuffer, this->name); }
  112. int Part::getPolygonCount() const {
  113. return this->polygonBuffer.length();
  114. }
  115. int Part::getPolygonVertexCount(int polygonIndex) const {
  116. CHECK_POLYGON_INDEX(this, polygonIndex, return -1);
  117. return this->polygonBuffer[polygonIndex].getVertexCount();
  118. }
  119. // Precondition:
  120. // TODO: Make a "validated" flag to check reference integrity before drawing models
  121. // Only decreasing the length of the point buffer, changing a position index or adding new polygons should set it to false
  122. // Only running validation before rendering should set it from false to true
  123. // point indices may not go outside of projected's array range
  124. static void renderTriangleFromPolygon(CommandQueue *commandQueue, const ImageRgbaU8 &targetImage, const ImageF32 &depthBuffer, const Camera &camera, const Polygon &polygon, int triangleIndex, const ProjectedPoint *projected, Filter filter, const TextureRgbaU8 &diffuse, const TextureRgbaU8 &light) {
  125. // Triangle fan starting from the first vertex of the polygon
  126. int indexA = 0;
  127. int indexB = 1 + triangleIndex;
  128. int indexC = 2 + triangleIndex;
  129. ProjectedPoint posA = projected[polygon.pointIndices[indexA]];
  130. ProjectedPoint posB = projected[polygon.pointIndices[indexB]];
  131. ProjectedPoint posC = projected[polygon.pointIndices[indexC]];
  132. // Read texture coordinates and convert to planar format in the constructor
  133. TriangleTexCoords texCoords(polygon.texCoords[indexA], polygon.texCoords[indexB], polygon.texCoords[indexC]);
  134. // Read colors and convert to planar format in the constructor
  135. TriangleColors colors(polygon.colors[indexA], polygon.colors[indexB], polygon.colors[indexC]);
  136. renderTriangleFromData(commandQueue, targetImage, depthBuffer, camera, posA, posB, posC, filter, diffuse, light, texCoords, colors);
  137. }
  138. void Part::render(CommandQueue *commandQueue, const ImageRgbaU8 &targetImage, const ImageF32 &depthBuffer, const Transform3D &modelToWorldTransform, const Camera &camera, Filter filter, const ProjectedPoint* projected) const {
  139. for (int p = 0; p < this->polygonBuffer.length(); p++) {
  140. Polygon polygon = this->polygonBuffer[p];
  141. if (polygon.pointIndices[3] == -1) {
  142. // Render triangle
  143. renderTriangleFromPolygon(commandQueue, targetImage, depthBuffer, camera, polygon, 0, projected, filter, this->diffuseMap, this->lightMap);
  144. } else {
  145. // Render quad
  146. renderTriangleFromPolygon(commandQueue, targetImage, depthBuffer, camera, polygon, 0, projected, filter, this->diffuseMap, this->lightMap);
  147. renderTriangleFromPolygon(commandQueue, targetImage, depthBuffer, camera, polygon, 1, projected, filter, this->diffuseMap, this->lightMap);
  148. }
  149. }
  150. }
  151. void Part::renderDepth(const ImageF32 &depthBuffer, const Transform3D &modelToWorldTransform, const Camera &camera, const ProjectedPoint* projected) const {
  152. for (int p = 0; p < this->polygonBuffer.length(); p++) {
  153. Polygon polygon = this->polygonBuffer[p];
  154. if (polygon.pointIndices[3] == -1) {
  155. // Render triangle
  156. ProjectedPoint posA = projected[polygon.pointIndices[0]];
  157. ProjectedPoint posB = projected[polygon.pointIndices[1]];
  158. ProjectedPoint posC = projected[polygon.pointIndices[2]];
  159. renderTriangleFromDataDepth(depthBuffer, camera, posA, posB, posC);
  160. } else {
  161. // Render quad
  162. ProjectedPoint posA = projected[polygon.pointIndices[0]];
  163. ProjectedPoint posB = projected[polygon.pointIndices[1]];
  164. ProjectedPoint posC = projected[polygon.pointIndices[2]];
  165. ProjectedPoint posD = projected[polygon.pointIndices[3]];
  166. renderTriangleFromDataDepth(depthBuffer, camera, posA, posB, posC);
  167. renderTriangleFromDataDepth(depthBuffer, camera, posA, posC, posD);
  168. }
  169. }
  170. }
  171. void ModelImpl::render(CommandQueue *commandQueue, const ImageRgbaU8 &targetImage, const ImageF32 &depthBuffer, const Transform3D &modelToWorldTransform, const Camera &camera) const {
  172. if (camera.isBoxSeen(this->minBound, this->maxBound, modelToWorldTransform)) {
  173. // Transform and project all vertices
  174. int positionCount = positionBuffer.length();
  175. VirtualStackAllocation<ProjectedPoint> projected(positionCount, "Projected points in ModelImpl::render");
  176. for (int vert = 0; vert < positionCount; vert++) {
  177. projected[vert] = camera.worldToScreen(modelToWorldTransform.transformPoint(positionBuffer[vert]));
  178. }
  179. for (int partIndex = 0; partIndex < this->partBuffer.length(); partIndex++) {
  180. this->partBuffer[partIndex].render(commandQueue, targetImage, depthBuffer, modelToWorldTransform, camera, this->filter, projected.getUnsafe());
  181. }
  182. }
  183. }
  184. void ModelImpl::renderDepth(const ImageF32 &depthBuffer, const Transform3D &modelToWorldTransform, const Camera &camera) const {
  185. if (camera.isBoxSeen(this->minBound, this->maxBound, modelToWorldTransform)) {
  186. // Transform and project all vertices
  187. int positionCount = positionBuffer.length();
  188. VirtualStackAllocation<ProjectedPoint> projected(positionCount, "Projected points in ModelImpl::renderDepth");
  189. for (int vert = 0; vert < positionCount; vert++) {
  190. projected[vert] = camera.worldToScreen(modelToWorldTransform.transformPoint(positionBuffer[vert]));
  191. }
  192. for (int partIndex = 0; partIndex < this->partBuffer.length(); partIndex++) {
  193. this->partBuffer[partIndex].renderDepth(depthBuffer, modelToWorldTransform, camera, projected.getUnsafe());
  194. }
  195. }
  196. }
  197. ModelImpl::ModelImpl() {}
  198. ModelImpl::ModelImpl(Filter filter, const List<Part> &partBuffer, const List<FVector3D> &positionBuffer) :
  199. filter(filter),
  200. positionBuffer(positionBuffer),
  201. partBuffer(partBuffer) {}
  202. ModelImpl::ModelImpl(const ModelImpl &old) :
  203. filter(old.filter),
  204. positionBuffer(old.positionBuffer),
  205. partBuffer(old.partBuffer) {}
  206. int ModelImpl::addEmptyPart(const String& name) {
  207. return this->partBuffer.pushConstructGetIndex(name);
  208. }
  209. int ModelImpl::getNumberOfParts() const {
  210. return this->partBuffer.length();
  211. }
  212. void ModelImpl::setPartName(int partIndex, const String &name) {
  213. CHECK_PART_INDEX(partIndex, return);
  214. this->partBuffer[partIndex].name = name;
  215. }
  216. String ModelImpl::getPartName(int partIndex) const {
  217. CHECK_PART_INDEX(partIndex, return "");
  218. return this->partBuffer[partIndex].name;
  219. }
  220. TextureRgbaU8 ModelImpl::getDiffuseMap(int partIndex) const {
  221. CHECK_PART_INDEX(partIndex, return TextureRgbaU8());
  222. return this->partBuffer[partIndex].diffuseMap;
  223. }
  224. void ModelImpl::setDiffuseMap(const TextureRgbaU8 &diffuseMap, int partIndex) {
  225. CHECK_PART_INDEX(partIndex, return);
  226. this->partBuffer[partIndex].diffuseMap = diffuseMap;
  227. }
  228. void ModelImpl::setDiffuseMapByName(ResourcePool &pool, const String &filename, int partIndex) {
  229. CHECK_PART_INDEX(partIndex, return);
  230. const TextureRgbaU8 texture = pool.fetchTextureRgba(filename, 5);
  231. if (texture_exists(texture)) {
  232. this->setDiffuseMap(texture, partIndex);
  233. }
  234. }
  235. TextureRgbaU8 ModelImpl::getLightMap(int partIndex) const {
  236. CHECK_PART_INDEX(partIndex, return TextureRgbaU8());
  237. return this->partBuffer[partIndex].lightMap;
  238. }
  239. void ModelImpl::setLightMap(const TextureRgbaU8 &lightMap, int partIndex) {
  240. CHECK_PART_INDEX(partIndex, return);
  241. this->partBuffer[partIndex].lightMap = lightMap;
  242. }
  243. void ModelImpl::setLightMapByName(ResourcePool &pool, const String &filename, int partIndex) {
  244. CHECK_PART_INDEX(partIndex, return);
  245. const TextureRgbaU8 texture = pool.fetchTextureRgba(filename, 1); // TODO: Allow configuring the number of mip levels and selecting a sampler somehow.
  246. if (texture_exists(texture)) {
  247. this->setLightMap(texture, partIndex);
  248. }
  249. }
  250. int ModelImpl::addPolygon(Polygon polygon, int partIndex) {
  251. CHECK_PART_INDEX(partIndex, return -1);
  252. return this->partBuffer[partIndex].polygonBuffer.pushGetIndex(polygon);
  253. }
  254. int ModelImpl::getNumberOfPolygons(int partIndex) const {
  255. CHECK_PART_INDEX(partIndex, return -1);
  256. return this->partBuffer[partIndex].getPolygonCount();
  257. }
  258. int ModelImpl::getPolygonVertexCount(int partIndex, int polygonIndex) const {
  259. CHECK_PART_INDEX(partIndex, return -1);
  260. return this->partBuffer[partIndex].getPolygonVertexCount(polygonIndex);
  261. }
  262. int ModelImpl::getNumberOfPoints() const {
  263. return this->positionBuffer.length();
  264. }
  265. void ModelImpl::expandBound(const FVector3D& point) {
  266. if (this->minBound.x > point.x) { this->minBound.x = point.x; }
  267. if (this->minBound.y > point.y) { this->minBound.y = point.y; }
  268. if (this->minBound.z > point.z) { this->minBound.z = point.z; }
  269. if (this->maxBound.x < point.x) { this->maxBound.x = point.x; }
  270. if (this->maxBound.y < point.y) { this->maxBound.y = point.y; }
  271. if (this->maxBound.z < point.z) { this->maxBound.z = point.z; }
  272. }
  273. int ModelImpl::findPoint(const FVector3D &position, float threshold) const {
  274. float bestDistance = threshold;
  275. int bestIndex = -1;
  276. for (int index = 0; index < this->positionBuffer.length(); index++) {
  277. float distance = length(position - this->getPoint(index));
  278. if (distance < bestDistance) {
  279. bestDistance = distance;
  280. bestIndex = index;
  281. }
  282. }
  283. return bestIndex;
  284. }
  285. FVector3D ModelImpl::getPoint(int pointIndex) const {
  286. CHECK_POINT_INDEX(pointIndex, return FVector3D());
  287. return this->positionBuffer[pointIndex];
  288. }
  289. void ModelImpl::setPoint(int pointIndex, const FVector3D& position) {
  290. CHECK_POINT_INDEX(pointIndex, return);
  291. this->expandBound(position);
  292. this->positionBuffer[pointIndex] = position;
  293. }
  294. int ModelImpl::addPoint(const FVector3D &position) {
  295. this->expandBound(position);
  296. return this->positionBuffer.pushGetIndex(position);
  297. }
  298. int ModelImpl::addPointIfNeeded(const FVector3D &position, float threshold) {
  299. int existingIndex = this->findPoint(position, threshold);
  300. if (existingIndex > -1) {
  301. return existingIndex;
  302. } else {
  303. return addPoint(position);
  304. }
  305. }
  306. int ModelImpl::getVertexPointIndex(int partIndex, int polygonIndex, int vertexIndex) const {
  307. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return -1);
  308. CHECK_VERTEX_INDEX(vertexIndex, return -1);
  309. return partBuffer[partIndex].polygonBuffer[polygonIndex].pointIndices[vertexIndex];
  310. }
  311. void ModelImpl::setVertexPointIndex(int partIndex, int polygonIndex, int vertexIndex, int pointIndex) {
  312. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return);
  313. CHECK_VERTEX_INDEX(vertexIndex, return);
  314. partBuffer[partIndex].polygonBuffer[polygonIndex].pointIndices[vertexIndex] = pointIndex;
  315. }
  316. FVector3D ModelImpl::getVertexPosition(int partIndex, int polygonIndex, int vertexIndex) const {
  317. int pointIndex = getVertexPointIndex(partIndex, polygonIndex, vertexIndex);
  318. if (pointIndex > -1 && pointIndex < this->getNumberOfPoints()) {
  319. return this->getPoint(pointIndex);
  320. } else {
  321. return FVector3D();
  322. }
  323. }
  324. FVector4D ModelImpl::getVertexColor(int partIndex, int polygonIndex, int vertexIndex) const {
  325. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return FVector4D());
  326. CHECK_VERTEX_INDEX(vertexIndex, return FVector4D());
  327. return partBuffer[partIndex].polygonBuffer[polygonIndex].colors[vertexIndex];
  328. }
  329. void ModelImpl::setVertexColor(int partIndex, int polygonIndex, int vertexIndex, const FVector4D& color) {
  330. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return);
  331. CHECK_VERTEX_INDEX(vertexIndex, return);
  332. partBuffer[partIndex].polygonBuffer[polygonIndex].colors[vertexIndex] = color;
  333. }
  334. FVector4D ModelImpl::getTexCoord(int partIndex, int polygonIndex, int vertexIndex) const {
  335. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return FVector4D());
  336. CHECK_VERTEX_INDEX(vertexIndex, return FVector4D());
  337. return partBuffer[partIndex].polygonBuffer[polygonIndex].texCoords[vertexIndex];
  338. }
  339. void ModelImpl::setTexCoord(int partIndex, int polygonIndex, int vertexIndex, const FVector4D& texCoord) {
  340. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return);
  341. CHECK_VERTEX_INDEX(vertexIndex, return);
  342. partBuffer[partIndex].polygonBuffer[polygonIndex].texCoords[vertexIndex] = texCoord;
  343. }