stringAPI.cpp 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187
  1. // zlib open source license
  2. //
  3. // Copyright (c) 2017 to 2020 David Forsgren Piuva
  4. //
  5. // This software is provided 'as-is', without any express or implied
  6. // warranty. In no event will the authors be held liable for any damages
  7. // arising from the use of this software.
  8. //
  9. // Permission is granted to anyone to use this software for any purpose,
  10. // including commercial applications, and to alter it and redistribute it
  11. // freely, subject to the following restrictions:
  12. //
  13. // 1. The origin of this software must not be misrepresented; you must not
  14. // claim that you wrote the original software. If you use this software
  15. // in a product, an acknowledgment in the product documentation would be
  16. // appreciated but is not required.
  17. //
  18. // 2. Altered source versions must be plainly marked as such, and must not be
  19. // misrepresented as being the original software.
  20. //
  21. // 3. This notice may not be removed or altered from any source
  22. // distribution.
  23. // Gets access to private members by making them public for the whole module
  24. #define DFPSR_INTERNAL_ACCESS
  25. #include <fstream>
  26. #include <streambuf>
  27. #include <cstring>
  28. #include <stdexcept>
  29. #include "stringAPI.h"
  30. #include "../api/fileAPI.h"
  31. using namespace dsr;
  32. static void atomic_append(String &target, const char* source);
  33. static void atomic_append(String &target, const ReadableString& source);
  34. static void atomic_append(String &target, const char32_t* source);
  35. static void atomic_append(String &target, const std::string& source);
  36. static int64_t strlen_utf32(const char32_t *content) {
  37. int64_t length = 0;
  38. while (content[length] != 0) {
  39. length++;
  40. }
  41. return length;
  42. }
  43. static char toAscii(DsrChar c) {
  44. if (c > 127) {
  45. return '?';
  46. } else {
  47. return c;
  48. }
  49. }
  50. ReadableString::ReadableString() {}
  51. ReadableString::~ReadableString() {}
  52. ReadableString::ReadableString(const DsrChar *content)
  53. : readSection(content), length(strlen_utf32(content)) {}
  54. ReadableString::ReadableString(const String& source) {
  55. this->readSection = source.readSection;
  56. this->length = source.length;
  57. this->buffer = source.buffer;
  58. }
  59. // Not the fastest constructor, but won't bloat the public header
  60. // Hopefully most compilers know how to optimize this
  61. static ReadableString createSubString(const DsrChar *content, int64_t length, const Buffer &buffer) {
  62. ReadableString result;
  63. result.readSection = content;
  64. result.length = length;
  65. result.buffer = buffer;
  66. return result;
  67. }
  68. static String createSubString_shared(const DsrChar *content, int64_t length, const Buffer &buffer, char32_t* writeSection) {
  69. String result;
  70. result.readSection = content;
  71. result.length = length;
  72. result.buffer = buffer;
  73. result.writeSection = writeSection;
  74. return result;
  75. }
  76. String::String() {}
  77. String::String(const char* source) { atomic_append(*this, source); }
  78. String::String(const char32_t* source) { atomic_append(*this, source); }
  79. String::String(const std::string& source) { atomic_append(*this, source); }
  80. String::String(const String& source) {
  81. // Share immutable buffer
  82. this->readSection = source.readSection;
  83. this->length = source.length;
  84. this->buffer = source.buffer;
  85. this->writeSection = source.writeSection;
  86. }
  87. String::String(const ReadableString& source) {
  88. if (buffer_exists(source.buffer)) {
  89. this->readSection = source.readSection;
  90. this->length = source.length;
  91. this->buffer = source.buffer;
  92. this->writeSection = const_cast<char32_t*>(source.readSection); // Still safe because of immutability
  93. } else {
  94. // No buffer to share, just appending the content
  95. atomic_append(*this, source);
  96. }
  97. }
  98. DsrChar ReadableString::operator[] (int64_t index) const {
  99. if (index < 0 || index >= this->length) {
  100. return U'\0';
  101. } else {
  102. return this->readSection[index];
  103. }
  104. }
  105. String& Printable::toStream(String& target) const {
  106. return this->toStreamIndented(target, U"");
  107. }
  108. String Printable::toStringIndented(const ReadableString& indentation) const {
  109. String result;
  110. this->toStreamIndented(result, indentation);
  111. return result;
  112. }
  113. String Printable::toString() const {
  114. return this->toStringIndented(U"");
  115. }
  116. std::ostream& Printable::toStreamIndented(std::ostream& out, const ReadableString& indentation) const {
  117. String result;
  118. this->toStreamIndented(result, indentation);
  119. for (int64_t i = 0; i < result.length; i++) {
  120. out.put(toAscii(result.readSection[i]));
  121. }
  122. return out;
  123. }
  124. std::ostream& Printable::toStream(std::ostream& out) const {
  125. return this->toStreamIndented(out, U"");
  126. }
  127. std::string Printable::toStdString() const {
  128. std::ostringstream result;
  129. this->toStream(result);
  130. return result.str();
  131. }
  132. Printable::~Printable() {}
  133. bool dsr::string_match(const ReadableString& a, const ReadableString& b) {
  134. if (a.length != b.length) {
  135. return false;
  136. } else {
  137. for (int64_t i = 0; i < a.length; i++) {
  138. if (a.readSection[i] != b.readSection[i]) {
  139. return false;
  140. }
  141. }
  142. return true;
  143. }
  144. }
  145. bool dsr::string_caseInsensitiveMatch(const ReadableString& a, const ReadableString& b) {
  146. if (a.length != b.length) {
  147. return false;
  148. } else {
  149. for (int64_t i = 0; i < a.length; i++) {
  150. if (towupper(a.readSection[i]) != towupper(b.readSection[i])) {
  151. return false;
  152. }
  153. }
  154. return true;
  155. }
  156. }
  157. std::ostream& ReadableString::toStream(std::ostream& out) const {
  158. for (int64_t i = 0; i < this->length; i++) {
  159. out.put(toAscii(this->readSection[i]));
  160. }
  161. return out;
  162. }
  163. std::string ReadableString::toStdString() const {
  164. std::ostringstream result;
  165. this->toStream(result);
  166. return result.str();
  167. }
  168. String dsr::string_upperCase(const ReadableString &text) {
  169. String result;
  170. string_reserve(result, text.length);
  171. for (int64_t i = 0; i < text.length; i++) {
  172. string_appendChar(result, towupper(text[i]));
  173. }
  174. return result;
  175. }
  176. String dsr::string_lowerCase(const ReadableString &text) {
  177. String result;
  178. string_reserve(result, text.length);
  179. for (int64_t i = 0; i < text.length; i++) {
  180. string_appendChar(result, towlower(text[i]));
  181. }
  182. return result;
  183. }
  184. static int64_t findFirstNonWhite(const ReadableString &text) {
  185. for (int64_t i = 0; i < text.length; i++) {
  186. DsrChar c = text[i];
  187. if (!character_isWhiteSpace(c)) {
  188. return i;
  189. }
  190. }
  191. return -1;
  192. }
  193. static int64_t findLastNonWhite(const ReadableString &text) {
  194. for (int64_t i = text.length - 1; i >= 0; i--) {
  195. DsrChar c = text[i];
  196. if (!character_isWhiteSpace(c)) {
  197. return i;
  198. }
  199. }
  200. return -1;
  201. }
  202. // Allow passing literals without allocating heap memory for the result
  203. ReadableString dsr::string_removeOuterWhiteSpace(const ReadableString &text) {
  204. int64_t first = findFirstNonWhite(text);
  205. int64_t last = findLastNonWhite(text);
  206. if (first == -1) {
  207. // Only white space
  208. return ReadableString();
  209. } else {
  210. // Subset
  211. return string_inclusiveRange(text, first, last);
  212. }
  213. }
  214. String dsr::string_mangleQuote(const ReadableString &rawText) {
  215. String result;
  216. string_reserve(result, rawText.length + 2);
  217. string_appendChar(result, U'\"'); // Begin quote
  218. for (int64_t i = 0; i < rawText.length; i++) {
  219. DsrChar c = rawText[i];
  220. if (c == U'\"') { // Double quote
  221. string_append(result, U"\\\"");
  222. } else if (c == U'\\') { // Backslash
  223. string_append(result, U"\\\\");
  224. } else if (c == U'\a') { // Audible bell
  225. string_append(result, U"\\a");
  226. } else if (c == U'\b') { // Backspace
  227. string_append(result, U"\\b");
  228. } else if (c == U'\f') { // Form feed
  229. string_append(result, U"\\f");
  230. } else if (c == U'\n') { // Line feed
  231. string_append(result, U"\\n");
  232. } else if (c == U'\r') { // Carriage return
  233. string_append(result, U"\\r");
  234. } else if (c == U'\t') { // Horizontal tab
  235. string_append(result, U"\\t");
  236. } else if (c == U'\v') { // Vertical tab
  237. string_append(result, U"\\v");
  238. } else if (c == U'\0') { // Null terminator
  239. string_append(result, U"\\0");
  240. } else {
  241. string_appendChar(result, c);
  242. }
  243. }
  244. string_appendChar(result, U'\"'); // End quote
  245. return result;
  246. }
  247. String dsr::string_unmangleQuote(const ReadableString& mangledText) {
  248. int64_t firstQuote = string_findFirst(mangledText, '\"');
  249. int64_t lastQuote = string_findLast(mangledText, '\"');
  250. String result;
  251. if (firstQuote == -1 || lastQuote == -1 || firstQuote == lastQuote) {
  252. throwError(U"Cannot unmangle using string_unmangleQuote without beginning and ending with quote signs!\n", mangledText, "\n");
  253. } else {
  254. for (int64_t i = firstQuote + 1; i < lastQuote; i++) {
  255. DsrChar c = mangledText[i];
  256. if (c == U'\\') { // Escape character
  257. DsrChar c2 = mangledText[i + 1];
  258. if (c2 == U'\"') { // Double quote
  259. string_appendChar(result, U'\"');
  260. } else if (c2 == U'\\') { // Back slash
  261. string_appendChar(result, U'\\');
  262. } else if (c2 == U'a') { // Audible bell
  263. string_appendChar(result, U'\a');
  264. } else if (c2 == U'b') { // Backspace
  265. string_appendChar(result, U'\b');
  266. } else if (c2 == U'f') { // Form feed
  267. string_appendChar(result, U'\f');
  268. } else if (c2 == U'n') { // Line feed
  269. string_appendChar(result, U'\n');
  270. } else if (c2 == U'r') { // Carriage return
  271. string_appendChar(result, U'\r');
  272. } else if (c2 == U't') { // Horizontal tab
  273. string_appendChar(result, U'\t');
  274. } else if (c2 == U'v') { // Vertical tab
  275. string_appendChar(result, U'\v');
  276. } else if (c2 == U'0') { // Null terminator
  277. string_appendChar(result, U'\0');
  278. }
  279. i++; // Consume both characters
  280. } else {
  281. // Detect bad input
  282. if (c == U'\"') { // Double quote
  283. throwError(U"Unmangled double quote sign detected in string_unmangleQuote!\n", mangledText, "\n");
  284. } else if (c == U'\a') { // Audible bell
  285. throwError(U"Unmangled audible bell detected in string_unmangleQuote!\n", mangledText, "\n");
  286. } else if (c == U'\b') { // Backspace
  287. throwError(U"Unmangled backspace detected in string_unmangleQuote!\n", mangledText, "\n");
  288. } else if (c == U'\f') { // Form feed
  289. throwError(U"Unmangled form feed detected in string_unmangleQuote!\n", mangledText, "\n");
  290. } else if (c == U'\n') { // Line feed
  291. throwError(U"Unmangled line feed detected in string_unmangleQuote!\n", mangledText, "\n");
  292. } else if (c == U'\r') { // Carriage return
  293. throwError(U"Unmangled carriage return detected in string_unmangleQuote!\n", mangledText, "\n");
  294. } else if (c == U'\0') { // Null terminator
  295. throwError(U"Unmangled null terminator detected in string_unmangleQuote!\n", mangledText, "\n");
  296. } else {
  297. string_appendChar(result, c);
  298. }
  299. }
  300. }
  301. }
  302. return result;
  303. }
  304. static void uintToString_arabic(String& target, uint64_t value) {
  305. static const int bufferSize = 20;
  306. DsrChar digits[bufferSize];
  307. int64_t usedSize = 0;
  308. if (value == 0) {
  309. string_appendChar(target, U'0');
  310. } else {
  311. while (usedSize < bufferSize) {
  312. DsrChar digit = U'0' + (value % 10u);
  313. digits[usedSize] = digit;
  314. usedSize++;
  315. value /= 10u;
  316. if (value == 0) {
  317. break;
  318. }
  319. }
  320. while (usedSize > 0) {
  321. usedSize--;
  322. string_appendChar(target, digits[usedSize]);
  323. }
  324. }
  325. }
  326. static void intToString_arabic(String& target, int64_t value) {
  327. if (value >= 0) {
  328. uintToString_arabic(target, (uint64_t)value);
  329. } else {
  330. string_appendChar(target, U'-');
  331. uintToString_arabic(target, (uint64_t)(-value));
  332. }
  333. }
  334. // TODO: Implement own version to ensure that nothing strange is happening from buggy std implementations
  335. static void doubleToString_arabic(String& target, double value) {
  336. std::ostringstream buffer;
  337. buffer << std::fixed << value; // Generate using a fixed number of decimals
  338. std::string result = buffer.str();
  339. // Remove trailing zero decimal digits
  340. int64_t decimalCount = 0;
  341. int64_t lastValueIndex = -1;
  342. for (size_t c = 0; c < result.length(); c++) {
  343. if (result[c] == '.') {
  344. decimalCount++;
  345. } else if (result[c] == ',') {
  346. result[c] = '.'; // Convert nationalized french decimal serialization into international decimals
  347. decimalCount++;
  348. } else if (decimalCount > 0 && result[c] >= '1' && result[c] <= '9') {
  349. lastValueIndex = c;
  350. } else if (decimalCount == 0 && result[c] >= '0' && result[c] <= '9') {
  351. lastValueIndex = c;
  352. }
  353. }
  354. for (int64_t c = 0; c <= lastValueIndex; c++) {
  355. string_appendChar(target, result[c]);
  356. }
  357. }
  358. #define TO_RAW_ASCII(TARGET, SOURCE) \
  359. char TARGET[SOURCE.length + 1]; \
  360. for (int64_t i = 0; i < SOURCE.length; i++) { \
  361. TARGET[i] = toAscii(SOURCE[i]); \
  362. } \
  363. TARGET[SOURCE.length] = '\0';
  364. // A function definition for receiving a stream of bytes
  365. // Instead of using std's messy inheritance
  366. using ByteWriterFunction = std::function<void(uint8_t value)>;
  367. // A function definition for receiving a stream of UTF-32 characters
  368. // Instead of using std's messy inheritance
  369. using UTF32WriterFunction = std::function<void(DsrChar character)>;
  370. // Filter out unwanted characters for improved portability
  371. static void feedCharacter(const UTF32WriterFunction &reciever, DsrChar character) {
  372. if (character != U'\0' && character != U'\r') {
  373. reciever(character);
  374. }
  375. }
  376. // Appends the content of buffer as a BOM-free Latin-1 file into target
  377. // fileLength is ignored when nullTerminated is true
  378. template <bool nullTerminated>
  379. static void feedStringFromFileBuffer_Latin1(const UTF32WriterFunction &reciever, const uint8_t* buffer, int64_t fileLength = 0) {
  380. for (int64_t i = 0; i < fileLength || nullTerminated; i++) {
  381. DsrChar character = (DsrChar)(buffer[i]);
  382. if (nullTerminated && character == 0) { return; }
  383. feedCharacter(reciever, character);
  384. }
  385. }
  386. // Appends the content of buffer as a BOM-free UTF-8 file into target
  387. // fileLength is ignored when nullTerminated is true
  388. template <bool nullTerminated>
  389. static void feedStringFromFileBuffer_UTF8(const UTF32WriterFunction &reciever, const uint8_t* buffer, int64_t fileLength = 0) {
  390. for (int64_t i = 0; i < fileLength || nullTerminated; i++) {
  391. uint8_t byteA = buffer[i];
  392. if (byteA < (uint32_t)0b10000000) {
  393. // Single byte (1xxxxxxx)
  394. if (nullTerminated && byteA == 0) { return; }
  395. feedCharacter(reciever, (DsrChar)byteA);
  396. } else {
  397. uint32_t character = 0;
  398. int extraBytes = 0;
  399. if (byteA >= (uint32_t)0b11000000) { // At least two leading ones
  400. if (byteA < (uint32_t)0b11100000) { // Less than three leading ones
  401. character = byteA & (uint32_t)0b00011111;
  402. extraBytes = 1;
  403. } else if (byteA < (uint32_t)0b11110000) { // Less than four leading ones
  404. character = byteA & (uint32_t)0b00001111;
  405. extraBytes = 2;
  406. } else if (byteA < (uint32_t)0b11111000) { // Less than five leading ones
  407. character = byteA & (uint32_t)0b00000111;
  408. extraBytes = 3;
  409. } else {
  410. // Invalid UTF-8 format
  411. throwError(U"Invalid UTF-8 multi-chatacter beginning with 0b111111xx!");
  412. }
  413. } else {
  414. // Invalid UTF-8 format
  415. throwError(U"Invalid UTF-8 multi-chatacter beginning with 0b10xxxxxx!");
  416. }
  417. while (extraBytes > 0) {
  418. i += 1; uint32_t nextByte = buffer[i];
  419. character = (character << 6) | (nextByte & 0b00111111);
  420. extraBytes--;
  421. }
  422. if (nullTerminated && character == 0) { return; }
  423. feedCharacter(reciever, (DsrChar)character);
  424. }
  425. }
  426. }
  427. template <bool LittleEndian>
  428. uint16_t read16bits(const uint8_t* buffer, int64_t startOffset) {
  429. uint16_t byteA = buffer[startOffset];
  430. uint16_t byteB = buffer[startOffset + 1];
  431. if (LittleEndian) {
  432. return (byteB << 8) | byteA;
  433. } else {
  434. return (byteA << 8) | byteB;
  435. }
  436. }
  437. // Appends the content of buffer as a BOM-free UTF-16 file into target as UTF-32
  438. // fileLength is ignored when nullTerminated is true
  439. template <bool LittleEndian, bool nullTerminated>
  440. static void feedStringFromFileBuffer_UTF16(const UTF32WriterFunction &reciever, const uint8_t* buffer, int64_t fileLength = 0) {
  441. for (int64_t i = 0; i < fileLength || nullTerminated; i += 2) {
  442. // Read the first 16-bit word
  443. uint16_t wordA = read16bits<LittleEndian>(buffer, i);
  444. // Check if another word is needed
  445. // Assuming that wordA >= 0x0000 and wordA <= 0xFFFF as uint16_t,
  446. // we can just check if it's within the range reserved for 32-bit encoding
  447. if (wordA <= 0xD7FF || wordA >= 0xE000) {
  448. // Not in the reserved range, just a single 16-bit character
  449. if (nullTerminated && wordA == 0) { return; }
  450. feedCharacter(reciever, (DsrChar)wordA);
  451. } else {
  452. // The given range was reserved and therefore using 32 bits
  453. i += 2;
  454. uint16_t wordB = read16bits<LittleEndian>(buffer, i);
  455. uint32_t higher10Bits = wordA & (uint32_t)0b1111111111;
  456. uint32_t lower10Bits = wordB & (uint32_t)0b1111111111;
  457. DsrChar finalChar = (DsrChar)(((higher10Bits << 10) | lower10Bits) + (uint32_t)0x10000);
  458. if (nullTerminated && finalChar == 0) { return; }
  459. feedCharacter(reciever, finalChar);
  460. }
  461. }
  462. }
  463. // Sends the decoded UTF-32 characters from the encoded buffer into target.
  464. // The text encoding should be specified using a BOM at the start of buffer, otherwise Latin-1 is assumed.
  465. static void feedStringFromFileBuffer(const UTF32WriterFunction &reciever, const uint8_t* buffer, int64_t fileLength) {
  466. // After removing the BOM bytes, the rest can be seen as a BOM-free text file with a known format
  467. if (fileLength >= 3 && buffer[0] == 0xEF && buffer[1] == 0xBB && buffer[2] == 0xBF) { // UTF-8
  468. feedStringFromFileBuffer_UTF8<false>(reciever, buffer + 3, fileLength - 3);
  469. } else if (fileLength >= 2 && buffer[0] == 0xFE && buffer[1] == 0xFF) { // UTF-16 BE
  470. feedStringFromFileBuffer_UTF16<false, false>(reciever, buffer + 2, fileLength - 2);
  471. } else if (fileLength >= 2 && buffer[0] == 0xFF && buffer[1] == 0xFE) { // UTF-16 LE
  472. feedStringFromFileBuffer_UTF16<true, false>(reciever, buffer + 2, fileLength - 2);
  473. } else if (fileLength >= 4 && buffer[0] == 0x00 && buffer[1] == 0x00 && buffer[2] == 0xFE && buffer[3] == 0xFF) { // UTF-32 BE
  474. //feedStringFromFileBuffer_UTF32BE(receiver, buffer + 4, fileLength - 4);
  475. throwError(U"UTF-32 BE format is not yet supported!\n");
  476. } else if (fileLength >= 4 && buffer[0] == 0xFF && buffer[1] == 0xFE && buffer[2] == 0x00 && buffer[3] == 0x00) { // UTF-32 LE
  477. //feedStringFromFileBuffer_UTF32BE(receiver, buffer + 4, fileLength - 4);
  478. throwError(U"UTF-32 LE format is not yet supported!\n");
  479. } else if (fileLength >= 3 && buffer[0] == 0xF7 && buffer[1] == 0x64 && buffer[2] == 0x4C) { // UTF-1
  480. //feedStringFromFileBuffer_UTF1(receiver, buffer + 3, fileLength - 3);
  481. throwError(U"UTF-1 format is not yet supported!\n");
  482. } else if (fileLength >= 3 && buffer[0] == 0x0E && buffer[1] == 0xFE && buffer[2] == 0xFF) { // SCSU
  483. //feedStringFromFileBuffer_SCSU(receiver, buffer + 3, fileLength - 3);
  484. throwError(U"SCSU format is not yet supported!\n");
  485. } else if (fileLength >= 3 && buffer[0] == 0xFB && buffer[1] == 0xEE && buffer[2] == 0x28) { // BOCU
  486. //feedStringFromFileBuffer_BOCU-1(receiver, buffer + 3, fileLength - 3);
  487. throwError(U"BOCU-1 format is not yet supported!\n");
  488. } else if (fileLength >= 4 && buffer[0] == 0x2B && buffer[1] == 0x2F && buffer[2] == 0x76) { // UTF-7
  489. // Ignoring fourth byte with the dialect of UTF-7 when just showing the error message
  490. throwError(U"UTF-7 format is not yet supported!\n");
  491. } else {
  492. // No BOM detected, assuming Latin-1 (because it directly corresponds to a unicode sub-set)
  493. feedStringFromFileBuffer_Latin1<false>(reciever, buffer, fileLength);
  494. }
  495. }
  496. // Sends the decoded UTF-32 characters from the encoded null terminated buffer into target.
  497. // buffer may not contain any BOM, and must be null terminated in the specified encoding.
  498. static void feedStringFromRawData(const UTF32WriterFunction &reciever, const uint8_t* buffer, CharacterEncoding encoding) {
  499. if (encoding == CharacterEncoding::Raw_Latin1) {
  500. feedStringFromFileBuffer_Latin1<true>(reciever, buffer);
  501. } else if (encoding == CharacterEncoding::BOM_UTF8) {
  502. feedStringFromFileBuffer_UTF8<true>(reciever, buffer);
  503. } else if (encoding == CharacterEncoding::BOM_UTF16BE) {
  504. feedStringFromFileBuffer_UTF16<false, true>(reciever, buffer);
  505. } else if (encoding == CharacterEncoding::BOM_UTF16LE) {
  506. feedStringFromFileBuffer_UTF16<true, true>(reciever, buffer);
  507. } else {
  508. throwError("Unhandled encoding in feedStringFromRawData!\n");
  509. }
  510. }
  511. String dsr::string_dangerous_decodeFromData(const void* data, CharacterEncoding encoding) {
  512. String result;
  513. // Measure the size of the result by scanning the content in advance
  514. int64_t characterCount = 0;
  515. UTF32WriterFunction measurer = [&characterCount](DsrChar character) {
  516. characterCount++;
  517. };
  518. feedStringFromRawData(measurer, (const uint8_t*)data, encoding);
  519. // Pre-allocate the correct amount of memory based on the simulation
  520. string_reserve(result, characterCount);
  521. // Stream output to the result string
  522. UTF32WriterFunction reciever = [&result](DsrChar character) {
  523. string_appendChar(result, character);
  524. };
  525. feedStringFromRawData(reciever, (const uint8_t*)data, encoding);
  526. return result;
  527. }
  528. String dsr::string_loadFromMemory(Buffer fileContent) {
  529. String result;
  530. // Measure the size of the result by scanning the content in advance
  531. int64_t characterCount = 0;
  532. UTF32WriterFunction measurer = [&characterCount](DsrChar character) {
  533. characterCount++;
  534. };
  535. feedStringFromFileBuffer(measurer, buffer_dangerous_getUnsafeData(fileContent), buffer_getSize(fileContent));
  536. // Pre-allocate the correct amount of memory based on the simulation
  537. string_reserve(result, characterCount);
  538. // Stream output to the result string
  539. UTF32WriterFunction reciever = [&result](DsrChar character) {
  540. string_appendChar(result, character);
  541. };
  542. feedStringFromFileBuffer(reciever, buffer_dangerous_getUnsafeData(fileContent), buffer_getSize(fileContent));
  543. return result;
  544. }
  545. // Loads a text file of unknown format
  546. // Removes carriage-return characters to make processing easy with only line-feed for breaking lines
  547. String dsr::string_load(const ReadableString& filename, bool mustExist) {
  548. Buffer encoded = file_loadBuffer(filename, mustExist);
  549. if (!buffer_exists(encoded)) {
  550. return String();
  551. } else {
  552. return string_loadFromMemory(encoded);
  553. }
  554. }
  555. template <CharacterEncoding characterEncoding>
  556. static void encodeCharacter(const ByteWriterFunction &receiver, DsrChar character) {
  557. if (characterEncoding == CharacterEncoding::Raw_Latin1) {
  558. // Replace any illegal characters with questionmarks
  559. if (character > 255) { character = U'?'; }
  560. receiver(character);
  561. } else if (characterEncoding == CharacterEncoding::BOM_UTF8) {
  562. // Replace any illegal characters with questionmarks
  563. if (character > 0x10FFFF) { character = U'?'; }
  564. if (character < (1 << 7)) {
  565. // 0xxxxxxx
  566. receiver(character);
  567. } else if (character < (1 << 11)) {
  568. // 110xxxxx 10xxxxxx
  569. receiver((uint32_t)0b11000000 | ((character & ((uint32_t)0b11111 << 6)) >> 6));
  570. receiver((uint32_t)0b10000000 | (character & (uint32_t)0b111111));
  571. } else if (character < (1 << 16)) {
  572. // 1110xxxx 10xxxxxx 10xxxxxx
  573. receiver((uint32_t)0b11100000 | ((character & ((uint32_t)0b1111 << 12)) >> 12));
  574. receiver((uint32_t)0b10000000 | ((character & ((uint32_t)0b111111 << 6)) >> 6));
  575. receiver((uint32_t)0b10000000 | (character & (uint32_t)0b111111));
  576. } else if (character < (1 << 21)) {
  577. // 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
  578. receiver((uint32_t)0b11110000 | ((character & ((uint32_t)0b111 << 18)) >> 18));
  579. receiver((uint32_t)0b10000000 | ((character & ((uint32_t)0b111111 << 12)) >> 12));
  580. receiver((uint32_t)0b10000000 | ((character & ((uint32_t)0b111111 << 6)) >> 6));
  581. receiver((uint32_t)0b10000000 | (character & (uint32_t)0b111111));
  582. }
  583. } else { // Assuming UTF-16
  584. if (character > 0x10FFFF) { character = U'?'; }
  585. if (character <= 0xD7FF || (character >= 0xE000 && character <= 0xFFFF)) {
  586. // xxxxxxxx xxxxxxxx (Limited range)
  587. uint32_t higher8Bits = (character & (uint32_t)0b1111111100000000) >> 8;
  588. uint32_t lower8Bits = character & (uint32_t)0b0000000011111111;
  589. if (characterEncoding == CharacterEncoding::BOM_UTF16BE) {
  590. receiver(higher8Bits);
  591. receiver(lower8Bits);
  592. } else { // Assuming UTF-16 LE
  593. receiver(lower8Bits);
  594. receiver(higher8Bits);
  595. }
  596. } else if (character >= 0x010000 && character <= 0x10FFFF) {
  597. // 110110xxxxxxxxxx 110111xxxxxxxxxx
  598. uint32_t code = character - (uint32_t)0x10000;
  599. uint32_t byteA = ((code & (uint32_t)0b11000000000000000000) >> 18) | (uint32_t)0b11011000;
  600. uint32_t byteB = (code & (uint32_t)0b00111111110000000000) >> 10;
  601. uint32_t byteC = ((code & (uint32_t)0b00000000001100000000) >> 8) | (uint32_t)0b11011100;
  602. uint32_t byteD = code & (uint32_t)0b00000000000011111111;
  603. if (characterEncoding == CharacterEncoding::BOM_UTF16BE) {
  604. receiver(byteA);
  605. receiver(byteB);
  606. receiver(byteC);
  607. receiver(byteD);
  608. } else { // Assuming UTF-16 LE
  609. receiver(byteB);
  610. receiver(byteA);
  611. receiver(byteD);
  612. receiver(byteC);
  613. }
  614. }
  615. }
  616. }
  617. // Template for encoding a whole string
  618. template <CharacterEncoding characterEncoding, LineEncoding lineEncoding>
  619. static void encodeText(const ByteWriterFunction &receiver, String content, bool writeBOM, bool writeNullTerminator) {
  620. if (writeBOM) {
  621. // Write byte order marks
  622. if (characterEncoding == CharacterEncoding::BOM_UTF8) {
  623. receiver(0xEF);
  624. receiver(0xBB);
  625. receiver(0xBF);
  626. } else if (characterEncoding == CharacterEncoding::BOM_UTF16BE) {
  627. receiver(0xFE);
  628. receiver(0xFF);
  629. } else if (characterEncoding == CharacterEncoding::BOM_UTF16LE) {
  630. receiver(0xFF);
  631. receiver(0xFE);
  632. }
  633. }
  634. // Write encoded content
  635. for (int64_t i = 0; i < string_length(content); i++) {
  636. DsrChar character = content[i];
  637. if (character == U'\n') {
  638. if (lineEncoding == LineEncoding::CrLf) {
  639. encodeCharacter<characterEncoding>(receiver, U'\r');
  640. encodeCharacter<characterEncoding>(receiver, U'\n');
  641. } else { // Assuming that lineEncoding == LineEncoding::Lf
  642. encodeCharacter<characterEncoding>(receiver, U'\n');
  643. }
  644. } else {
  645. encodeCharacter<characterEncoding>(receiver, character);
  646. }
  647. }
  648. if (writeNullTerminator) {
  649. // Terminate internal strings with \0 to prevent getting garbage data after unpadded buffers
  650. if (characterEncoding == CharacterEncoding::BOM_UTF16BE || characterEncoding == CharacterEncoding::BOM_UTF16LE) {
  651. receiver(0);
  652. receiver(0);
  653. } else {
  654. receiver(0);
  655. }
  656. }
  657. }
  658. // Macro for converting run-time arguments into template arguments for encodeText
  659. #define ENCODE_TEXT(RECEIVER, CONTENT, CHAR_ENCODING, LINE_ENCODING, WRITE_BOM, WRITE_NULL_TERMINATOR) \
  660. if (CHAR_ENCODING == CharacterEncoding::Raw_Latin1) { \
  661. if (LINE_ENCODING == LineEncoding::CrLf) { \
  662. encodeText<CharacterEncoding::Raw_Latin1, LineEncoding::CrLf>(RECEIVER, CONTENT, false, WRITE_NULL_TERMINATOR); \
  663. } else if (LINE_ENCODING == LineEncoding::Lf) { \
  664. encodeText<CharacterEncoding::Raw_Latin1, LineEncoding::Lf>(RECEIVER, CONTENT, false, WRITE_NULL_TERMINATOR); \
  665. } \
  666. } else if (CHAR_ENCODING == CharacterEncoding::BOM_UTF8) { \
  667. if (LINE_ENCODING == LineEncoding::CrLf) { \
  668. encodeText<CharacterEncoding::BOM_UTF8, LineEncoding::CrLf>(RECEIVER, CONTENT, WRITE_BOM, WRITE_NULL_TERMINATOR); \
  669. } else if (LINE_ENCODING == LineEncoding::Lf) { \
  670. encodeText<CharacterEncoding::BOM_UTF8, LineEncoding::Lf>(RECEIVER, CONTENT, WRITE_BOM, WRITE_NULL_TERMINATOR); \
  671. } \
  672. } else if (CHAR_ENCODING == CharacterEncoding::BOM_UTF16BE) { \
  673. if (LINE_ENCODING == LineEncoding::CrLf) { \
  674. encodeText<CharacterEncoding::BOM_UTF16BE, LineEncoding::CrLf>(RECEIVER, CONTENT, WRITE_BOM, WRITE_NULL_TERMINATOR); \
  675. } else if (LINE_ENCODING == LineEncoding::Lf) { \
  676. encodeText<CharacterEncoding::BOM_UTF16BE, LineEncoding::Lf>(RECEIVER, CONTENT, WRITE_BOM, WRITE_NULL_TERMINATOR); \
  677. } \
  678. } else if (CHAR_ENCODING == CharacterEncoding::BOM_UTF16LE) { \
  679. if (LINE_ENCODING == LineEncoding::CrLf) { \
  680. encodeText<CharacterEncoding::BOM_UTF16LE, LineEncoding::CrLf>(RECEIVER, CONTENT, WRITE_BOM, WRITE_NULL_TERMINATOR); \
  681. } else if (LINE_ENCODING == LineEncoding::Lf) { \
  682. encodeText<CharacterEncoding::BOM_UTF16LE, LineEncoding::Lf>(RECEIVER, CONTENT, WRITE_BOM, WRITE_NULL_TERMINATOR); \
  683. } \
  684. }
  685. // Encoding to a buffer before saving all at once as a binary file.
  686. // This tells the operating system how big the file is in advance and prevent the worst case of stalling for minutes!
  687. bool dsr::string_save(const ReadableString& filename, const ReadableString& content, CharacterEncoding characterEncoding, LineEncoding lineEncoding) {
  688. Buffer buffer = string_saveToMemory(content, characterEncoding, lineEncoding);
  689. if (buffer_exists(buffer)) {
  690. return file_saveBuffer(filename, buffer);
  691. } else {
  692. return false;
  693. }
  694. }
  695. Buffer dsr::string_saveToMemory(const ReadableString& content, CharacterEncoding characterEncoding, LineEncoding lineEncoding, bool writeByteOrderMark, bool writeNullTerminator) {
  696. int64_t byteCount = 0;
  697. ByteWriterFunction counter = [&byteCount](uint8_t value) {
  698. byteCount++;
  699. };
  700. ENCODE_TEXT(counter, content, characterEncoding, lineEncoding, writeByteOrderMark, writeNullTerminator);
  701. Buffer result = buffer_create(byteCount);
  702. SafePointer<uint8_t> byteWriter = buffer_getSafeData<uint8_t>(result, "Buffer for string encoding");
  703. ByteWriterFunction receiver = [&byteWriter](uint8_t value) {
  704. *byteWriter = value;
  705. byteWriter += 1;
  706. };
  707. ENCODE_TEXT(receiver, content, characterEncoding, lineEncoding, writeByteOrderMark, writeNullTerminator);
  708. return result;
  709. }
  710. static int64_t getNewBufferSize(int64_t minimumSize) {
  711. if (minimumSize <= 128) {
  712. return 128;
  713. } else if (minimumSize <= 512) {
  714. return 512;
  715. } else if (minimumSize <= 2048) {
  716. return 2048;
  717. } else if (minimumSize <= 8192) {
  718. return 8192;
  719. } else if (minimumSize <= 32768) {
  720. return 32768;
  721. } else if (minimumSize <= 131072) {
  722. return 131072;
  723. } else if (minimumSize <= 524288) {
  724. return 524288;
  725. } else if (minimumSize <= 2097152) {
  726. return 2097152;
  727. } else if (minimumSize <= 8388608) {
  728. return 8388608;
  729. } else if (minimumSize <= 33554432) {
  730. return 33554432;
  731. } else if (minimumSize <= 134217728) {
  732. return 134217728;
  733. } else if (minimumSize <= 536870912) {
  734. return 536870912;
  735. } else {
  736. return minimumSize;
  737. }
  738. }
  739. // Replaces the buffer with a new buffer holding at least newLength characters
  740. // Guarantees that the new buffer is not shared by other strings, so that it may be written to freely
  741. static void reallocateBuffer(String &target, int64_t newLength, bool preserve) {
  742. // Holding oldData alive while copying to the new buffer
  743. Buffer oldBuffer = target.buffer; // Kept for reference counting only, do not remove.
  744. const char32_t* oldData = target.readSection;
  745. target.buffer = buffer_create(getNewBufferSize(newLength * sizeof(DsrChar)));
  746. target.readSection = target.writeSection = reinterpret_cast<char32_t*>(buffer_dangerous_getUnsafeData(target.buffer));
  747. if (preserve && oldData) {
  748. memcpy(target.writeSection, oldData, target.length * sizeof(DsrChar));
  749. }
  750. }
  751. // Call before writing to the buffer
  752. // This hides that Strings share buffers when assigning by value or taking partial strings
  753. static void cloneIfShared(String &target) {
  754. if (target.buffer.use_count() > 1) {
  755. reallocateBuffer(target, target.length, true);
  756. }
  757. }
  758. void dsr::string_clear(String& target) {
  759. cloneIfShared(target);
  760. target.length = 0;
  761. }
  762. // The number of DsrChar characters that can be contained in the allocation before reaching the buffer's end
  763. // This doesn't imply that it's always okay to write to the remaining space, because the buffer may be shared
  764. static int64_t getCapacity(const ReadableString &source) {
  765. if (buffer_exists(source.buffer)) {
  766. // Get the allocation
  767. uint8_t* data = buffer_dangerous_getUnsafeData(source.buffer);
  768. uint8_t* start = (uint8_t*)(source.readSection);
  769. // Get the offset from the parent
  770. intptr_t offset = start - data;
  771. // Subtract offset from the buffer size to get the remaining space
  772. return (buffer_getSize(source.buffer) - offset) / sizeof(DsrChar);
  773. } else {
  774. return 0;
  775. }
  776. }
  777. static void expand(String &target, int64_t newLength, bool affectUsedLength) {
  778. cloneIfShared(target);
  779. if (newLength > target.length) {
  780. if (newLength > getCapacity(target)) {
  781. reallocateBuffer(target, newLength, true);
  782. }
  783. if (affectUsedLength) {
  784. target.length = newLength;
  785. }
  786. }
  787. }
  788. void dsr::string_reserve(String& target, int64_t minimumLength) {
  789. expand(target, minimumLength, false);
  790. }
  791. // This macro has to be used because a static template wouldn't be able to inherit access to private methods from the target class.
  792. // Better to use a macro without type safety in the implementation than to expose yet another template in a global header.
  793. // Proof that appending to one string doesn't affect another:
  794. // If it has to reallocate
  795. // * Then it will have its own buffer without conflicts
  796. // If it doesn't have to reallocate
  797. // If it shares the buffer
  798. // If source is empty
  799. // * Then no risk of overwriting neighbor strings if we don't write
  800. // If source isn't empty
  801. // * Then the buffer will be cloned when the first character is written
  802. // If it doesn't share the buffer
  803. // * Then no risk of writing
  804. #define APPEND(TARGET, SOURCE, LENGTH, MASK) { \
  805. int64_t oldLength = (TARGET).length; \
  806. expand((TARGET), oldLength + (int64_t)(LENGTH), true); \
  807. for (int64_t i = 0; i < (int64_t)(LENGTH); i++) { \
  808. (TARGET).writeSection[oldLength + i] = ((SOURCE)[i]) & MASK; \
  809. } \
  810. }
  811. // TODO: See if ascii litterals can be checked for values above 127 in compile-time
  812. static void atomic_append(String &target, const char* source) { APPEND(target, source, strlen(source), 0xFF); }
  813. // TODO: Use memcpy when appending input of the same format
  814. static void atomic_append(String &target, const ReadableString& source) { APPEND(target, source, source.length, 0xFFFFFFFF); }
  815. static void atomic_append(String &target, const char32_t* source) { APPEND(target, source, strlen_utf32(source), 0xFFFFFFFF); }
  816. static void atomic_append(String &target, const std::string& source) { APPEND(target, source.c_str(), (int64_t)source.size(), 0xFF); }
  817. void dsr::string_appendChar(String& target, DsrChar value) { APPEND(target, &value, 1, 0xFFFFFFFF); }
  818. String& dsr::string_toStreamIndented(String& target, const Printable& source, const ReadableString& indentation) {
  819. return source.toStreamIndented(target, indentation);
  820. }
  821. String& dsr::string_toStreamIndented(String& target, const char* value, const ReadableString& indentation) {
  822. atomic_append(target, indentation);
  823. atomic_append(target, value);
  824. return target;
  825. }
  826. String& dsr::string_toStreamIndented(String& target, const ReadableString& value, const ReadableString& indentation) {
  827. atomic_append(target, indentation);
  828. atomic_append(target, value);
  829. return target;
  830. }
  831. String& dsr::string_toStreamIndented(String& target, const char32_t* value, const ReadableString& indentation) {
  832. atomic_append(target, indentation);
  833. atomic_append(target, value);
  834. return target;
  835. }
  836. String& dsr::string_toStreamIndented(String& target, const std::string& value, const ReadableString& indentation) {
  837. atomic_append(target, indentation);
  838. atomic_append(target, value);
  839. return target;
  840. }
  841. String& dsr::string_toStreamIndented(String& target, const float& value, const ReadableString& indentation) {
  842. atomic_append(target, indentation);
  843. doubleToString_arabic(target, (double)value);
  844. return target;
  845. }
  846. String& dsr::string_toStreamIndented(String& target, const double& value, const ReadableString& indentation) {
  847. atomic_append(target, indentation);
  848. doubleToString_arabic(target, value);
  849. return target;
  850. }
  851. String& dsr::string_toStreamIndented(String& target, const int64_t& value, const ReadableString& indentation) {
  852. atomic_append(target, indentation);
  853. intToString_arabic(target, value);
  854. return target;
  855. }
  856. String& dsr::string_toStreamIndented(String& target, const uint64_t& value, const ReadableString& indentation) {
  857. atomic_append(target, indentation);
  858. uintToString_arabic(target, value);
  859. return target;
  860. }
  861. String& dsr::string_toStreamIndented(String& target, const int32_t& value, const ReadableString& indentation) {
  862. atomic_append(target, indentation);
  863. intToString_arabic(target, (int64_t)value);
  864. return target;
  865. }
  866. String& dsr::string_toStreamIndented(String& target, const uint32_t& value, const ReadableString& indentation) {
  867. atomic_append(target, indentation);
  868. uintToString_arabic(target, (uint64_t)value);
  869. return target;
  870. }
  871. String& dsr::string_toStreamIndented(String& target, const int16_t& value, const ReadableString& indentation) {
  872. atomic_append(target, indentation);
  873. intToString_arabic(target, (int64_t)value);
  874. return target;
  875. }
  876. String& dsr::string_toStreamIndented(String& target, const uint16_t& value, const ReadableString& indentation) {
  877. atomic_append(target, indentation);
  878. uintToString_arabic(target, (uint64_t)value);
  879. return target;
  880. }
  881. String& dsr::string_toStreamIndented(String& target, const int8_t& value, const ReadableString& indentation) {
  882. atomic_append(target, indentation);
  883. intToString_arabic(target, (int64_t)value);
  884. return target;
  885. }
  886. String& dsr::string_toStreamIndented(String& target, const uint8_t& value, const ReadableString& indentation) {
  887. atomic_append(target, indentation);
  888. uintToString_arabic(target, (uint64_t)value);
  889. return target;
  890. }
  891. void dsr::throwErrorMessage(const String& message) {
  892. throw std::runtime_error(message.toStdString());
  893. }
  894. void dsr::string_split_callback(std::function<void(ReadableString)> action, const ReadableString& source, DsrChar separator, bool removeWhiteSpace) {
  895. int64_t sectionStart = 0;
  896. for (int64_t i = 0; i < source.length; i++) {
  897. DsrChar c = source[i];
  898. if (c == separator) {
  899. ReadableString element = string_exclusiveRange(source, sectionStart, i);
  900. if (removeWhiteSpace) {
  901. action(string_removeOuterWhiteSpace(element));
  902. } else {
  903. action(element);
  904. }
  905. sectionStart = i + 1;
  906. }
  907. }
  908. if (source.length > sectionStart) {
  909. if (removeWhiteSpace) {
  910. action(string_removeOuterWhiteSpace(string_exclusiveRange(source, sectionStart, source.length)));
  911. } else {
  912. action(string_exclusiveRange(source, sectionStart, source.length));
  913. }
  914. }
  915. }
  916. List<String> dsr::string_split(const ReadableString& source, DsrChar separator, bool removeWhiteSpace) {
  917. List<String> result;
  918. String commonBuffer;
  919. if (buffer_exists(source.buffer)) {
  920. // Re-use the existing buffer
  921. commonBuffer = createSubString_shared(source.readSection, source.length, source.buffer, const_cast<char32_t*>(source.readSection));
  922. } else {
  923. // Clone the whole input into one allocation to avoid fragmenting the heap with many small allocations
  924. commonBuffer = source;
  925. }
  926. // Source is allocated as String
  927. string_split_callback([&result, removeWhiteSpace](String element) {
  928. if (removeWhiteSpace) {
  929. result.push(string_removeOuterWhiteSpace(element));
  930. } else {
  931. result.push(element);
  932. }
  933. }, commonBuffer, separator, removeWhiteSpace);
  934. return result;
  935. }
  936. int64_t dsr::string_splitCount(const ReadableString& source, DsrChar separator) {
  937. int64_t result;
  938. string_split_callback([&result](ReadableString element) {
  939. result++;
  940. }, source, separator);
  941. return result;
  942. }
  943. int64_t dsr::string_toInteger(const ReadableString& source) {
  944. int64_t result;
  945. bool negated;
  946. result = 0;
  947. negated = false;
  948. for (int64_t i = 0; i < source.length; i++) {
  949. DsrChar c = source[i];
  950. if (c == '-' || c == '~') {
  951. negated = !negated;
  952. } else if (c >= '0' && c <= '9') {
  953. result = (result * 10) + (int)(c - '0');
  954. } else if (c == ',' || c == '.') {
  955. // Truncate any decimals by ignoring them
  956. break;
  957. }
  958. }
  959. if (negated) {
  960. return -result;
  961. } else {
  962. return result;
  963. }
  964. }
  965. double dsr::string_toDouble(const ReadableString& source) {
  966. double result;
  967. bool negated;
  968. bool reachedDecimal;
  969. int64_t digitDivider;
  970. result = 0.0;
  971. negated = false;
  972. reachedDecimal = false;
  973. digitDivider = 1;
  974. for (int64_t i = 0; i < source.length; i++) {
  975. DsrChar c = source[i];
  976. if (c == '-' || c == '~') {
  977. negated = !negated;
  978. } else if (c >= '0' && c <= '9') {
  979. if (reachedDecimal) {
  980. digitDivider = digitDivider * 10;
  981. result = result + ((double)(c - '0') / (double)digitDivider);
  982. } else {
  983. result = (result * 10) + (double)(c - '0');
  984. }
  985. } else if (c == ',' || c == '.') {
  986. reachedDecimal = true;
  987. }
  988. }
  989. if (negated) {
  990. return -result;
  991. } else {
  992. return result;
  993. }
  994. }
  995. int64_t dsr::string_length(const ReadableString& source) {
  996. return source.length;
  997. }
  998. int64_t dsr::string_findFirst(const ReadableString& source, DsrChar toFind, int64_t startIndex) {
  999. for (int64_t i = startIndex; i < source.length; i++) {
  1000. if (source[i] == toFind) {
  1001. return i;
  1002. }
  1003. }
  1004. return -1;
  1005. }
  1006. int64_t dsr::string_findLast(const ReadableString& source, DsrChar toFind) {
  1007. for (int64_t i = source.length - 1; i >= 0; i--) {
  1008. if (source[i] == toFind) {
  1009. return i;
  1010. }
  1011. }
  1012. return -1;
  1013. }
  1014. ReadableString dsr::string_exclusiveRange(const ReadableString& source, int64_t inclusiveStart, int64_t exclusiveEnd) {
  1015. // Return empty string for each complete miss
  1016. if (inclusiveStart >= source.length || exclusiveEnd <= 0) { return ReadableString(); }
  1017. // Automatically clamping to valid range
  1018. if (inclusiveStart < 0) { inclusiveStart = 0; }
  1019. if (exclusiveEnd > source.length) { exclusiveEnd = source.length; }
  1020. // Return the overlapping interval
  1021. return createSubString(&(source.readSection[inclusiveStart]), exclusiveEnd - inclusiveStart, source.buffer);
  1022. }
  1023. ReadableString dsr::string_inclusiveRange(const ReadableString& source, int64_t inclusiveStart, int64_t inclusiveEnd) {
  1024. return string_exclusiveRange(source, inclusiveStart, inclusiveEnd + 1);
  1025. }
  1026. ReadableString dsr::string_before(const ReadableString& source, int64_t exclusiveEnd) {
  1027. return string_exclusiveRange(source, 0, exclusiveEnd);
  1028. }
  1029. ReadableString dsr::string_until(const ReadableString& source, int64_t inclusiveEnd) {
  1030. return string_inclusiveRange(source, 0, inclusiveEnd);
  1031. }
  1032. ReadableString dsr::string_from(const ReadableString& source, int64_t inclusiveStart) {
  1033. return string_exclusiveRange(source, inclusiveStart, source.length);
  1034. }
  1035. ReadableString dsr::string_after(const ReadableString& source, int64_t exclusiveStart) {
  1036. return string_from(source, exclusiveStart + 1);
  1037. }
  1038. bool dsr::character_isDigit(DsrChar c) {
  1039. return c >= U'0' && c <= U'9';
  1040. }
  1041. bool dsr::character_isIntegerCharacter(DsrChar c) {
  1042. return c == U'-' || character_isDigit(c);
  1043. }
  1044. bool dsr::character_isValueCharacter(DsrChar c) {
  1045. return c == U'.' || character_isIntegerCharacter(c);
  1046. }
  1047. bool dsr::character_isWhiteSpace(DsrChar c) {
  1048. return c == U' ' || c == U'\t' || c == U'\v' || c == U'\f' || c == U'\n' || c == U'\r';
  1049. }
  1050. // Macros for implementing regular expressions with a greedy approach consuming the first match
  1051. // Optional accepts 0 or 1 occurence
  1052. // Forced accepts 1 occurence
  1053. // Star accepts 0..N occurence
  1054. // Plus accepts 1..N occurence
  1055. #define CHARACTER_OPTIONAL(CHARACTER) if (source[readIndex] == CHARACTER) { readIndex++; }
  1056. #define CHARACTER_FORCED(CHARACTER) if (source[readIndex] == CHARACTER) { readIndex++; } else { return false; }
  1057. #define CHARACTER_STAR(CHARACTER) while (source[readIndex] == CHARACTER) { readIndex++; }
  1058. #define CHARACTER_PLUS(CHARACTER) CHARACTER_FORCED(CHARACTER) CHARACTER_STAR(CHARACTER)
  1059. #define PATTERN_OPTIONAL(PATTERN) if (character_is##PATTERN(source[readIndex])) { readIndex++; }
  1060. #define PATTERN_FORCED(PATTERN) if (character_is##PATTERN(source[readIndex])) { readIndex++; } else { return false; }
  1061. #define PATTERN_STAR(PATTERN) while (character_is##PATTERN(source[readIndex])) { readIndex++; }
  1062. #define PATTERN_PLUS(PATTERN) PATTERN_FORCED(PATTERN) PATTERN_STAR(PATTERN)
  1063. // The greedy approach works here, because there's no ambiguity
  1064. bool dsr::string_isInteger(const ReadableString& source, bool allowWhiteSpace) {
  1065. int64_t readIndex = 0;
  1066. if (allowWhiteSpace) {
  1067. PATTERN_STAR(WhiteSpace);
  1068. }
  1069. CHARACTER_OPTIONAL(U'-');
  1070. // At least one digit required
  1071. PATTERN_PLUS(IntegerCharacter);
  1072. if (allowWhiteSpace) {
  1073. PATTERN_STAR(WhiteSpace);
  1074. }
  1075. return true;
  1076. }
  1077. // To avoid consuming the all digits on Digit* before reaching Digit+ when there is no decimal, whole integers are judged by string_isInteger
  1078. bool dsr::string_isDouble(const ReadableString& source, bool allowWhiteSpace) {
  1079. // Solving the UnsignedDouble <- Digit+ | Digit* '.' Digit+ ambiguity is done easiest by checking if there's a decimal before handling the white-space and negation
  1080. if (string_findFirst(source, U'.') == -1) {
  1081. // No decimal detected
  1082. return string_isInteger(source, allowWhiteSpace);
  1083. } else {
  1084. int64_t readIndex = 0;
  1085. if (allowWhiteSpace) {
  1086. PATTERN_STAR(WhiteSpace);
  1087. }
  1088. // Double <- UnsignedDouble | '-' UnsignedDouble
  1089. CHARACTER_OPTIONAL(U'-');
  1090. // UnsignedDouble <- Digit* '.' Digit+
  1091. // Any number of integer digits
  1092. PATTERN_STAR(IntegerCharacter);
  1093. // Only dot for decimal
  1094. CHARACTER_FORCED(U'.')
  1095. // At least one decimal digit
  1096. PATTERN_PLUS(IntegerCharacter);
  1097. if (allowWhiteSpace) {
  1098. PATTERN_STAR(WhiteSpace);
  1099. }
  1100. return true;
  1101. }
  1102. }
  1103. int64_t dsr::string_getBufferUseCount(const ReadableString& text) {
  1104. return text.buffer.use_count();
  1105. }