Model.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. // zlib open source license
  2. //
  3. // Copyright (c) 2017 to 2019 David Forsgren Piuva
  4. //
  5. // This software is provided 'as-is', without any express or implied
  6. // warranty. In no event will the authors be held liable for any damages
  7. // arising from the use of this software.
  8. //
  9. // Permission is granted to anyone to use this software for any purpose,
  10. // including commercial applications, and to alter it and redistribute it
  11. // freely, subject to the following restrictions:
  12. //
  13. // 1. The origin of this software must not be misrepresented; you must not
  14. // claim that you wrote the original software. If you use this software
  15. // in a product, an acknowledgment in the product documentation would be
  16. // appreciated but is not required.
  17. //
  18. // 2. Altered source versions must be plainly marked as such, and must not be
  19. // misrepresented as being the original software.
  20. //
  21. // 3. This notice may not be removed or altered from any source
  22. // distribution.
  23. #define DFPSR_INTERNAL_ACCESS
  24. #include "Model.h"
  25. #include "../constants.h"
  26. #include "../../api/imageAPI.h"
  27. #include "../../image/ImageRgbaU8.h"
  28. #include "../../image/ImageF32.h"
  29. using namespace dsr;
  30. #define CHECK_PART_INDEX(PART_INDEX, EXIT_STMT) if (PART_INDEX < 0 || PART_INDEX >= this->partBuffer.length()) { printText("Part index ", PART_INDEX, " is out of range 0..", this->partBuffer.length() - 1, "!\n"); EXIT_STMT; }
  31. #define CHECK_POLYGON_INDEX(PART_PTR, POLYGON_INDEX, EXIT_STMT) if (POLYGON_INDEX < 0 || POLYGON_INDEX >= PART_PTR->polygonBuffer.length()) { printText("Polygon index ", POLYGON_INDEX, " is out of range 0..", PART_PTR->polygonBuffer.length() - 1, "!\n"); EXIT_STMT; }
  32. #define CHECK_POINT_INDEX(POINT_INDEX, EXIT_STMT) if (POINT_INDEX < 0 || POINT_INDEX >= this->positionBuffer.length()) { printText("Position index ", POINT_INDEX, " is out of range 0..", this->positionBuffer.length() - 1, "!\n"); EXIT_STMT; }
  33. #define CHECK_PART_POLYGON_INDEX(PART_INDEX, POLYGON_INDEX, EXIT_STMT) { \
  34. CHECK_PART_INDEX(PART_INDEX, EXIT_STMT); \
  35. const Part *PartPtr = &(this->partBuffer[PART_INDEX]); \
  36. CHECK_POLYGON_INDEX(PartPtr, POLYGON_INDEX, EXIT_STMT); \
  37. }
  38. #define CHECK_VERTEX_INDEX(VERTEX_INDEX, EXIT_STMT) if (VERTEX_INDEX < 0 || VERTEX_INDEX > 3) { printText("Vertex index ", VERTEX_INDEX, " is out of the fixed range 0..3 for triangles and quads!\n"); EXIT_STMT; }
  39. Polygon::Polygon(const Vertex &vertA, const Vertex &vertB, const Vertex &vertC) {
  40. this->pointIndices[0] = vertA.pointIndex;
  41. this->pointIndices[1] = vertB.pointIndex;
  42. this->pointIndices[2] = vertC.pointIndex;
  43. this->pointIndices[3] = -1;
  44. this->texCoords[0] = vertA.data.texCoord;
  45. this->texCoords[1] = vertB.data.texCoord;
  46. this->texCoords[2] = vertC.data.texCoord;
  47. this->texCoords[3] = FVector4D();
  48. this->colors[0] = vertA.data.color;
  49. this->colors[1] = vertB.data.color;
  50. this->colors[2] = vertC.data.color;
  51. this->colors[3] = FVector4D();
  52. }
  53. Polygon::Polygon(const Vertex &vertA, const Vertex &vertB, const Vertex &vertC, const Vertex &vertD) {
  54. this->pointIndices[0] = vertA.pointIndex;
  55. this->pointIndices[1] = vertB.pointIndex;
  56. this->pointIndices[2] = vertC.pointIndex;
  57. this->pointIndices[3] = vertD.pointIndex;
  58. this->texCoords[0] = vertA.data.texCoord;
  59. this->texCoords[1] = vertB.data.texCoord;
  60. this->texCoords[2] = vertC.data.texCoord;
  61. this->texCoords[3] = vertD.data.texCoord;
  62. this->colors[0] = vertA.data.color;
  63. this->colors[1] = vertB.data.color;
  64. this->colors[2] = vertC.data.color;
  65. this->colors[3] = vertD.data.color;
  66. }
  67. Polygon::Polygon(int indexA, int indexB, int indexC) {
  68. this->pointIndices[0] = indexA;
  69. this->pointIndices[1] = indexB;
  70. this->pointIndices[2] = indexC;
  71. this->pointIndices[3] = -1;
  72. this->texCoords[0] = FVector4D(0.0f, 0.0f, 0.0f, 0.0f);
  73. this->texCoords[1] = FVector4D(1.0f, 0.0f, 1.0f, 0.0f);
  74. this->texCoords[2] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  75. this->texCoords[3] = FVector4D(0.0f, 1.0f, 0.0f, 1.0f);
  76. this->colors[0] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  77. this->colors[1] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  78. this->colors[2] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  79. this->colors[3] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  80. }
  81. Polygon::Polygon(int indexA, int indexB, int indexC, int indexD) {
  82. this->pointIndices[0] = indexA;
  83. this->pointIndices[1] = indexB;
  84. this->pointIndices[2] = indexC;
  85. this->pointIndices[3] = indexD;
  86. this->texCoords[0] = FVector4D(0.0f, 0.0f, 0.0f, 0.0f);
  87. this->texCoords[1] = FVector4D(1.0f, 0.0f, 1.0f, 0.0f);
  88. this->texCoords[2] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  89. this->texCoords[3] = FVector4D(0.0f, 1.0f, 0.0f, 1.0f);
  90. this->colors[0] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  91. this->colors[1] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  92. this->colors[2] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  93. this->colors[3] = FVector4D(1.0f, 1.0f, 1.0f, 1.0f);
  94. }
  95. int Polygon::getVertexCount() const {
  96. if (this->pointIndices[0] < 0) {
  97. return 0;
  98. } else if (this->pointIndices[1] < 0) {
  99. return 1;
  100. } else if (this->pointIndices[2] < 0) {
  101. return 2;
  102. } else if (this->pointIndices[3] < 0) {
  103. return 3;
  104. } else {
  105. return 4;
  106. }
  107. }
  108. Part::Part(String name) : name(name) {}
  109. Part::Part(const ImageRgbaU8 &diffuseMap, const ImageRgbaU8 &lightMap, const List<Polygon> &polygonBuffer, const String &name) :
  110. diffuseMap(diffuseMap), lightMap(lightMap), polygonBuffer(polygonBuffer), name(name) {}
  111. Part Part::clone() const { return Part(this->diffuseMap, this->lightMap, this->polygonBuffer, this->name); }
  112. int Part::getPolygonCount() const {
  113. return this->polygonBuffer.length();
  114. }
  115. int Part::getPolygonVertexCount(int polygonIndex) const {
  116. CHECK_POLYGON_INDEX(this, polygonIndex, return -1);
  117. return this->polygonBuffer[polygonIndex].getVertexCount();
  118. }
  119. // Precondition:
  120. // TODO: Make a "validated" flag to check reference integrity before drawing models
  121. // Only decreasing the length of the point buffer, changing a position index or adding new polygons should set it to false
  122. // Only running validation before rendering should set it from false to true
  123. // point indices may not go outside of projected's array range
  124. static void renderTriangleFromPolygon(CommandQueue *commandQueue, ImageRgbaU8Impl *targetImage, ImageF32Impl *depthBuffer, const Camera &camera, const Polygon &polygon, int triangleIndex, const ProjectedPoint *projected, Filter filter, const ImageRgbaU8Impl *diffuse, const ImageRgbaU8Impl *light) {
  125. // Triangle fan starting from the first vertex of the polygon
  126. int indexA = 0;
  127. int indexB = 1 + triangleIndex;
  128. int indexC = 2 + triangleIndex;
  129. ProjectedPoint posA = projected[polygon.pointIndices[indexA]];
  130. ProjectedPoint posB = projected[polygon.pointIndices[indexB]];
  131. ProjectedPoint posC = projected[polygon.pointIndices[indexC]];
  132. // Read texture coordinates and convert to planar format in the constructor
  133. TriangleTexCoords texCoords(polygon.texCoords[indexA], polygon.texCoords[indexB], polygon.texCoords[indexC]);
  134. // Read colors and convert to planar format in the constructor
  135. TriangleColors colors(polygon.colors[indexA], polygon.colors[indexB], polygon.colors[indexC]);
  136. renderTriangleFromData(commandQueue, targetImage, depthBuffer, camera, posA, posB, posC, filter, diffuse, light, texCoords, colors);
  137. }
  138. void Part::render(CommandQueue *commandQueue, ImageRgbaU8& targetImage, ImageF32& depthBuffer, const Transform3D &modelToWorldTransform, const Camera &camera, Filter filter, const ProjectedPoint* projected) const {
  139. // Get textures
  140. const ImageRgbaU8Impl *diffuse = this->diffuseMap.get();
  141. const ImageRgbaU8Impl *light = this->lightMap.get();
  142. for (int p = 0; p < this->polygonBuffer.length(); p++) {
  143. Polygon polygon = this->polygonBuffer[p];
  144. if (polygon.pointIndices[3] == -1) {
  145. // Render triangle
  146. renderTriangleFromPolygon(commandQueue, targetImage.get(), depthBuffer.get(), camera, polygon, 0, projected, filter, diffuse, light);
  147. } else {
  148. // Render quad
  149. renderTriangleFromPolygon(commandQueue, targetImage.get(), depthBuffer.get(), camera, polygon, 0, projected, filter, diffuse, light);
  150. renderTriangleFromPolygon(commandQueue, targetImage.get(), depthBuffer.get(), camera, polygon, 1, projected, filter, diffuse, light);
  151. }
  152. }
  153. }
  154. void Part::renderDepth(ImageF32& depthBuffer, const Transform3D &modelToWorldTransform, const Camera &camera, const ProjectedPoint* projected) const {
  155. for (int p = 0; p < this->polygonBuffer.length(); p++) {
  156. Polygon polygon = this->polygonBuffer[p];
  157. if (polygon.pointIndices[3] == -1) {
  158. // Render triangle
  159. ProjectedPoint posA = projected[polygon.pointIndices[0]];
  160. ProjectedPoint posB = projected[polygon.pointIndices[1]];
  161. ProjectedPoint posC = projected[polygon.pointIndices[2]];
  162. renderTriangleFromDataDepth(depthBuffer.get(), camera, posA, posB, posC);
  163. } else {
  164. // Render quad
  165. ProjectedPoint posA = projected[polygon.pointIndices[0]];
  166. ProjectedPoint posB = projected[polygon.pointIndices[1]];
  167. ProjectedPoint posC = projected[polygon.pointIndices[2]];
  168. ProjectedPoint posD = projected[polygon.pointIndices[3]];
  169. renderTriangleFromDataDepth(depthBuffer.get(), camera, posA, posB, posC);
  170. renderTriangleFromDataDepth(depthBuffer.get(), camera, posA, posC, posD);
  171. }
  172. }
  173. }
  174. void ModelImpl::render(CommandQueue *commandQueue, ImageRgbaU8& targetImage, ImageF32& depthBuffer, const Transform3D &modelToWorldTransform, const Camera &camera) const {
  175. if (camera.isBoxSeen(this->minBound, this->maxBound, modelToWorldTransform)) {
  176. // Transform and project all vertices
  177. int positionCount = positionBuffer.length();
  178. ProjectedPoint projected[positionCount]; // TODO: Only use stack memory with VLA when the number of points is resonable
  179. for (int vert = 0; vert < positionCount; vert++) {
  180. projected[vert] = camera.worldToScreen(modelToWorldTransform.transformPoint(positionBuffer[vert]));
  181. }
  182. for (int partIndex = 0; partIndex < this->partBuffer.length(); partIndex++) {
  183. this->partBuffer[partIndex].render(commandQueue, targetImage, depthBuffer, modelToWorldTransform, camera, this->filter, projected);
  184. }
  185. }
  186. }
  187. void ModelImpl::renderDepth(ImageF32& depthBuffer, const Transform3D &modelToWorldTransform, const Camera &camera) const {
  188. if (camera.isBoxSeen(this->minBound, this->maxBound, modelToWorldTransform)) {
  189. // Transform and project all vertices
  190. int positionCount = positionBuffer.length();
  191. ProjectedPoint projected[positionCount]; // TODO: Only use stack memory with VLA when the number of points is resonable
  192. for (int vert = 0; vert < positionCount; vert++) {
  193. projected[vert] = camera.worldToScreen(modelToWorldTransform.transformPoint(positionBuffer[vert]));
  194. }
  195. for (int partIndex = 0; partIndex < this->partBuffer.length(); partIndex++) {
  196. this->partBuffer[partIndex].renderDepth(depthBuffer, modelToWorldTransform, camera, projected);
  197. }
  198. }
  199. }
  200. ModelImpl::ModelImpl() {}
  201. ModelImpl::ModelImpl(Filter filter, const List<Part> &partBuffer, const List<FVector3D> &positionBuffer) :
  202. filter(filter),
  203. positionBuffer(positionBuffer),
  204. partBuffer(partBuffer) {}
  205. ModelImpl::ModelImpl(const ModelImpl &old) :
  206. filter(old.filter),
  207. positionBuffer(old.positionBuffer),
  208. partBuffer(old.partBuffer) {}
  209. int ModelImpl::addEmptyPart(const String& name) {
  210. this->partBuffer.pushConstruct(name);
  211. return this->partBuffer.length() - 1;
  212. }
  213. int ModelImpl::getNumberOfParts() const {
  214. return this->partBuffer.length();
  215. }
  216. void ModelImpl::setPartName(int partIndex, const String &name) {
  217. CHECK_PART_INDEX(partIndex, return);
  218. this->partBuffer[partIndex].name = name;
  219. }
  220. String ModelImpl::getPartName(int partIndex) const {
  221. CHECK_PART_INDEX(partIndex, return "");
  222. return this->partBuffer[partIndex].name;
  223. }
  224. ImageRgbaU8 ModelImpl::getDiffuseMap(int partIndex) const {
  225. CHECK_PART_INDEX(partIndex, return ImageRgbaU8());
  226. return this->partBuffer[partIndex].diffuseMap;
  227. }
  228. void ModelImpl::setDiffuseMap(const ImageRgbaU8 &diffuseMap, int partIndex) {
  229. CHECK_PART_INDEX(partIndex, return);
  230. if (image_exists(diffuseMap) && !image_isTexture(diffuseMap)) {
  231. printText("Cannot assign a non-texture image as a diffuse map!\n");
  232. } else {
  233. this->partBuffer[partIndex].diffuseMap = diffuseMap;
  234. }
  235. }
  236. void ModelImpl::setDiffuseMapByName(ResourcePool &pool, const String &filename, int partIndex) {
  237. CHECK_PART_INDEX(partIndex, return);
  238. const ImageRgbaU8 texture = pool.fetchImageRgba(filename);
  239. if (image_exists(texture)) {
  240. this->setDiffuseMap(texture, partIndex);
  241. }
  242. }
  243. ImageRgbaU8 ModelImpl::getLightMap(int partIndex) const {
  244. CHECK_PART_INDEX(partIndex, return ImageRgbaU8());
  245. return this->partBuffer[partIndex].lightMap;
  246. }
  247. void ModelImpl::setLightMap(const ImageRgbaU8 &lightMap, int partIndex) {
  248. CHECK_PART_INDEX(partIndex, return);
  249. if (image_exists(lightMap) && !image_isTexture(lightMap)) {
  250. printText("Cannot assign a non-texture image as a light map!\n");
  251. } else {
  252. this->partBuffer[partIndex].lightMap = lightMap;
  253. }
  254. }
  255. void ModelImpl::setLightMapByName(ResourcePool &pool, const String &filename, int partIndex) {
  256. CHECK_PART_INDEX(partIndex, return);
  257. const ImageRgbaU8 texture = pool.fetchImageRgba(filename);
  258. if (image_exists(texture)) {
  259. this->setLightMap(texture, partIndex);
  260. }
  261. }
  262. int ModelImpl::addPolygon(Polygon polygon, int partIndex) {
  263. CHECK_PART_INDEX(partIndex, return -1);
  264. this->partBuffer[partIndex].polygonBuffer.push(polygon);
  265. return this->partBuffer[partIndex].polygonBuffer.length() - 1;
  266. }
  267. int ModelImpl::getNumberOfPolygons(int partIndex) const {
  268. CHECK_PART_INDEX(partIndex, return -1);
  269. return this->partBuffer[partIndex].getPolygonCount();
  270. }
  271. int ModelImpl::getPolygonVertexCount(int partIndex, int polygonIndex) const {
  272. CHECK_PART_INDEX(partIndex, return -1);
  273. return this->partBuffer[partIndex].getPolygonVertexCount(polygonIndex);
  274. }
  275. int ModelImpl::getNumberOfPoints() const {
  276. return this->positionBuffer.length();
  277. }
  278. void ModelImpl::expandBound(const FVector3D& point) {
  279. if (this->minBound.x > point.x) { this->minBound.x = point.x; }
  280. if (this->minBound.y > point.y) { this->minBound.y = point.y; }
  281. if (this->minBound.z > point.z) { this->minBound.z = point.z; }
  282. if (this->maxBound.x < point.x) { this->maxBound.x = point.x; }
  283. if (this->maxBound.y < point.y) { this->maxBound.y = point.y; }
  284. if (this->maxBound.z < point.z) { this->maxBound.z = point.z; }
  285. }
  286. int ModelImpl::findPoint(const FVector3D &position, float threshold) const {
  287. float bestDistance = threshold;
  288. int bestIndex = -1;
  289. for (int index = 0; index < this->positionBuffer.length(); index++) {
  290. float distance = length(position - this->getPoint(index));
  291. if (distance < bestDistance) {
  292. bestDistance = distance;
  293. bestIndex = index;
  294. }
  295. }
  296. return bestIndex;
  297. }
  298. FVector3D ModelImpl::getPoint(int pointIndex) const {
  299. CHECK_POINT_INDEX(pointIndex, return FVector3D());
  300. return this->positionBuffer[pointIndex];
  301. }
  302. void ModelImpl::setPoint(int pointIndex, const FVector3D& position) {
  303. CHECK_POINT_INDEX(pointIndex, return);
  304. this->expandBound(position);
  305. this->positionBuffer[pointIndex] = position;
  306. }
  307. int ModelImpl::addPoint(const FVector3D &position) {
  308. this->positionBuffer.push(position);
  309. this->expandBound(position);
  310. return this->positionBuffer.length() - 1;
  311. }
  312. int ModelImpl::addPointIfNeeded(const FVector3D &position, float threshold) {
  313. int existingIndex = this->findPoint(position, threshold);
  314. if (existingIndex > -1) {
  315. return existingIndex;
  316. } else {
  317. return addPoint(position);
  318. }
  319. }
  320. int ModelImpl::getVertexPointIndex(int partIndex, int polygonIndex, int vertexIndex) const {
  321. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return -1);
  322. CHECK_VERTEX_INDEX(vertexIndex, return -1);
  323. return partBuffer[partIndex].polygonBuffer[polygonIndex].pointIndices[vertexIndex];
  324. }
  325. void ModelImpl::setVertexPointIndex(int partIndex, int polygonIndex, int vertexIndex, int pointIndex) {
  326. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return);
  327. CHECK_VERTEX_INDEX(vertexIndex, return);
  328. partBuffer[partIndex].polygonBuffer[polygonIndex].pointIndices[vertexIndex] = pointIndex;
  329. }
  330. FVector3D ModelImpl::getVertexPosition(int partIndex, int polygonIndex, int vertexIndex) const {
  331. int pointIndex = getVertexPointIndex(partIndex, polygonIndex, vertexIndex);
  332. if (pointIndex > -1 && pointIndex < this->getNumberOfPoints()) {
  333. return this->getPoint(pointIndex);
  334. } else {
  335. return FVector3D();
  336. }
  337. }
  338. FVector4D ModelImpl::getVertexColor(int partIndex, int polygonIndex, int vertexIndex) const {
  339. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return FVector4D());
  340. CHECK_VERTEX_INDEX(vertexIndex, return FVector4D());
  341. return partBuffer[partIndex].polygonBuffer[polygonIndex].colors[vertexIndex];
  342. }
  343. void ModelImpl::setVertexColor(int partIndex, int polygonIndex, int vertexIndex, const FVector4D& color) {
  344. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return);
  345. CHECK_VERTEX_INDEX(vertexIndex, return);
  346. partBuffer[partIndex].polygonBuffer[polygonIndex].colors[vertexIndex] = color;
  347. }
  348. FVector4D ModelImpl::getTexCoord(int partIndex, int polygonIndex, int vertexIndex) const {
  349. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return FVector4D());
  350. CHECK_VERTEX_INDEX(vertexIndex, return FVector4D());
  351. return partBuffer[partIndex].polygonBuffer[polygonIndex].texCoords[vertexIndex];
  352. }
  353. void ModelImpl::setTexCoord(int partIndex, int polygonIndex, int vertexIndex, const FVector4D& texCoord) {
  354. CHECK_PART_POLYGON_INDEX(partIndex, polygonIndex, return);
  355. CHECK_VERTEX_INDEX(vertexIndex, return);
  356. partBuffer[partIndex].polygonBuffer[polygonIndex].texCoords[vertexIndex] = texCoord;
  357. }