shader.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. #ifndef SHADER_H
  2. #define SHADER_H
  3. // ===============================
  4. // AUTHOR : Angel Ortiz (angelo12 AT vt DOT edu)
  5. // CREATE DATE : 2018-07-12
  6. // PURPOSE : Emulate modern programmable vertex and fragment shaders. Allow texture
  7. // reading and full Physically based rendering models.
  8. // ===============================
  9. // SPECIAL NOTES: I kpet the older shaders that I wrote while working towards
  10. // building the final PBR model because I thought it would be nice to see the progression
  11. // Although using pure interface classes would seem to incur a perforamnce
  12. // penalty through pointer chasing I did not measure it through profiling.
  13. // ===============================
  14. //Headers
  15. #include "vector3D.h"
  16. #include "matrix.h"
  17. #include "texture.h"
  18. #include <math.h>
  19. //Shader Interface for a class that emulates modern GPU fragment and vertex shaders
  20. struct IShader {
  21. virtual ~IShader() {};
  22. virtual Vector3f vertex(const Vector3f &vertex, const Vector3f &normal,
  23. const Vector3f &textureVals,const Vector3f &tangent,
  24. int index, const Vector3f &light = Vector3f{1,1,1}) = 0;
  25. virtual Vector3f fragment(float u, float v) = 0;
  26. };
  27. //Simplest shader. Calculates light intensity per triangle.
  28. struct FlatShader : public IShader {
  29. Matrix4 MVP, MV;
  30. float varIntensity;
  31. Vector3f rgb{255,255,255};
  32. Vector3f vertex(const Vector3f &vertex, const Vector3f &normal,
  33. const Vector3f &textureVals,const Vector3f &tangent,
  34. int index, const Vector3f &light) override
  35. {
  36. varIntensity = std::max(0.0f,normal.dotProduct(light));
  37. return MVP.matMultVec(vertex); //Transforms verts into projected space
  38. }
  39. Vector3f fragment(float u, float v) override{
  40. return rgb*varIntensity;
  41. }
  42. };
  43. //More Complex shader that calculates a per-vertex intensity and interpolates
  44. //through the fragments of the triangle
  45. struct GouraudShader : public IShader {
  46. //Per object data
  47. Matrix4 MVP, MV, V, N;
  48. Vector3f lightColor1{1,1,1}, lightColor2{0,0,1}, lightColor3{1,1,1};
  49. float ambientStrength = 0.05, diffStrength = 0, specularStrength = 0.5, spec = 0;
  50. Vector3f rgb{255,255,255};
  51. //Per vertex data
  52. Vector3f varying_diffuse, varying_specular, reflectDir, viewDir, lightDir, correctNormal;
  53. //Per pixel data
  54. Vector3f ambient, diffuse, specular;
  55. Vector3f vertex(const Vector3f &vertex, const Vector3f &normal,
  56. const Vector3f &textureVals,const Vector3f &tangent,
  57. int index, const Vector3f &light) override
  58. {
  59. //Vertex attributes
  60. correctNormal = N.matMultDir(normal).normalized();
  61. lightDir = V.matMultDir(light).normalized();
  62. reflectDir = Vector3f::reflect(-lightDir, correctNormal);
  63. viewDir = MV.matMultVec(vertex).normalized();
  64. //Values to be interpolated
  65. varying_specular.data[index] = std::pow( std::max( -viewDir.dotProduct(reflectDir), 0.0f), 32.0f);
  66. varying_diffuse.data[index] = std::max(0.0f, (correctNormal).dotProduct(-lightDir));
  67. return MVP.matMultVec(vertex);
  68. }
  69. Vector3f fragment(float u, float v) override{
  70. //Interpolating
  71. diffStrength = varying_diffuse.x + u*(varying_diffuse.y - varying_diffuse.x) + v*(varying_diffuse.z - varying_diffuse.x);
  72. spec = varying_specular.x + u*(varying_specular.y - varying_specular.x) + v*(varying_specular.z - varying_specular.x);
  73. //Phong reflection model
  74. ambient = lightColor1 * ambientStrength;
  75. diffuse = lightColor2 * diffStrength;
  76. specular = lightColor3 * (specularStrength * spec);
  77. return (ambient + diffuse + specular) * rgb;
  78. }
  79. };
  80. //Even more complex shader that interpolates normals and calculates intensities per fragment instead
  81. //instead of per vertex.
  82. struct PhongShader : public IShader {
  83. //Per object data
  84. Matrix4 MVP, MV, V, N;
  85. float ambientStrength = 0.05, diffStrength = 0, specularStrength = 0.9, spec = 0;
  86. Vector3f lightColor{0,0.1,1},lightColorSpec{1,1,1};
  87. Vector3f rgb{255,255,255};
  88. //Per vertex data
  89. Vector3f normals[3], viewDir[3];
  90. Vector3f varying_diffuse, varying_specular, reflectDir, lightDir;
  91. //Per pixel data
  92. Vector3f ambient, diffuse, specular, interpNormal, interpViewDir;
  93. Vector3f vertex(const Vector3f &vertex, const Vector3f &normal,
  94. const Vector3f &textureVals,const Vector3f &tangent,
  95. int index, const Vector3f &light) override
  96. {
  97. //Vertex attributes
  98. normals[index] = N.matMultDir(normal).normalized();
  99. viewDir[index] = MV.matMultVec(vertex).normalized();
  100. lightDir = V.matMultDir(light).normalized();
  101. return MVP.matMultVec(vertex);
  102. }
  103. Vector3f fragment(float u, float v) override{
  104. //Interpolated stuff
  105. interpNormal = normals[0] + (normals[1] - normals[0])* u + (normals[2] - normals[0]) * v;
  106. interpViewDir = viewDir[0] + (viewDir[1] - viewDir[0])* u + (viewDir[2] - viewDir[0]) * v;
  107. //Ambient
  108. ambient = lightColor * ambientStrength;
  109. //Diffuse
  110. diffStrength = std::max(0.0f, (interpNormal.normalized()).dotProduct(lightDir));
  111. diffuse = lightColor * diffStrength;
  112. //Specular
  113. reflectDir = Vector3f::reflect(-lightDir, interpNormal);
  114. spec = std::pow( std::max( (-interpViewDir.normalized()).dotProduct(reflectDir), 0.0f), 50.0f);
  115. specular = lightColorSpec * (specularStrength * spec);
  116. return (ambient + diffuse + specular) * rgb;
  117. }
  118. };
  119. //Optimized version of Phong shader that uses a half angle instead of individual reflection
  120. //angles
  121. struct BlinnPhongShader : public IShader {
  122. //Per object data
  123. Texture *albedoT;
  124. Matrix4 MVP, MV, V, N;
  125. float ambientStrength = 0.05, diffStrength=1 , specularStrength= 0.5;
  126. Vector3f lightColor{1,1,1};
  127. //Per vertex data
  128. Vector3f normals[3], viewDir[3], UV[3];
  129. float diff, spec, shininess = 128;
  130. //Per fragment data
  131. Vector3f ambient, diffuse, specular, interpNormal, interpViewDir, interpUV;
  132. Vector3f halfwayDir, lightDir;
  133. Vector3f interpCol, white{255,255,255};
  134. Vector3f vertex(const Vector3f &vertex, const Vector3f &normal,
  135. const Vector3f &textureVals,const Vector3f &tangent,
  136. int index, const Vector3f &light) override{
  137. normals[index] = N.matMultDir(normal).normalized();
  138. UV[index] = textureVals;
  139. viewDir[index] = MV.matMultVec(vertex).normalized();
  140. lightDir = V.matMultDir(light).normalized();
  141. return MVP.matMultVec(vertex);
  142. }
  143. Vector3f fragment(float u, float v) override{
  144. //Interpolated stuff
  145. interpNormal = (normals[0] + (normals[1] - normals[0])* u + (normals[2] - normals[0]) * v).normalized();
  146. interpViewDir = viewDir[0] + (viewDir[1] - viewDir[0])* u + (viewDir[2] - viewDir[0]) * v;
  147. interpUV = UV[0] + (UV[1] - UV[0])* u + (UV[2] - UV[0]) * v;
  148. //Albedo
  149. interpCol = albedoT->getPixelVal(interpUV.x, interpUV.y);
  150. //Ambient
  151. ambient = lightColor * ambientStrength;
  152. //Diffuse
  153. diff = std::max(0.0f, interpNormal.dotProduct(lightDir));
  154. diffuse = lightColor * diff * diffStrength;
  155. //Specular
  156. halfwayDir = (lightDir - interpViewDir).normalized();
  157. spec = std::pow(std::max(0.0f, interpNormal.dotProduct(halfwayDir)), shininess);
  158. specular = lightColor * spec * specularStrength;
  159. return (ambient + diffuse) * interpCol + specular * white;
  160. }
  161. };
  162. // Shader that uses texture mapping extensively
  163. struct TextureMapShader : public IShader {
  164. //Variables set per model
  165. Texture *albedoT, *normalT, *ambientOT;
  166. Matrix4 MVP, MV, V, M, N;
  167. Vector3f cameraPos;
  168. //Light Variables
  169. Vector3f lightColor{1,1,1}, white{1,1,1};
  170. float ambientStrength = 0.1, diffStrength = 0.9, specularStrength = 0.8;
  171. float diff, spec, shininess = 128;
  172. Vector3f lightDir[3];
  173. //Variables set per vertex
  174. Vector3f viewDir[3], texCoords[3];
  175. Vector3f normal_WS, tangent_WS, biTangent_WS;
  176. Matrix4 TBN;
  177. //Interpolated variables
  178. Vector3f interpCoords, interpLightDir, interpNormal,
  179. interpViewDir, interpCol, interpAO;
  180. //Per fragment
  181. Vector3f ambient, diffuse, specular ;
  182. Vector3f halfwayDir;
  183. Vector3f vertex(const Vector3f &vertex, const Vector3f &normal,
  184. const Vector3f &textureVals, const Vector3f &tangent,
  185. int index, const Vector3f &light) override{
  186. //Creating TBN matrix
  187. normal_WS = N.matMultDir(normal).normalized();
  188. tangent_WS = N.matMultDir(tangent).normalized();
  189. biTangent_WS = normal_WS.crossProduct(tangent_WS);
  190. TBN = Matrix4::TBNMatrix(tangent_WS, biTangent_WS, normal_WS);
  191. //Getting UV coordinates for use in both albedo and normal textures
  192. texCoords[index] = textureVals;
  193. //Passing all lighting related data to tangent space
  194. lightDir[index] = TBN.matMultVec(light);
  195. viewDir[index] = TBN.matMultVec(cameraPos - M.matMultVec(vertex));
  196. return MVP.matMultVec(vertex);
  197. }
  198. Vector3f fragment(float u, float v) override{
  199. //Interpolated attributes
  200. interpCoords = texCoords[0] + (texCoords[1] - texCoords[0])* u + (texCoords[2] - texCoords[0]) * v;
  201. interpLightDir = lightDir[0] + (lightDir[1] - lightDir[0])* u + (lightDir[2] - lightDir[0]) * v;
  202. interpViewDir = viewDir[0] + (viewDir[1] - viewDir[0])* u + (viewDir[2] - viewDir[0]) * v;
  203. //Reading albedo and normal data from textures
  204. interpCol = albedoT->getPixelVal(interpCoords.x, interpCoords.y);
  205. interpAO = ambientOT->getIntensityVal(interpCoords.x, interpCoords.y);
  206. interpNormal = normalT->getPixelVal(interpCoords.x, interpCoords.y);
  207. interpNormal = interpNormal.normalized();
  208. //Ambient
  209. ambient = lightColor * ambientStrength * interpAO;
  210. //Diffuse
  211. diff = std::max(0.0f, interpNormal.dotProduct(interpLightDir));
  212. diffuse = lightColor * diff * diffStrength;
  213. //Specular
  214. halfwayDir = (interpLightDir + interpViewDir).normalized();
  215. spec = std::pow(std::max(0.0f, interpNormal.dotProduct(halfwayDir)), shininess);
  216. specular = lightColor * spec * specularStrength;
  217. return (ambient + diffuse) * interpCol + specular * white;
  218. }
  219. };
  220. // Shader that uses texture mapping and a PBR approach for shading
  221. // Uses a cook-torrance BRDF for direct light sources.
  222. struct PBRShader : public IShader {
  223. //Variables set per model
  224. Texture *albedoT, *normalT, *ambientOT, *roughT, *metalT;
  225. Matrix4 MVP, MV, V, M, N;
  226. Vector3f cameraPos;
  227. //Light Variables
  228. Vector3f F0{0.04, 0.04, 0.04}, F0corrected; //Default value dielectric
  229. Vector3f *lightDirVal, *lightCol, *lightPos;
  230. float nDotL, nDotV, ambientInt = 0.01;
  231. int numLights;
  232. //Variables set per vertex
  233. Vector3f viewDir[3], texCoords[3];
  234. Vector3f normal_WS, tangent_WS, biTangent_WS;
  235. Matrix4 TBN;
  236. //Interpolated variables
  237. Vector3f interpCoords, interpNormal, interpViewDir, interpCol;
  238. //Per fragment
  239. Vector3f radianceOut, ambient;
  240. float interpRough, interpAO, interpMetal;
  241. float uTexture, vTexture, intPart;
  242. //BRDF functions
  243. Vector3f fresnelSchlick(float cosTheta, Vector3f &fresnel0 ){
  244. float invcCosTheta = 1.0 - cosTheta;
  245. return fresnel0 + (Vector3f(1.0)- fresnel0) * (invcCosTheta * invcCosTheta * invcCosTheta * invcCosTheta * invcCosTheta);
  246. }
  247. float distributionGGX(Vector3f normal, Vector3f halfway, float roughness){
  248. float a = roughness*roughness;
  249. float a2 = a*a;
  250. float NdotH = std::max(normal.dotProduct(halfway), 0.0f);
  251. float NdotH2 = NdotH*NdotH;
  252. float denom = (NdotH2 * (a2 - 1.0f) + 1.0f);
  253. denom = M_1_PIf32/ (denom * denom);
  254. return a2 * denom;
  255. }
  256. float GeometrySchlickGGX(float Ndot, float roughness){
  257. float r = (roughness + 1.0f);
  258. float k = (r*r) / 8.0f; //Only useful for direct lighting must be changed in ibr
  259. float denom = 1.0f / (Ndot * (1.0f- k) + k);
  260. return Ndot * denom;
  261. }
  262. float GeometrySmith(float roughness, float nDL, float nDV){
  263. return GeometrySchlickGGX(nDL, roughness) * GeometrySchlickGGX(nDV, roughness);
  264. }
  265. //Vertex shader
  266. Vector3f vertex(const Vector3f &vertex, const Vector3f &normal,
  267. const Vector3f &textureVals, const Vector3f &tangent,
  268. int index, const Vector3f &light = Vector3f{1,1,1}) override
  269. {
  270. //Creating TBN matrix
  271. normal_WS = N.matMultDir(normal).normalized();
  272. tangent_WS = N.matMultDir(tangent).normalized();
  273. biTangent_WS = normal_WS.crossProduct(tangent_WS);
  274. TBN = Matrix4::TBNMatrix(tangent_WS, biTangent_WS, normal_WS);
  275. //Getting UV coordinates for use in all textures
  276. texCoords[index] = textureVals;
  277. //Passing all lighting related data to tangent space
  278. for(int lIndex = 0; lIndex < numLights; ++lIndex){
  279. int indc2 = (lIndex*3) + index;
  280. lightDirVal[indc2] = TBN.matMultDir(lightPos[lIndex]);
  281. }
  282. viewDir[index] = TBN.matMultDir(cameraPos - M.matMultVec(vertex));
  283. return MVP.matMultVec(vertex);
  284. }
  285. //Fragment shader
  286. Vector3f fragment(float u, float v) override{
  287. //Interpolated attributes
  288. interpCoords = texCoords[0] + (texCoords[1] - texCoords[0])* u + (texCoords[2] - texCoords[0]) * v;
  289. interpViewDir = viewDir[0] + (viewDir[1] - viewDir[0])* u + (viewDir[2] - viewDir[0]) * v;
  290. //Correcting UV's for tiling
  291. uTexture = std::modf(interpCoords.x, &intPart);
  292. vTexture = std::modf(interpCoords.y, &intPart);
  293. //Reading data from textures for use in lighting calculations
  294. interpCol = albedoT->getPixelVal(uTexture, vTexture);
  295. interpAO = ambientOT->getIntensityVal(uTexture, vTexture);
  296. interpRough = roughT->getIntensityVal(uTexture, vTexture);;
  297. interpMetal = metalT->getIntensityVal(uTexture, vTexture);
  298. interpNormal = normalT->getPixelVal(uTexture, vTexture);
  299. interpNormal = interpNormal.normalized();
  300. interpViewDir = interpViewDir.normalized();
  301. //Varying f0 based on metallicness of surface
  302. float invMetal = (1.0f-interpMetal);
  303. F0corrected = (F0 * invMetal) + (interpCol * interpMetal);
  304. nDotV = std::max(interpNormal.dotProduct(interpViewDir), 0.0f);
  305. //Setting up Direct Lighting variables
  306. const int maxLights = numLights;
  307. //Fresnel, normal distribution function and geometry occlusion
  308. Vector3f F[maxLights];
  309. float NDF[maxLights];
  310. float G[maxLights];
  311. //Storing in array for vectorizing
  312. Vector3f radianceLights[maxLights];
  313. Vector3f interpLightDir[maxLights];
  314. Vector3f halfwayDir[maxLights];
  315. float nDotL[maxLights];
  316. Vector3f numerator[maxLights];
  317. float invDenominator[maxLights];
  318. Vector3f specular[maxLights];
  319. Vector3f kD[maxLights];
  320. //Interpolating each light direction for every light
  321. int val;
  322. for(int i = 0; i < maxLights; ++i ){
  323. val = i*3;
  324. interpLightDir[i] = (lightDirVal[val] + (lightDirVal[val + 1] - lightDirVal[val])* u + (lightDirVal[val + 2] - lightDirVal[val]) * v).normalized();
  325. }
  326. //Per light illumination calculations that can be simdified
  327. //Currently uses widest SIMD array to perform all light iterations in one trip
  328. //Which I believe leaves some extra
  329. #pragma omp simd
  330. for(int light = 0; light < maxLights; ++light ){
  331. halfwayDir[light] = (interpLightDir[light] + interpViewDir);
  332. halfwayDir[light] = halfwayDir[light].normalized();
  333. nDotL[light] = std::fmax(interpNormal.dotProduct(interpLightDir[light]), 0.0f);
  334. //No problem vectorizing these functions because they are inlined by the compiler
  335. //And also only consist of math operations to the vectors
  336. F[light] = fresnelSchlick(std::fmax(halfwayDir[light].dotProduct(interpViewDir), 0.0f), F0corrected);
  337. NDF[light] = distributionGGX(interpNormal, halfwayDir[light], interpRough);
  338. G[light] = GeometrySmith(interpRough, nDotL[light] , nDotV);
  339. numerator[light] = F[light] * G[light]*NDF[light];
  340. invDenominator[light] = 1.0f / std::fmax(4.0f * (nDotL[light] * nDotV), 0.001f);
  341. specular[light] = numerator[light] * invDenominator[light];
  342. //kd is 1 - kf which is the stuff to the right of the vecotr
  343. kD[light] = (Vector3f(1.0f) - F[light])*invMetal;
  344. //The rendering equation result for a given light
  345. radianceLights[light] = (kD[light] * (interpCol * (M_1_PIf32)) + specular[light] ) * nDotL[light] * lightCol[light];
  346. }
  347. //Summing up all radiance values since SIMD won't work if I do this within the
  348. //previous loop
  349. radianceOut.zero();
  350. for(int i = 0; i < maxLights; ++i) {
  351. radianceOut += radianceLights[i];
  352. }
  353. //Simplistic ambient term
  354. ambient = interpCol * (ambientInt * interpAO);
  355. return ambient + radianceOut;
  356. }
  357. };
  358. #endif