|
@@ -19,39 +19,61 @@ public class HelloQuad : AppDelegate
|
|
|
Texture2D texture;
|
|
Texture2D texture;
|
|
|
VertexBuffer vertexBuffer;
|
|
VertexBuffer vertexBuffer;
|
|
|
|
|
|
|
|
- public override void Start()
|
|
|
|
|
|
|
+ public override unsafe void Start()
|
|
|
{
|
|
{
|
|
|
- Renderer renderer = AtomicNET.GetSubsystem<Renderer>();
|
|
|
|
|
- graphics = AtomicNET.GetSubsystem<Graphics>();
|
|
|
|
|
|
|
+ // We get the variables we are going to use in this example
|
|
|
|
|
+ Renderer renderer = GetSubsystem<Renderer>();
|
|
|
|
|
+ graphics = GetSubsystem<Graphics>();
|
|
|
viewport = renderer.GetViewport(0);
|
|
viewport = renderer.GetViewport(0);
|
|
|
-
|
|
|
|
|
|
|
+
|
|
|
|
|
+ // We create a new Scene
|
|
|
scene = new Scene();
|
|
scene = new Scene();
|
|
|
|
|
+ // The Octree should be added to the root scene node (mandatory?)
|
|
|
scene.CreateComponent<Octree>();
|
|
scene.CreateComponent<Octree>();
|
|
|
|
|
+ // We tell the current viewport to display the scene we just created
|
|
|
viewport.Scene = scene;
|
|
viewport.Scene = scene;
|
|
|
|
|
|
|
|
|
|
+ // We create a new camera on the scene, called "Camera"
|
|
|
|
|
+ // - Scene.CreateChild(string name) returns a new Node with that name.
|
|
|
|
|
+ // - Node.CreateComponent<ComponentType>() returns a component attached to that Node
|
|
|
camera = scene.CreateChild("Camera").CreateComponent<Camera>();
|
|
camera = scene.CreateChild("Camera").CreateComponent<Camera>();
|
|
|
|
|
+ // We can access the Node any component is attached to using Component.Node
|
|
|
camera.Node.Position = new Vector3(0.5f, 0.5f, 0.0f);
|
|
camera.Node.Position = new Vector3(0.5f, 0.5f, 0.0f);
|
|
|
|
|
+ // Remember, 'camera' is a Camera component, so we access it directly here
|
|
|
camera.Orthographic = true;
|
|
camera.Orthographic = true;
|
|
|
camera.OrthoSize = 1.5f;
|
|
camera.OrthoSize = 1.5f;
|
|
|
|
|
+ // We tell the Viewport to use our newly created camera to display our scene
|
|
|
viewport.Camera = camera;
|
|
viewport.Camera = camera;
|
|
|
|
|
|
|
|
// We create a XML from string so this code is fully self-contained
|
|
// We create a XML from string so this code is fully self-contained
|
|
|
XMLFile xml = new XMLFile();
|
|
XMLFile xml = new XMLFile();
|
|
|
xml.FromString("<renderpath><command type=\"sendevent\"/></renderpath>");
|
|
xml.FromString("<renderpath><command type=\"sendevent\"/></renderpath>");
|
|
|
|
|
|
|
|
|
|
+ // We create a new RenderPath. A Viewport comes by default with some events, and you can use viewport.GetRenderPath().Clone()
|
|
|
|
|
+ // to clone the default RenderPath and Append instructions to it instead (see AtomicBlaster for effects)
|
|
|
RenderPath renderpath = new RenderPath();
|
|
RenderPath renderpath = new RenderPath();
|
|
|
renderpath.Append(xml);
|
|
renderpath.Append(xml);
|
|
|
|
|
+ // We repace the viewport's default renderpath by the one we just created
|
|
|
viewport.SetRenderPath(renderpath);
|
|
viewport.SetRenderPath(renderpath);
|
|
|
- SubscribeToEvent("RenderPathEvent", (u, e) => { Render(); });
|
|
|
|
|
|
|
+ // We subscribe to the RenderPathEvent. Here we pass an anonymous function that just absorbs the argument and calls Render()
|
|
|
|
|
+ SubscribeToEvent<RenderPathEvent>(e => { Render(); });
|
|
|
|
|
|
|
|
|
|
+ // Here we setup our shaders, here we are using the BasicVColUnlitAlpha and selecting only DIFFMAP (diffuse texture pass)
|
|
|
|
|
+ // See this link: github.com/AtomicGameEngine/AtomicGameEngine/tree/master/Resources/CoreData/Techniques
|
|
|
ShaderVariation pixelShader = graphics.GetShader(ShaderType.PS, "Basic", "DIFFMAP");
|
|
ShaderVariation pixelShader = graphics.GetShader(ShaderType.PS, "Basic", "DIFFMAP");
|
|
|
ShaderVariation vertexShader = graphics.GetShader(ShaderType.VS, "Basic", "DIFFMAP");
|
|
ShaderVariation vertexShader = graphics.GetShader(ShaderType.VS, "Basic", "DIFFMAP");
|
|
|
graphics.SetShaders(vertexShader, pixelShader);
|
|
graphics.SetShaders(vertexShader, pixelShader);
|
|
|
|
|
+ // This vertex shader parameter just applies no transformation (Matrix Identity means no transformation) so the vertices
|
|
|
|
|
+ // display in worlds coordinates what allow us to use the camera properly
|
|
|
graphics.SetShaderParameter(ShaderParams.VSP_MODEL, Matrix3x4.IDENTITY);
|
|
graphics.SetShaderParameter(ShaderParams.VSP_MODEL, Matrix3x4.IDENTITY);
|
|
|
- graphics.SetShaderParameter(ShaderParams.PSP_MATDIFFCOLOR, Color.White);
|
|
|
|
|
|
|
+ // We set the pixel shader diffuse color to be white. You can change this to 'tint' the texture similar to vertex colors
|
|
|
|
|
+ // but this applies to the whole material
|
|
|
|
|
+ graphics.SetShaderParameter(ShaderParams.PSP_MATDIFFCOLOR, Color.Blue);
|
|
|
|
|
+ // We set cull mode to NONE so our geometry won't be culled (ignored), for this example we don't really need any culling
|
|
|
graphics.SetCullMode(CullMode.CULL_NONE);
|
|
graphics.SetCullMode(CullMode.CULL_NONE);
|
|
|
|
|
|
|
|
- // We create a texture from literal data so this code is fully self-contained
|
|
|
|
|
|
|
+ // We create a texture from literal data so this code is fully self-contained, you can safely skip the lines below
|
|
|
|
|
+ // In your real projects you're most likely going to load texture from the disk using Texture.Load
|
|
|
Image image = new Image();
|
|
Image image = new Image();
|
|
|
image.SetSize(16, 16, 3);
|
|
image.SetSize(16, 16, 3);
|
|
|
|
|
|
|
@@ -83,34 +105,44 @@ public class HelloQuad : AppDelegate
|
|
|
{
|
|
{
|
|
|
for (int y = 0; y < 16; y++)
|
|
for (int y = 0; y < 16; y++)
|
|
|
{
|
|
{
|
|
|
- image.SetPixel(x,15-y,imageData[y,x]);
|
|
|
|
|
|
|
+ image.SetPixel(x, 15 - y, imageData[y, x]);
|
|
|
}
|
|
}
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
texture = new Texture2D();
|
|
texture = new Texture2D();
|
|
|
texture.SetData(image);
|
|
texture.SetData(image);
|
|
|
-
|
|
|
|
|
|
|
+
|
|
|
|
|
+ // We create a new VertexBuffer object, it holds our vertices and is passed to the GPU
|
|
|
vertexBuffer = new VertexBuffer();
|
|
vertexBuffer = new VertexBuffer();
|
|
|
- vertexBuffer.SetSize(6, Constants.MASK_POSITION | Constants.MASK_TEXCOORD1, true);
|
|
|
|
|
- }
|
|
|
|
|
|
|
+ // We set its size and the elements it's containing, the 3rd optional argument (dynamic) should be 'true' if you're planning
|
|
|
|
|
+ // to update the VertexBuffer constantly, that will improve performance in those cases.
|
|
|
|
|
+ vertexBuffer.SetSize(6, Constants.MASK_POSITION | Constants.MASK_TEXCOORD1, false);
|
|
|
|
|
|
|
|
- unsafe void Render()
|
|
|
|
|
- {
|
|
|
|
|
|
|
+ // Here we lock the vertexBuffer what returns a pointer (IntPtr) to its data (vertexData here), I'm using a code block for clarity
|
|
|
System.IntPtr vertexData = vertexBuffer.Lock(0, 6, true);
|
|
System.IntPtr vertexData = vertexBuffer.Lock(0, 6, true);
|
|
|
{
|
|
{
|
|
|
|
|
+ // We can cast the data pointer to whatever data type we want, here we are only using floats but ideally you will want
|
|
|
|
|
+ // to cast it to an object (struct) with properly offsetted fields and maybe unions for things like colors
|
|
|
float* vout = (float*)vertexData;
|
|
float* vout = (float*)vertexData;
|
|
|
|
|
|
|
|
|
|
+ // Our first vertex, here we set the x position of it
|
|
|
*vout++ = 0;
|
|
*vout++ = 0;
|
|
|
|
|
+ // Here we set the y position
|
|
|
*vout++ = 0;
|
|
*vout++ = 0;
|
|
|
|
|
+ // Here we set the z position (depth in this case, useful for sorting in orthographic projection)
|
|
|
*vout++ = 0;
|
|
*vout++ = 0;
|
|
|
|
|
+ // Here we set it's texture x coordinate, commonly called u;
|
|
|
*vout++ = 0;
|
|
*vout++ = 0;
|
|
|
|
|
+ // Here we set it's texture y coordinate, commonly called v;
|
|
|
|
|
+ // UVs are simply cartesian coordinates: 0,0 is bottom-left; 1,1 is top-right
|
|
|
*vout++ = 0;
|
|
*vout++ = 0;
|
|
|
|
|
|
|
|
- *vout++ = 0;
|
|
|
|
|
- *vout++ = 1;
|
|
|
|
|
- *vout++ = 0;
|
|
|
|
|
- *vout++ = 0;
|
|
|
|
|
- *vout++ = 1;
|
|
|
|
|
|
|
+ // Each of these blocks is a vertex, same concept apply:
|
|
|
|
|
+ *vout++ = 0; // x
|
|
|
|
|
+ *vout++ = 1; // y
|
|
|
|
|
+ *vout++ = 0; // z
|
|
|
|
|
+ *vout++ = 0; // u
|
|
|
|
|
+ *vout++ = 1; // v
|
|
|
|
|
|
|
|
*vout++ = 1;
|
|
*vout++ = 1;
|
|
|
*vout++ = 1;
|
|
*vout++ = 1;
|
|
@@ -137,12 +169,23 @@ public class HelloQuad : AppDelegate
|
|
|
*vout++ = 0;
|
|
*vout++ = 0;
|
|
|
|
|
|
|
|
}
|
|
}
|
|
|
|
|
+ // Don't forget to unlock the VertexBuffer after you modify it
|
|
|
vertexBuffer.Unlock();
|
|
vertexBuffer.Unlock();
|
|
|
-
|
|
|
|
|
|
|
+
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ void Render()
|
|
|
|
|
+ {
|
|
|
|
|
+ // We clear the whole screen white before drawing anything
|
|
|
graphics.Clear(0x1, Color.White);
|
|
graphics.Clear(0x1, Color.White);
|
|
|
|
|
+ // The 3 lines below don't have to be set every frame in this specific example, but you'll most likely be changing the often
|
|
|
viewport.View.SetCameraShaderParameters(camera);
|
|
viewport.View.SetCameraShaderParameters(camera);
|
|
|
|
|
+ // We set the Texture to be used in the next draw call
|
|
|
graphics.SetTexture((uint)TextureUnit.TU_DIFFUSE, texture);
|
|
graphics.SetTexture((uint)TextureUnit.TU_DIFFUSE, texture);
|
|
|
|
|
+ // We set the VertexBuffer to be used on the next draw call
|
|
|
graphics.SetVertexBuffer(vertexBuffer);
|
|
graphics.SetVertexBuffer(vertexBuffer);
|
|
|
|
|
+ // We finally call Draw passing the primitive type our VertexBuffer uses, TRIANGLE_LIST basically means that each 2 vertex
|
|
|
|
|
+ // in the buffer should have a face (triangle) between them
|
|
|
graphics.Draw(PrimitiveType.TRIANGLE_LIST, 0, 6);
|
|
graphics.Draw(PrimitiveType.TRIANGLE_LIST, 0, 6);
|
|
|
}
|
|
}
|
|
|
}
|
|
}
|