using System.Runtime.InteropServices; using AtomicEngine; public class Program { public static void Main(string[] args) { Application.Run(args); } } // This struct represents a vertex in our geometry, its layout should be sequential and we're specifying the size although it's // not necessary in this example. They hold the vertex position in 3D, the color channels, and the texture coordinates (UV) [StructLayout(LayoutKind.Sequential, Size = 24)] public struct VertexUVColor { // These are the vertex position in each individual axis. z is depth in this case, useful for sorting in orthographic projection public float x, y, z; // 3 elements of 4 bytes each (single precision 32-bit): 3x4 = 12 bytes // Individual color channels: red, green, blue, alpha (transparency; 0 = transparent, 255 = opaque) public byte r, g, b, a; // 4 elements of 1 byte // These are the texture x and y coordinates, commonly called u and v respectively; they are simply normalized cartesian coordinates public float u, v; // 2x4 = 8 bytes here, totalling 12+4+8 bytes = 24 bytes (total size of this struct) } public class HelloQuad : AppDelegate { // Scene reference kept here so it won't be collected by the GC Scene scene; Graphics graphics; Viewport viewport; Camera camera; Texture2D texture; VertexBuffer vertexBuffer; public override void Start() { // We get the variables we are going to use in this example Renderer renderer = GetSubsystem(); graphics = GetSubsystem(); viewport = renderer.GetViewport(0); // We create a new Scene scene = new Scene(); // The Octree should be added to the root scene node (mandatory?) TODO: answer this scene.CreateComponent(); // We pass the scene we just created to be displayed in the viewport viewport.Scene = scene; // We create a new camera on the scene, called "Camera". Tip: you can think of a camera as a glorified projection matrix // - Scene.CreateChild(string name) returns a new Node with that name. // - Node.CreateComponent() returns a component attached to that Node camera = scene.CreateChild("Camera").CreateComponent(); // We can access the Node any component is attached to using Component.Node camera.Node.Position = new Vector3(0.5f, 0.5f, 0.0f); // Remember, 'camera' is a Camera component, so we access it directly here camera.Orthographic = true; camera.OrthoSize = 1.5f; // We pass our newly created camera to the viewport so it's used to display our scene viewport.Camera = camera; // We create an XML from string so this code is fully self-contained XMLFile xml = new XMLFile(); xml.FromString(""); // We create a new RenderPath. A Viewport comes by default with some events, and you can use viewport.GetRenderPath().Clone() // to clone the default RenderPath and Append instructions to it instead (see AtomicBlaster for examples on how to do effects) RenderPath renderpath = new RenderPath(); renderpath.Append(xml); // We replace the viewport's default renderpath by the one we just created viewport.SetRenderPath(renderpath); // We subscribe to the RenderPathEvent. Here we pass an anonymous function that just absorbs the argument and calls Render() SubscribeToEvent(e => { Render(); }); // Here we setup our shaders, we are using the BasicVColUnlitAlpha "technique" and selecting DIFFMAP and VERTEXCOLOR // DIFFMAP is the diffuse texture and VERTEXCOLOR is a color each vertex holds that is used to 'tint' the surface // See this link: github.com/AtomicGameEngine/AtomicGameEngine/tree/master/Resources/CoreData/Techniques ShaderVariation pixelShader = graphics.GetShader(ShaderType.PS, "Basic", "DIFFMAP VERTEXCOLOR"); ShaderVariation vertexShader = graphics.GetShader(ShaderType.VS, "Basic", "DIFFMAP VERTEXCOLOR"); graphics.SetShaders(vertexShader, pixelShader); // This vertex shader parameter just applies no transformation (Identity Matrix means no transformation) so the vertices // display in world coordinates what allow us to use the camera properly. NOTE: Identity Matrix is also called Unit Matrix graphics.SetShaderParameter(ShaderParams.VSP_MODEL, Matrix3x4.IDENTITY); // We set the pixel shader diffuse color to be white. You can change this to 'tint' the texture similar to vertex colors // but this applies to the whole material and in this example vertex colors will also affect it graphics.SetShaderParameter(ShaderParams.PSP_MATDIFFCOLOR, Color.White); // We set cull mode to NONE so our geometry won't be culled (ignored), for this example we don't really need any culling graphics.SetCullMode(CullMode.CULL_NONE); // We create a texture from literal data so this code is fully self-contained, you can safely skip the lines below. // In your real projects you're most likely going to load textures from the disk using Texture.Load Image image = new Image(); image.SetSize(16, 16, 3); Color z = Color.White; Color M = Color.Blue; Color k = Color.Black; Color[] imageData = { k,k,k,k,k,k,k,k,k,k,k,k,k,k,k,k, k,z,z,z,z,z,z,z,z,z,z,z,z,z,M,k, k,z,z,z,z,z,z,M,M,z,z,z,z,z,z,k, k,z,z,z,z,z,z,M,M,z,z,z,z,z,z,k, k,z,z,z,z,z,M,z,z,M,z,z,z,z,z,k, k,z,z,z,z,z,M,z,z,M,z,z,z,z,z,k, k,z,z,z,z,M,z,z,z,z,M,z,z,z,z,k, k,z,z,z,z,M,z,z,z,z,M,z,z,z,z,k, k,z,z,z,M,z,z,z,z,z,z,M,z,z,z,k, k,z,z,z,M,z,z,z,z,z,z,M,z,z,z,k, k,z,z,M,M,M,M,M,M,M,M,M,M,z,z,k, k,z,z,M,z,z,z,z,z,z,z,z,M,z,z,k, k,z,M,z,z,z,z,z,z,z,z,z,z,M,z,k, k,z,M,z,z,z,z,z,z,z,z,z,z,M,z,k, k,z,z,z,z,z,z,z,z,z,z,z,z,z,z,k, k,k,k,k,k,k,k,k,k,k,k,k,k,k,k,k, }; for (int pixel = 0; pixel < imageData.Length; pixel++) { image.SetPixel(pixel % 16, 15 - pixel / 16, imageData[pixel]); } texture = new Texture2D(); texture.SetData(image); // We call this function that creates the quad geometry CreateQuad(); } // We use unsafe code only to access the vertex buffer data private unsafe void CreateQuad() { // We create a new VertexBuffer object, it holds our vertices and is passed to the GPU vertexBuffer = new VertexBuffer(); // We set its size and the elements it's containing, the 3rd optional argument (dynamic) should be 'true' if you're planning // to update the VertexBuffer constantly, that will improve performance in those cases. vertexBuffer.SetSize(6, Constants.MASK_POSITION | Constants.MASK_TEXCOORD1 | Constants.MASK_COLOR, false); // Here we lock the vertexBuffer what returns a pointer (IntPtr) to its data (vertexData here), I'm using a code block for clarity System.IntPtr vertexData = vertexBuffer.Lock(0, 6, true); { // We can cast the data pointer to whatever data type we want, here we are using the custom VertexUVColor struct VertexUVColor* vertex = (VertexUVColor*) vertexData; // Each of these blocks is a vertex, we set the their position (x and y), texture coordinate (u and v) and color in individual // red, green and blue channels (r, g, b), alpha has no effect in this example because there's no transparency in the shader vertex[0] = new VertexUVColor{ x = 0, y = 0, u = 0, v = 0, r = 255, g = 0, b = 255 }; vertex[1] = new VertexUVColor{ x = 0, y = 1, u = 0, v = 1, r = 255, g = 255, b = 0 }; vertex[2] = new VertexUVColor{ x = 1, y = 1, u = 1, v = 1, r = 255, g = 255, b = 255 }; vertex[3] = new VertexUVColor{ x = 0, y = 0, u = 0, v = 0, r = 255, g = 0, b = 255 }; vertex[4] = new VertexUVColor{ x = 1, y = 1, u = 1, v = 1, r = 255, g = 255, b = 255 }; vertex[5] = new VertexUVColor{ x = 1, y = 0, u = 1, v = 0, r = 0, g = 255, b = 0 }; } // Don't forget to unlock the VertexBuffer after you modify it vertexBuffer.Unlock(); } void Render() { // We clear the whole screen white before drawing anything graphics.Clear(Constants.CLEAR_COLOR, Color.White); // The 3 lines below don't have to be set every frame in this specific example, but you'll most likely be changing them often viewport.View.SetCameraShaderParameters(camera); // We set the Texture to be used in the next draw call and we are also setting the filter to nearest neighbor so it looks sharp graphics.SetTexture((uint)TextureUnit.TU_DIFFUSE, texture); graphics.SetDefaultTextureFilterMode(TextureFilterMode.FILTER_NEAREST); // We set the VertexBuffer to be used on the next draw call graphics.SetVertexBuffer(vertexBuffer); // We finally call Draw passing the primitive type our VertexBuffer uses, TRIANGLE_LIST basically means that every 3 vertices // in the buffer should have a face (triangle) between them (see: http://math.hws.edu/graphicsbook/c3/triangle-primitives.png) graphics.Draw(PrimitiveType.TRIANGLE_LIST, 0, 6); } }