| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- using System.Runtime.InteropServices;
- using AtomicEngine;
- public class Program
- {
- public static void Main(string[] args)
- {
- Application.Run<HelloQuad>(args);
- }
- }
- // This struct represents a vertex in our geometry, its layout should be sequential and we're specifying the size although it's
- // not necessary in this example. They hold the vertex position in 3D, the color channels, and the texture coordinates (UV)
- [StructLayout(LayoutKind.Sequential, Size = 24)]
- public struct VertexUVColor
- {
- // These are the vertex position in each individual axis. z is depth in this case, useful for sorting in orthographic projection
- public float x, y, z; // 3 elements of 4 bytes each (single precision 32-bit): 3x4 = 12 bytes
- // Individual color channels: red, green, blue, alpha (transparency; 0 = transparent, 255 = opaque)
- public byte r, g, b, a; // 4 elements of 1 byte
- // These are the texture x and y coordinates, commonly called u and v respectively; they are simply normalized cartesian coordinates
- public float u, v; // 2x4 = 8 bytes here, totalling 12+4+8 bytes = 24 bytes (total size of this struct)
- }
- public class HelloQuad : AppDelegate
- {
- // Scene reference kept here so it won't be collected by the GC
- Scene scene;
- Graphics graphics;
- Viewport viewport;
- Camera camera;
- Texture2D texture;
- VertexBuffer vertexBuffer;
- public override void Start()
- {
- // We get the variables we are going to use in this example
- Renderer renderer = GetSubsystem<Renderer>();
- graphics = GetSubsystem<Graphics>();
- viewport = renderer.GetViewport(0);
- // We create a new Scene
- scene = new Scene();
- // The Octree should be added to the root scene node (mandatory?) TODO: answer this
- scene.CreateComponent<Octree>();
- // We pass the scene we just created to be displayed in the viewport
- viewport.Scene = scene;
- // We create a new camera on the scene, called "Camera". Tip: you can think of a camera as a glorified projection matrix
- // - Scene.CreateChild(string name) returns a new Node with that name.
- // - Node.CreateComponent<ComponentType>() returns a component attached to that Node
- camera = scene.CreateChild("Camera").CreateComponent<Camera>();
- // We can access the Node any component is attached to using Component.Node
- camera.Node.Position = new Vector3(0.5f, 0.5f, 0.0f);
- // Remember, 'camera' is a Camera component, so we access it directly here
- camera.Orthographic = true;
- camera.OrthoSize = 1.5f;
- // We pass our newly created camera to the viewport so it's used to display our scene
- viewport.Camera = camera;
- // We create an XML from string so this code is fully self-contained
- XMLFile xml = new XMLFile(); xml.FromString("<renderpath><command type=\"sendevent\"/></renderpath>");
- // We create a new RenderPath. A Viewport comes by default with some events, and you can use viewport.GetRenderPath().Clone()
- // to clone the default RenderPath and Append instructions to it instead (see AtomicBlaster for examples on how to do effects)
- RenderPath renderpath = new RenderPath();
- renderpath.Append(xml);
- // We replace the viewport's default renderpath by the one we just created
- viewport.SetRenderPath(renderpath);
- // We subscribe to the RenderPathEvent. Here we pass an anonymous function that just absorbs the argument and calls Render()
- SubscribeToEvent<RenderPathEvent>(e => { Render(); });
- // Here we setup our shaders, we are using the BasicVColUnlitAlpha "technique" and selecting DIFFMAP and VERTEXCOLOR
- // DIFFMAP is the diffuse texture and VERTEXCOLOR is a color each vertex holds that is used to 'tint' the surface
- // See this link: github.com/AtomicGameEngine/AtomicGameEngine/tree/master/Resources/CoreData/Techniques
- ShaderVariation pixelShader = graphics.GetShader(ShaderType.PS, "Basic", "DIFFMAP VERTEXCOLOR");
- ShaderVariation vertexShader = graphics.GetShader(ShaderType.VS, "Basic", "DIFFMAP VERTEXCOLOR");
- graphics.SetShaders(vertexShader, pixelShader);
- // This vertex shader parameter just applies no transformation (Identity Matrix means no transformation) so the vertices
- // display in world coordinates what allow us to use the camera properly. NOTE: Identity Matrix is also called Unit Matrix
- graphics.SetShaderParameter(ShaderParams.VSP_MODEL, Matrix3x4.IDENTITY);
- // We set the pixel shader diffuse color to be white. You can change this to 'tint' the texture similar to vertex colors
- // but this applies to the whole material and in this example vertex colors will also affect it
- graphics.SetShaderParameter(ShaderParams.PSP_MATDIFFCOLOR, Color.White);
- // We set cull mode to NONE so our geometry won't be culled (ignored), for this example we don't really need any culling
- graphics.SetCullMode(CullMode.CULL_NONE);
- // We create a texture from literal data so this code is fully self-contained, you can safely skip the lines below.
- // In your real projects you're most likely going to load textures from the disk using Texture.Load
- Image image = new Image();
- image.SetSize(16, 16, 3);
- Color z = Color.White;
- Color M = Color.Blue;
- Color k = Color.Black;
- Color[] imageData =
- {
- k,k,k,k,k,k,k,k,k,k,k,k,k,k,k,k,
- k,z,z,z,z,z,z,z,z,z,z,z,z,z,M,k,
- k,z,z,z,z,z,z,M,M,z,z,z,z,z,z,k,
- k,z,z,z,z,z,z,M,M,z,z,z,z,z,z,k,
- k,z,z,z,z,z,M,z,z,M,z,z,z,z,z,k,
- k,z,z,z,z,z,M,z,z,M,z,z,z,z,z,k,
- k,z,z,z,z,M,z,z,z,z,M,z,z,z,z,k,
- k,z,z,z,z,M,z,z,z,z,M,z,z,z,z,k,
- k,z,z,z,M,z,z,z,z,z,z,M,z,z,z,k,
- k,z,z,z,M,z,z,z,z,z,z,M,z,z,z,k,
- k,z,z,M,M,M,M,M,M,M,M,M,M,z,z,k,
- k,z,z,M,z,z,z,z,z,z,z,z,M,z,z,k,
- k,z,M,z,z,z,z,z,z,z,z,z,z,M,z,k,
- k,z,M,z,z,z,z,z,z,z,z,z,z,M,z,k,
- k,z,z,z,z,z,z,z,z,z,z,z,z,z,z,k,
- k,k,k,k,k,k,k,k,k,k,k,k,k,k,k,k,
- };
- for (int pixel = 0; pixel < imageData.Length; pixel++)
- {
- image.SetPixel(pixel % 16, 15 - pixel / 16, imageData[pixel]);
- }
- texture = new Texture2D();
- texture.SetData(image);
- // We call this function that creates the quad geometry
- CreateQuad();
- }
- // We use unsafe code only to access the vertex buffer data
- private unsafe void CreateQuad()
- {
- // We create a new VertexBuffer object, it holds our vertices and is passed to the GPU
- vertexBuffer = new VertexBuffer();
- // We set its size and the elements it's containing, the 3rd optional argument (dynamic) should be 'true' if you're planning
- // to update the VertexBuffer constantly, that will improve performance in those cases.
- vertexBuffer.SetSize(6, Constants.MASK_POSITION | Constants.MASK_TEXCOORD1 | Constants.MASK_COLOR, false);
- // Here we lock the vertexBuffer what returns a pointer (IntPtr) to its data (vertexData here), I'm using a code block for clarity
- System.IntPtr vertexData = vertexBuffer.Lock(0, 6, true);
- {
- // We can cast the data pointer to whatever data type we want, here we are using the custom VertexUVColor struct
- VertexUVColor* vertex = (VertexUVColor*) vertexData;
- // Each of these blocks is a vertex, we set the their position (x and y), texture coordinate (u and v) and color in individual
- // red, green and blue channels (r, g, b), alpha has no effect in this example because there's no transparency in the shader
- vertex[0] = new VertexUVColor{ x = 0, y = 0, u = 0, v = 0, r = 255, g = 0, b = 255 };
- vertex[1] = new VertexUVColor{ x = 0, y = 1, u = 0, v = 1, r = 255, g = 255, b = 0 };
- vertex[2] = new VertexUVColor{ x = 1, y = 1, u = 1, v = 1, r = 255, g = 255, b = 255 };
- vertex[3] = new VertexUVColor{ x = 0, y = 0, u = 0, v = 0, r = 255, g = 0, b = 255 };
- vertex[4] = new VertexUVColor{ x = 1, y = 1, u = 1, v = 1, r = 255, g = 255, b = 255 };
- vertex[5] = new VertexUVColor{ x = 1, y = 0, u = 1, v = 0, r = 0, g = 255, b = 0 };
- }
- // Don't forget to unlock the VertexBuffer after you modify it
- vertexBuffer.Unlock();
- }
- void Render()
- {
- // We clear the whole screen white before drawing anything
- graphics.Clear(Constants.CLEAR_COLOR, Color.White);
- // The 3 lines below don't have to be set every frame in this specific example, but you'll most likely be changing them often
- viewport.View.SetCameraShaderParameters(camera);
- // We set the Texture to be used in the next draw call and we are also setting the filter to nearest neighbor so it looks sharp
- graphics.SetTexture((uint)TextureUnit.TU_DIFFUSE, texture);
- graphics.SetDefaultTextureFilterMode(TextureFilterMode.FILTER_NEAREST);
- // We set the VertexBuffer to be used on the next draw call
- graphics.SetVertexBuffer(vertexBuffer);
- // We finally call Draw passing the primitive type our VertexBuffer uses, TRIANGLE_LIST basically means that every 3 vertices
- // in the buffer should have a face (triangle) between them (see: http://math.hws.edu/graphicsbook/c3/triangle-primitives.png)
- graphics.Draw(PrimitiveType.TRIANGLE_LIST, 0, 6);
- }
- }
|