| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020 |
- /**
- * @fileoverview gl-matrix - High performance matrix and vector operations
- * @author Brandon Jones
- * @author Colin MacKenzie IV
- * @version 2.3.1
- */
- /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE. */
- (function webpackUniversalModuleDefinition(root, factory) {
- if(typeof exports === 'object' && typeof module === 'object')
- module.exports = factory();
- else if(typeof define === 'function' && define.amd)
- define(factory);
- else {
- var a = factory();
- for(var i in a) (typeof exports === 'object' ? exports : root)[i] = a[i];
- }
- })(this, function() {
- return /******/ (function(modules) { // webpackBootstrap
- /******/ // The module cache
- /******/ var installedModules = {};
- /******/ // The require function
- /******/ function __webpack_require__(moduleId) {
- /******/ // Check if module is in cache
- /******/ if(installedModules[moduleId])
- /******/ return installedModules[moduleId].exports;
- /******/ // Create a new module (and put it into the cache)
- /******/ var module = installedModules[moduleId] = {
- /******/ exports: {},
- /******/ id: moduleId,
- /******/ loaded: false
- /******/ };
- /******/ // Execute the module function
- /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
- /******/ // Flag the module as loaded
- /******/ module.loaded = true;
- /******/ // Return the exports of the module
- /******/ return module.exports;
- /******/ }
- /******/ // expose the modules object (__webpack_modules__)
- /******/ __webpack_require__.m = modules;
- /******/ // expose the module cache
- /******/ __webpack_require__.c = installedModules;
- /******/ // __webpack_public_path__
- /******/ __webpack_require__.p = "";
- /******/ // Load entry module and return exports
- /******/ return __webpack_require__(0);
- /******/ })
- /************************************************************************/
- /******/ ([
- /* 0 */
- /***/ function(module, exports, __webpack_require__) {
- /**
- * @fileoverview gl-matrix - High performance matrix and vector operations
- * @author Brandon Jones
- * @author Colin MacKenzie IV
- * @version 2.3.1
- */
- /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE. */
- // END HEADER
- exports.glMatrix = __webpack_require__(1);
- exports.mat2 = __webpack_require__(2);
- exports.mat2d = __webpack_require__(3);
- exports.mat3 = __webpack_require__(4);
- exports.mat4 = __webpack_require__(5);
- exports.quat = __webpack_require__(6);
- exports.vec2 = __webpack_require__(9);
- exports.vec3 = __webpack_require__(7);
- exports.vec4 = __webpack_require__(8);
- /***/ },
- /* 1 */
- /***/ function(module, exports) {
- /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE. */
- /**
- * @class Common utilities
- * @name glMatrix
- */
- var glMatrix = {};
- // Constants
- glMatrix.EPSILON = 0.000001;
- glMatrix.ARRAY_TYPE = (typeof Float32Array !== 'undefined') ? Float32Array : Array;
- glMatrix.RANDOM = Math.random;
- /**
- * Sets the type of array used when creating new vectors and matrices
- *
- * @param {Type} type Array type, such as Float32Array or Array
- */
- glMatrix.setMatrixArrayType = function(type) {
- glMatrix.ARRAY_TYPE = type;
- }
- var degree = Math.PI / 180;
- /**
- * Convert Degree To Radian
- *
- * @param {Number} Angle in Degrees
- */
- glMatrix.toRadian = function(a){
- return a * degree;
- }
- module.exports = glMatrix;
- /***/ },
- /* 2 */
- /***/ function(module, exports, __webpack_require__) {
- /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE. */
- var glMatrix = __webpack_require__(1);
- /**
- * @class 2x2 Matrix
- * @name mat2
- */
- var mat2 = {};
- /**
- * Creates a new identity mat2
- *
- * @returns {mat2} a new 2x2 matrix
- */
- mat2.create = function() {
- var out = new glMatrix.ARRAY_TYPE(4);
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- };
- /**
- * Creates a new mat2 initialized with values from an existing matrix
- *
- * @param {mat2} a matrix to clone
- * @returns {mat2} a new 2x2 matrix
- */
- mat2.clone = function(a) {
- var out = new glMatrix.ARRAY_TYPE(4);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- };
- /**
- * Copy the values from one mat2 to another
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the source matrix
- * @returns {mat2} out
- */
- mat2.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- };
- /**
- * Set a mat2 to the identity matrix
- *
- * @param {mat2} out the receiving matrix
- * @returns {mat2} out
- */
- mat2.identity = function(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- };
- /**
- * Transpose the values of a mat2
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the source matrix
- * @returns {mat2} out
- */
- mat2.transpose = function(out, a) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- var a1 = a[1];
- out[1] = a[2];
- out[2] = a1;
- } else {
- out[0] = a[0];
- out[1] = a[2];
- out[2] = a[1];
- out[3] = a[3];
- }
- return out;
- };
- /**
- * Inverts a mat2
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the source matrix
- * @returns {mat2} out
- */
- mat2.invert = function(out, a) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
- // Calculate the determinant
- det = a0 * a3 - a2 * a1;
- if (!det) {
- return null;
- }
- det = 1.0 / det;
- out[0] = a3 * det;
- out[1] = -a1 * det;
- out[2] = -a2 * det;
- out[3] = a0 * det;
- return out;
- };
- /**
- * Calculates the adjugate of a mat2
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the source matrix
- * @returns {mat2} out
- */
- mat2.adjoint = function(out, a) {
- // Caching this value is nessecary if out == a
- var a0 = a[0];
- out[0] = a[3];
- out[1] = -a[1];
- out[2] = -a[2];
- out[3] = a0;
- return out;
- };
- /**
- * Calculates the determinant of a mat2
- *
- * @param {mat2} a the source matrix
- * @returns {Number} determinant of a
- */
- mat2.determinant = function (a) {
- return a[0] * a[3] - a[2] * a[1];
- };
- /**
- * Multiplies two mat2's
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the first operand
- * @param {mat2} b the second operand
- * @returns {mat2} out
- */
- mat2.multiply = function (out, a, b) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
- var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
- out[0] = a0 * b0 + a2 * b1;
- out[1] = a1 * b0 + a3 * b1;
- out[2] = a0 * b2 + a2 * b3;
- out[3] = a1 * b2 + a3 * b3;
- return out;
- };
- /**
- * Alias for {@link mat2.multiply}
- * @function
- */
- mat2.mul = mat2.multiply;
- /**
- * Rotates a mat2 by the given angle
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat2} out
- */
- mat2.rotate = function (out, a, rad) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
- s = Math.sin(rad),
- c = Math.cos(rad);
- out[0] = a0 * c + a2 * s;
- out[1] = a1 * c + a3 * s;
- out[2] = a0 * -s + a2 * c;
- out[3] = a1 * -s + a3 * c;
- return out;
- };
- /**
- * Scales the mat2 by the dimensions in the given vec2
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the matrix to rotate
- * @param {vec2} v the vec2 to scale the matrix by
- * @returns {mat2} out
- **/
- mat2.scale = function(out, a, v) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
- v0 = v[0], v1 = v[1];
- out[0] = a0 * v0;
- out[1] = a1 * v0;
- out[2] = a2 * v1;
- out[3] = a3 * v1;
- return out;
- };
- /**
- * Creates a matrix from a given angle
- * This is equivalent to (but much faster than):
- *
- * mat2.identity(dest);
- * mat2.rotate(dest, dest, rad);
- *
- * @param {mat2} out mat2 receiving operation result
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat2} out
- */
- mat2.fromRotation = function(out, rad) {
- var s = Math.sin(rad),
- c = Math.cos(rad);
- out[0] = c;
- out[1] = s;
- out[2] = -s;
- out[3] = c;
- return out;
- }
- /**
- * Creates a matrix from a vector scaling
- * This is equivalent to (but much faster than):
- *
- * mat2.identity(dest);
- * mat2.scale(dest, dest, vec);
- *
- * @param {mat2} out mat2 receiving operation result
- * @param {vec2} v Scaling vector
- * @returns {mat2} out
- */
- mat2.fromScaling = function(out, v) {
- out[0] = v[0];
- out[1] = 0;
- out[2] = 0;
- out[3] = v[1];
- return out;
- }
- /**
- * Returns a string representation of a mat2
- *
- * @param {mat2} mat matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
- mat2.str = function (a) {
- return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
- };
- /**
- * Returns Frobenius norm of a mat2
- *
- * @param {mat2} a the matrix to calculate Frobenius norm of
- * @returns {Number} Frobenius norm
- */
- mat2.frob = function (a) {
- return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2)))
- };
- /**
- * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix
- * @param {mat2} L the lower triangular matrix
- * @param {mat2} D the diagonal matrix
- * @param {mat2} U the upper triangular matrix
- * @param {mat2} a the input matrix to factorize
- */
- mat2.LDU = function (L, D, U, a) {
- L[2] = a[2]/a[0];
- U[0] = a[0];
- U[1] = a[1];
- U[3] = a[3] - L[2] * U[1];
- return [L, D, U];
- };
- module.exports = mat2;
- /***/ },
- /* 3 */
- /***/ function(module, exports, __webpack_require__) {
- /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE. */
- var glMatrix = __webpack_require__(1);
- /**
- * @class 2x3 Matrix
- * @name mat2d
- *
- * @description
- * A mat2d contains six elements defined as:
- * <pre>
- * [a, c, tx,
- * b, d, ty]
- * </pre>
- * This is a short form for the 3x3 matrix:
- * <pre>
- * [a, c, tx,
- * b, d, ty,
- * 0, 0, 1]
- * </pre>
- * The last row is ignored so the array is shorter and operations are faster.
- */
- var mat2d = {};
- /**
- * Creates a new identity mat2d
- *
- * @returns {mat2d} a new 2x3 matrix
- */
- mat2d.create = function() {
- var out = new glMatrix.ARRAY_TYPE(6);
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- out[4] = 0;
- out[5] = 0;
- return out;
- };
- /**
- * Creates a new mat2d initialized with values from an existing matrix
- *
- * @param {mat2d} a matrix to clone
- * @returns {mat2d} a new 2x3 matrix
- */
- mat2d.clone = function(a) {
- var out = new glMatrix.ARRAY_TYPE(6);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- return out;
- };
- /**
- * Copy the values from one mat2d to another
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the source matrix
- * @returns {mat2d} out
- */
- mat2d.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- return out;
- };
- /**
- * Set a mat2d to the identity matrix
- *
- * @param {mat2d} out the receiving matrix
- * @returns {mat2d} out
- */
- mat2d.identity = function(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- out[4] = 0;
- out[5] = 0;
- return out;
- };
- /**
- * Inverts a mat2d
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the source matrix
- * @returns {mat2d} out
- */
- mat2d.invert = function(out, a) {
- var aa = a[0], ab = a[1], ac = a[2], ad = a[3],
- atx = a[4], aty = a[5];
- var det = aa * ad - ab * ac;
- if(!det){
- return null;
- }
- det = 1.0 / det;
- out[0] = ad * det;
- out[1] = -ab * det;
- out[2] = -ac * det;
- out[3] = aa * det;
- out[4] = (ac * aty - ad * atx) * det;
- out[5] = (ab * atx - aa * aty) * det;
- return out;
- };
- /**
- * Calculates the determinant of a mat2d
- *
- * @param {mat2d} a the source matrix
- * @returns {Number} determinant of a
- */
- mat2d.determinant = function (a) {
- return a[0] * a[3] - a[1] * a[2];
- };
- /**
- * Multiplies two mat2d's
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the first operand
- * @param {mat2d} b the second operand
- * @returns {mat2d} out
- */
- mat2d.multiply = function (out, a, b) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5],
- b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5];
- out[0] = a0 * b0 + a2 * b1;
- out[1] = a1 * b0 + a3 * b1;
- out[2] = a0 * b2 + a2 * b3;
- out[3] = a1 * b2 + a3 * b3;
- out[4] = a0 * b4 + a2 * b5 + a4;
- out[5] = a1 * b4 + a3 * b5 + a5;
- return out;
- };
- /**
- * Alias for {@link mat2d.multiply}
- * @function
- */
- mat2d.mul = mat2d.multiply;
- /**
- * Rotates a mat2d by the given angle
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat2d} out
- */
- mat2d.rotate = function (out, a, rad) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5],
- s = Math.sin(rad),
- c = Math.cos(rad);
- out[0] = a0 * c + a2 * s;
- out[1] = a1 * c + a3 * s;
- out[2] = a0 * -s + a2 * c;
- out[3] = a1 * -s + a3 * c;
- out[4] = a4;
- out[5] = a5;
- return out;
- };
- /**
- * Scales the mat2d by the dimensions in the given vec2
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the matrix to translate
- * @param {vec2} v the vec2 to scale the matrix by
- * @returns {mat2d} out
- **/
- mat2d.scale = function(out, a, v) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5],
- v0 = v[0], v1 = v[1];
- out[0] = a0 * v0;
- out[1] = a1 * v0;
- out[2] = a2 * v1;
- out[3] = a3 * v1;
- out[4] = a4;
- out[5] = a5;
- return out;
- };
- /**
- * Translates the mat2d by the dimensions in the given vec2
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the matrix to translate
- * @param {vec2} v the vec2 to translate the matrix by
- * @returns {mat2d} out
- **/
- mat2d.translate = function(out, a, v) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5],
- v0 = v[0], v1 = v[1];
- out[0] = a0;
- out[1] = a1;
- out[2] = a2;
- out[3] = a3;
- out[4] = a0 * v0 + a2 * v1 + a4;
- out[5] = a1 * v0 + a3 * v1 + a5;
- return out;
- };
- /**
- * Creates a matrix from a given angle
- * This is equivalent to (but much faster than):
- *
- * mat2d.identity(dest);
- * mat2d.rotate(dest, dest, rad);
- *
- * @param {mat2d} out mat2d receiving operation result
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat2d} out
- */
- mat2d.fromRotation = function(out, rad) {
- var s = Math.sin(rad), c = Math.cos(rad);
- out[0] = c;
- out[1] = s;
- out[2] = -s;
- out[3] = c;
- out[4] = 0;
- out[5] = 0;
- return out;
- }
- /**
- * Creates a matrix from a vector scaling
- * This is equivalent to (but much faster than):
- *
- * mat2d.identity(dest);
- * mat2d.scale(dest, dest, vec);
- *
- * @param {mat2d} out mat2d receiving operation result
- * @param {vec2} v Scaling vector
- * @returns {mat2d} out
- */
- mat2d.fromScaling = function(out, v) {
- out[0] = v[0];
- out[1] = 0;
- out[2] = 0;
- out[3] = v[1];
- out[4] = 0;
- out[5] = 0;
- return out;
- }
- /**
- * Creates a matrix from a vector translation
- * This is equivalent to (but much faster than):
- *
- * mat2d.identity(dest);
- * mat2d.translate(dest, dest, vec);
- *
- * @param {mat2d} out mat2d receiving operation result
- * @param {vec2} v Translation vector
- * @returns {mat2d} out
- */
- mat2d.fromTranslation = function(out, v) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- out[4] = v[0];
- out[5] = v[1];
- return out;
- }
- /**
- * Returns a string representation of a mat2d
- *
- * @param {mat2d} a matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
- mat2d.str = function (a) {
- return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' +
- a[3] + ', ' + a[4] + ', ' + a[5] + ')';
- };
- /**
- * Returns Frobenius norm of a mat2d
- *
- * @param {mat2d} a the matrix to calculate Frobenius norm of
- * @returns {Number} Frobenius norm
- */
- mat2d.frob = function (a) {
- return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + 1))
- };
- module.exports = mat2d;
- /***/ },
- /* 4 */
- /***/ function(module, exports, __webpack_require__) {
- /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE. */
- var glMatrix = __webpack_require__(1);
- /**
- * @class 3x3 Matrix
- * @name mat3
- */
- var mat3 = {};
- /**
- * Creates a new identity mat3
- *
- * @returns {mat3} a new 3x3 matrix
- */
- mat3.create = function() {
- var out = new glMatrix.ARRAY_TYPE(9);
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 1;
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 1;
- return out;
- };
- /**
- * Copies the upper-left 3x3 values into the given mat3.
- *
- * @param {mat3} out the receiving 3x3 matrix
- * @param {mat4} a the source 4x4 matrix
- * @returns {mat3} out
- */
- mat3.fromMat4 = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[4];
- out[4] = a[5];
- out[5] = a[6];
- out[6] = a[8];
- out[7] = a[9];
- out[8] = a[10];
- return out;
- };
- /**
- * Creates a new mat3 initialized with values from an existing matrix
- *
- * @param {mat3} a matrix to clone
- * @returns {mat3} a new 3x3 matrix
- */
- mat3.clone = function(a) {
- var out = new glMatrix.ARRAY_TYPE(9);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- return out;
- };
- /**
- * Copy the values from one mat3 to another
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
- mat3.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- return out;
- };
- /**
- * Set a mat3 to the identity matrix
- *
- * @param {mat3} out the receiving matrix
- * @returns {mat3} out
- */
- mat3.identity = function(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 1;
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 1;
- return out;
- };
- /**
- * Transpose the values of a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
- mat3.transpose = function(out, a) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- var a01 = a[1], a02 = a[2], a12 = a[5];
- out[1] = a[3];
- out[2] = a[6];
- out[3] = a01;
- out[5] = a[7];
- out[6] = a02;
- out[7] = a12;
- } else {
- out[0] = a[0];
- out[1] = a[3];
- out[2] = a[6];
- out[3] = a[1];
- out[4] = a[4];
- out[5] = a[7];
- out[6] = a[2];
- out[7] = a[5];
- out[8] = a[8];
- }
- return out;
- };
- /**
- * Inverts a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
- mat3.invert = function(out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
- b01 = a22 * a11 - a12 * a21,
- b11 = -a22 * a10 + a12 * a20,
- b21 = a21 * a10 - a11 * a20,
- // Calculate the determinant
- det = a00 * b01 + a01 * b11 + a02 * b21;
- if (!det) {
- return null;
- }
- det = 1.0 / det;
- out[0] = b01 * det;
- out[1] = (-a22 * a01 + a02 * a21) * det;
- out[2] = (a12 * a01 - a02 * a11) * det;
- out[3] = b11 * det;
- out[4] = (a22 * a00 - a02 * a20) * det;
- out[5] = (-a12 * a00 + a02 * a10) * det;
- out[6] = b21 * det;
- out[7] = (-a21 * a00 + a01 * a20) * det;
- out[8] = (a11 * a00 - a01 * a10) * det;
- return out;
- };
- /**
- * Calculates the adjugate of a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
- mat3.adjoint = function(out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8];
- out[0] = (a11 * a22 - a12 * a21);
- out[1] = (a02 * a21 - a01 * a22);
- out[2] = (a01 * a12 - a02 * a11);
- out[3] = (a12 * a20 - a10 * a22);
- out[4] = (a00 * a22 - a02 * a20);
- out[5] = (a02 * a10 - a00 * a12);
- out[6] = (a10 * a21 - a11 * a20);
- out[7] = (a01 * a20 - a00 * a21);
- out[8] = (a00 * a11 - a01 * a10);
- return out;
- };
- /**
- * Calculates the determinant of a mat3
- *
- * @param {mat3} a the source matrix
- * @returns {Number} determinant of a
- */
- mat3.determinant = function (a) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8];
- return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
- };
- /**
- * Multiplies two mat3's
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the first operand
- * @param {mat3} b the second operand
- * @returns {mat3} out
- */
- mat3.multiply = function (out, a, b) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
- b00 = b[0], b01 = b[1], b02 = b[2],
- b10 = b[3], b11 = b[4], b12 = b[5],
- b20 = b[6], b21 = b[7], b22 = b[8];
- out[0] = b00 * a00 + b01 * a10 + b02 * a20;
- out[1] = b00 * a01 + b01 * a11 + b02 * a21;
- out[2] = b00 * a02 + b01 * a12 + b02 * a22;
- out[3] = b10 * a00 + b11 * a10 + b12 * a20;
- out[4] = b10 * a01 + b11 * a11 + b12 * a21;
- out[5] = b10 * a02 + b11 * a12 + b12 * a22;
- out[6] = b20 * a00 + b21 * a10 + b22 * a20;
- out[7] = b20 * a01 + b21 * a11 + b22 * a21;
- out[8] = b20 * a02 + b21 * a12 + b22 * a22;
- return out;
- };
- /**
- * Alias for {@link mat3.multiply}
- * @function
- */
- mat3.mul = mat3.multiply;
- /**
- * Translate a mat3 by the given vector
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to translate
- * @param {vec2} v vector to translate by
- * @returns {mat3} out
- */
- mat3.translate = function(out, a, v) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
- x = v[0], y = v[1];
- out[0] = a00;
- out[1] = a01;
- out[2] = a02;
- out[3] = a10;
- out[4] = a11;
- out[5] = a12;
- out[6] = x * a00 + y * a10 + a20;
- out[7] = x * a01 + y * a11 + a21;
- out[8] = x * a02 + y * a12 + a22;
- return out;
- };
- /**
- * Rotates a mat3 by the given angle
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat3} out
- */
- mat3.rotate = function (out, a, rad) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
- s = Math.sin(rad),
- c = Math.cos(rad);
- out[0] = c * a00 + s * a10;
- out[1] = c * a01 + s * a11;
- out[2] = c * a02 + s * a12;
- out[3] = c * a10 - s * a00;
- out[4] = c * a11 - s * a01;
- out[5] = c * a12 - s * a02;
- out[6] = a20;
- out[7] = a21;
- out[8] = a22;
- return out;
- };
- /**
- * Scales the mat3 by the dimensions in the given vec2
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to rotate
- * @param {vec2} v the vec2 to scale the matrix by
- * @returns {mat3} out
- **/
- mat3.scale = function(out, a, v) {
- var x = v[0], y = v[1];
- out[0] = x * a[0];
- out[1] = x * a[1];
- out[2] = x * a[2];
- out[3] = y * a[3];
- out[4] = y * a[4];
- out[5] = y * a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- return out;
- };
- /**
- * Creates a matrix from a vector translation
- * This is equivalent to (but much faster than):
- *
- * mat3.identity(dest);
- * mat3.translate(dest, dest, vec);
- *
- * @param {mat3} out mat3 receiving operation result
- * @param {vec2} v Translation vector
- * @returns {mat3} out
- */
- mat3.fromTranslation = function(out, v) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 1;
- out[5] = 0;
- out[6] = v[0];
- out[7] = v[1];
- out[8] = 1;
- return out;
- }
- /**
- * Creates a matrix from a given angle
- * This is equivalent to (but much faster than):
- *
- * mat3.identity(dest);
- * mat3.rotate(dest, dest, rad);
- *
- * @param {mat3} out mat3 receiving operation result
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat3} out
- */
- mat3.fromRotation = function(out, rad) {
- var s = Math.sin(rad), c = Math.cos(rad);
- out[0] = c;
- out[1] = s;
- out[2] = 0;
- out[3] = -s;
- out[4] = c;
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 1;
- return out;
- }
- /**
- * Creates a matrix from a vector scaling
- * This is equivalent to (but much faster than):
- *
- * mat3.identity(dest);
- * mat3.scale(dest, dest, vec);
- *
- * @param {mat3} out mat3 receiving operation result
- * @param {vec2} v Scaling vector
- * @returns {mat3} out
- */
- mat3.fromScaling = function(out, v) {
- out[0] = v[0];
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = v[1];
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 1;
- return out;
- }
- /**
- * Copies the values from a mat2d into a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat2d} a the matrix to copy
- * @returns {mat3} out
- **/
- mat3.fromMat2d = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = 0;
- out[3] = a[2];
- out[4] = a[3];
- out[5] = 0;
- out[6] = a[4];
- out[7] = a[5];
- out[8] = 1;
- return out;
- };
- /**
- * Calculates a 3x3 matrix from the given quaternion
- *
- * @param {mat3} out mat3 receiving operation result
- * @param {quat} q Quaternion to create matrix from
- *
- * @returns {mat3} out
- */
- mat3.fromQuat = function (out, q) {
- var x = q[0], y = q[1], z = q[2], w = q[3],
- x2 = x + x,
- y2 = y + y,
- z2 = z + z,
- xx = x * x2,
- yx = y * x2,
- yy = y * y2,
- zx = z * x2,
- zy = z * y2,
- zz = z * z2,
- wx = w * x2,
- wy = w * y2,
- wz = w * z2;
- out[0] = 1 - yy - zz;
- out[3] = yx - wz;
- out[6] = zx + wy;
- out[1] = yx + wz;
- out[4] = 1 - xx - zz;
- out[7] = zy - wx;
- out[2] = zx - wy;
- out[5] = zy + wx;
- out[8] = 1 - xx - yy;
- return out;
- };
- /**
- * Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix
- *
- * @param {mat3} out mat3 receiving operation result
- * @param {mat4} a Mat4 to derive the normal matrix from
- *
- * @returns {mat3} out
- */
- mat3.normalFromMat4 = function (out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
- b00 = a00 * a11 - a01 * a10,
- b01 = a00 * a12 - a02 * a10,
- b02 = a00 * a13 - a03 * a10,
- b03 = a01 * a12 - a02 * a11,
- b04 = a01 * a13 - a03 * a11,
- b05 = a02 * a13 - a03 * a12,
- b06 = a20 * a31 - a21 * a30,
- b07 = a20 * a32 - a22 * a30,
- b08 = a20 * a33 - a23 * a30,
- b09 = a21 * a32 - a22 * a31,
- b10 = a21 * a33 - a23 * a31,
- b11 = a22 * a33 - a23 * a32,
- // Calculate the determinant
- det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
- if (!det) {
- return null;
- }
- det = 1.0 / det;
- out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
- out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
- out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
- out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
- out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
- out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
- out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
- out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
- out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
- return out;
- };
- /**
- * Returns a string representation of a mat3
- *
- * @param {mat3} mat matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
- mat3.str = function (a) {
- return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' +
- a[3] + ', ' + a[4] + ', ' + a[5] + ', ' +
- a[6] + ', ' + a[7] + ', ' + a[8] + ')';
- };
- /**
- * Returns Frobenius norm of a mat3
- *
- * @param {mat3} a the matrix to calculate Frobenius norm of
- * @returns {Number} Frobenius norm
- */
- mat3.frob = function (a) {
- return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2)))
- };
- module.exports = mat3;
- /***/ },
- /* 5 */
- /***/ function(module, exports, __webpack_require__) {
- /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE. */
- var glMatrix = __webpack_require__(1);
- /**
- * @class 4x4 Matrix
- * @name mat4
- */
- var mat4 = {};
- /**
- * Creates a new identity mat4
- *
- * @returns {mat4} a new 4x4 matrix
- */
- mat4.create = function() {
- var out = new glMatrix.ARRAY_TYPE(16);
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- };
- /**
- * Creates a new mat4 initialized with values from an existing matrix
- *
- * @param {mat4} a matrix to clone
- * @returns {mat4} a new 4x4 matrix
- */
- mat4.clone = function(a) {
- var out = new glMatrix.ARRAY_TYPE(16);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- };
- /**
- * Copy the values from one mat4 to another
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
- mat4.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- };
- /**
- * Set a mat4 to the identity matrix
- *
- * @param {mat4} out the receiving matrix
- * @returns {mat4} out
- */
- mat4.identity = function(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- };
- /**
- * Transpose the values of a mat4
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
- mat4.transpose = function(out, a) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- var a01 = a[1], a02 = a[2], a03 = a[3],
- a12 = a[6], a13 = a[7],
- a23 = a[11];
- out[1] = a[4];
- out[2] = a[8];
- out[3] = a[12];
- out[4] = a01;
- out[6] = a[9];
- out[7] = a[13];
- out[8] = a02;
- out[9] = a12;
- out[11] = a[14];
- out[12] = a03;
- out[13] = a13;
- out[14] = a23;
- } else {
- out[0] = a[0];
- out[1] = a[4];
- out[2] = a[8];
- out[3] = a[12];
- out[4] = a[1];
- out[5] = a[5];
- out[6] = a[9];
- out[7] = a[13];
- out[8] = a[2];
- out[9] = a[6];
- out[10] = a[10];
- out[11] = a[14];
- out[12] = a[3];
- out[13] = a[7];
- out[14] = a[11];
- out[15] = a[15];
- }
- return out;
- };
- /**
- * Inverts a mat4
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
- mat4.invert = function(out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
- b00 = a00 * a11 - a01 * a10,
- b01 = a00 * a12 - a02 * a10,
- b02 = a00 * a13 - a03 * a10,
- b03 = a01 * a12 - a02 * a11,
- b04 = a01 * a13 - a03 * a11,
- b05 = a02 * a13 - a03 * a12,
- b06 = a20 * a31 - a21 * a30,
- b07 = a20 * a32 - a22 * a30,
- b08 = a20 * a33 - a23 * a30,
- b09 = a21 * a32 - a22 * a31,
- b10 = a21 * a33 - a23 * a31,
- b11 = a22 * a33 - a23 * a32,
- // Calculate the determinant
- det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
- if (!det) {
- return null;
- }
- det = 1.0 / det;
- out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
- out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
- out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
- out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
- out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
- out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
- out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
- out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
- out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
- out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
- out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
- out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
- out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
- out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
- out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
- out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
- return out;
- };
- /**
- * Calculates the adjugate of a mat4
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
- mat4.adjoint = function(out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
- out[0] = (a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22));
- out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));
- out[2] = (a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12));
- out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));
- out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));
- out[5] = (a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22));
- out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));
- out[7] = (a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12));
- out[8] = (a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21));
- out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));
- out[10] = (a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11));
- out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));
- out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));
- out[13] = (a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21));
- out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));
- out[15] = (a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11));
- return out;
- };
- /**
- * Calculates the determinant of a mat4
- *
- * @param {mat4} a the source matrix
- * @returns {Number} determinant of a
- */
- mat4.determinant = function (a) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
- b00 = a00 * a11 - a01 * a10,
- b01 = a00 * a12 - a02 * a10,
- b02 = a00 * a13 - a03 * a10,
- b03 = a01 * a12 - a02 * a11,
- b04 = a01 * a13 - a03 * a11,
- b05 = a02 * a13 - a03 * a12,
- b06 = a20 * a31 - a21 * a30,
- b07 = a20 * a32 - a22 * a30,
- b08 = a20 * a33 - a23 * a30,
- b09 = a21 * a32 - a22 * a31,
- b10 = a21 * a33 - a23 * a31,
- b11 = a22 * a33 - a23 * a32;
- // Calculate the determinant
- return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
- };
- /**
- * Multiplies two mat4's
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the first operand
- * @param {mat4} b the second operand
- * @returns {mat4} out
- */
- mat4.multiply = function (out, a, b) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
- // Cache only the current line of the second matrix
- var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
- out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
- b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
- out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
- b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
- out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
- b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
- out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
- return out;
- };
- /**
- * Alias for {@link mat4.multiply}
- * @function
- */
- mat4.mul = mat4.multiply;
- /**
- * Translate a mat4 by the given vector
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to translate
- * @param {vec3} v vector to translate by
- * @returns {mat4} out
- */
- mat4.translate = function (out, a, v) {
- var x = v[0], y = v[1], z = v[2],
- a00, a01, a02, a03,
- a10, a11, a12, a13,
- a20, a21, a22, a23;
- if (a === out) {
- out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
- out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
- out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
- out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
- } else {
- a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
- a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
- a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
- out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03;
- out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13;
- out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23;
- out[12] = a00 * x + a10 * y + a20 * z + a[12];
- out[13] = a01 * x + a11 * y + a21 * z + a[13];
- out[14] = a02 * x + a12 * y + a22 * z + a[14];
- out[15] = a03 * x + a13 * y + a23 * z + a[15];
- }
- return out;
- };
- /**
- * Scales the mat4 by the dimensions in the given vec3
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to scale
- * @param {vec3} v the vec3 to scale the matrix by
- * @returns {mat4} out
- **/
- mat4.scale = function(out, a, v) {
- var x = v[0], y = v[1], z = v[2];
- out[0] = a[0] * x;
- out[1] = a[1] * x;
- out[2] = a[2] * x;
- out[3] = a[3] * x;
- out[4] = a[4] * y;
- out[5] = a[5] * y;
- out[6] = a[6] * y;
- out[7] = a[7] * y;
- out[8] = a[8] * z;
- out[9] = a[9] * z;
- out[10] = a[10] * z;
- out[11] = a[11] * z;
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- };
- /**
- * Rotates a mat4 by the given angle around the given axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @param {vec3} axis the axis to rotate around
- * @returns {mat4} out
- */
- mat4.rotate = function (out, a, rad, axis) {
- var x = axis[0], y = axis[1], z = axis[2],
- len = Math.sqrt(x * x + y * y + z * z),
- s, c, t,
- a00, a01, a02, a03,
- a10, a11, a12, a13,
- a20, a21, a22, a23,
- b00, b01, b02,
- b10, b11, b12,
- b20, b21, b22;
- if (Math.abs(len) < glMatrix.EPSILON) { return null; }
- len = 1 / len;
- x *= len;
- y *= len;
- z *= len;
- s = Math.sin(rad);
- c = Math.cos(rad);
- t = 1 - c;
- a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
- a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
- a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
- // Construct the elements of the rotation matrix
- b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s;
- b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s;
- b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c;
- // Perform rotation-specific matrix multiplication
- out[0] = a00 * b00 + a10 * b01 + a20 * b02;
- out[1] = a01 * b00 + a11 * b01 + a21 * b02;
- out[2] = a02 * b00 + a12 * b01 + a22 * b02;
- out[3] = a03 * b00 + a13 * b01 + a23 * b02;
- out[4] = a00 * b10 + a10 * b11 + a20 * b12;
- out[5] = a01 * b10 + a11 * b11 + a21 * b12;
- out[6] = a02 * b10 + a12 * b11 + a22 * b12;
- out[7] = a03 * b10 + a13 * b11 + a23 * b12;
- out[8] = a00 * b20 + a10 * b21 + a20 * b22;
- out[9] = a01 * b20 + a11 * b21 + a21 * b22;
- out[10] = a02 * b20 + a12 * b21 + a22 * b22;
- out[11] = a03 * b20 + a13 * b21 + a23 * b22;
- if (a !== out) { // If the source and destination differ, copy the unchanged last row
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- return out;
- };
- /**
- * Rotates a matrix by the given angle around the X axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- mat4.rotateX = function (out, a, rad) {
- var s = Math.sin(rad),
- c = Math.cos(rad),
- a10 = a[4],
- a11 = a[5],
- a12 = a[6],
- a13 = a[7],
- a20 = a[8],
- a21 = a[9],
- a22 = a[10],
- a23 = a[11];
- if (a !== out) { // If the source and destination differ, copy the unchanged rows
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- // Perform axis-specific matrix multiplication
- out[4] = a10 * c + a20 * s;
- out[5] = a11 * c + a21 * s;
- out[6] = a12 * c + a22 * s;
- out[7] = a13 * c + a23 * s;
- out[8] = a20 * c - a10 * s;
- out[9] = a21 * c - a11 * s;
- out[10] = a22 * c - a12 * s;
- out[11] = a23 * c - a13 * s;
- return out;
- };
- /**
- * Rotates a matrix by the given angle around the Y axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- mat4.rotateY = function (out, a, rad) {
- var s = Math.sin(rad),
- c = Math.cos(rad),
- a00 = a[0],
- a01 = a[1],
- a02 = a[2],
- a03 = a[3],
- a20 = a[8],
- a21 = a[9],
- a22 = a[10],
- a23 = a[11];
- if (a !== out) { // If the source and destination differ, copy the unchanged rows
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- // Perform axis-specific matrix multiplication
- out[0] = a00 * c - a20 * s;
- out[1] = a01 * c - a21 * s;
- out[2] = a02 * c - a22 * s;
- out[3] = a03 * c - a23 * s;
- out[8] = a00 * s + a20 * c;
- out[9] = a01 * s + a21 * c;
- out[10] = a02 * s + a22 * c;
- out[11] = a03 * s + a23 * c;
- return out;
- };
- /**
- * Rotates a matrix by the given angle around the Z axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- mat4.rotateZ = function (out, a, rad) {
- var s = Math.sin(rad),
- c = Math.cos(rad),
- a00 = a[0],
- a01 = a[1],
- a02 = a[2],
- a03 = a[3],
- a10 = a[4],
- a11 = a[5],
- a12 = a[6],
- a13 = a[7];
- if (a !== out) { // If the source and destination differ, copy the unchanged last row
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- // Perform axis-specific matrix multiplication
- out[0] = a00 * c + a10 * s;
- out[1] = a01 * c + a11 * s;
- out[2] = a02 * c + a12 * s;
- out[3] = a03 * c + a13 * s;
- out[4] = a10 * c - a00 * s;
- out[5] = a11 * c - a01 * s;
- out[6] = a12 * c - a02 * s;
- out[7] = a13 * c - a03 * s;
- return out;
- };
- /**
- * Creates a matrix from a vector translation
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.translate(dest, dest, vec);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {vec3} v Translation vector
- * @returns {mat4} out
- */
- mat4.fromTranslation = function(out, v) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = v[0];
- out[13] = v[1];
- out[14] = v[2];
- out[15] = 1;
- return out;
- }
- /**
- * Creates a matrix from a vector scaling
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.scale(dest, dest, vec);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {vec3} v Scaling vector
- * @returns {mat4} out
- */
- mat4.fromScaling = function(out, v) {
- out[0] = v[0];
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = v[1];
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = v[2];
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Creates a matrix from a given angle around a given axis
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.rotate(dest, dest, rad, axis);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {Number} rad the angle to rotate the matrix by
- * @param {vec3} axis the axis to rotate around
- * @returns {mat4} out
- */
- mat4.fromRotation = function(out, rad, axis) {
- var x = axis[0], y = axis[1], z = axis[2],
- len = Math.sqrt(x * x + y * y + z * z),
- s, c, t;
- if (Math.abs(len) < glMatrix.EPSILON) { return null; }
- len = 1 / len;
- x *= len;
- y *= len;
- z *= len;
- s = Math.sin(rad);
- c = Math.cos(rad);
- t = 1 - c;
- // Perform rotation-specific matrix multiplication
- out[0] = x * x * t + c;
- out[1] = y * x * t + z * s;
- out[2] = z * x * t - y * s;
- out[3] = 0;
- out[4] = x * y * t - z * s;
- out[5] = y * y * t + c;
- out[6] = z * y * t + x * s;
- out[7] = 0;
- out[8] = x * z * t + y * s;
- out[9] = y * z * t - x * s;
- out[10] = z * z * t + c;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Creates a matrix from the given angle around the X axis
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.rotateX(dest, dest, rad);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- mat4.fromXRotation = function(out, rad) {
- var s = Math.sin(rad),
- c = Math.cos(rad);
- // Perform axis-specific matrix multiplication
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = c;
- out[6] = s;
- out[7] = 0;
- out[8] = 0;
- out[9] = -s;
- out[10] = c;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Creates a matrix from the given angle around the Y axis
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.rotateY(dest, dest, rad);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- mat4.fromYRotation = function(out, rad) {
- var s = Math.sin(rad),
- c = Math.cos(rad);
- // Perform axis-specific matrix multiplication
- out[0] = c;
- out[1] = 0;
- out[2] = -s;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = s;
- out[9] = 0;
- out[10] = c;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Creates a matrix from the given angle around the Z axis
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.rotateZ(dest, dest, rad);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- mat4.fromZRotation = function(out, rad) {
- var s = Math.sin(rad),
- c = Math.cos(rad);
- // Perform axis-specific matrix multiplication
- out[0] = c;
- out[1] = s;
- out[2] = 0;
- out[3] = 0;
- out[4] = -s;
- out[5] = c;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- }
- /**
- * Creates a matrix from a quaternion rotation and vector translation
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.translate(dest, vec);
- * var quatMat = mat4.create();
- * quat4.toMat4(quat, quatMat);
- * mat4.multiply(dest, quatMat);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {quat4} q Rotation quaternion
- * @param {vec3} v Translation vector
- * @returns {mat4} out
- */
- mat4.fromRotationTranslation = function (out, q, v) {
- // Quaternion math
- var x = q[0], y = q[1], z = q[2], w = q[3],
- x2 = x + x,
- y2 = y + y,
- z2 = z + z,
- xx = x * x2,
- xy = x * y2,
- xz = x * z2,
- yy = y * y2,
- yz = y * z2,
- zz = z * z2,
- wx = w * x2,
- wy = w * y2,
- wz = w * z2;
- out[0] = 1 - (yy + zz);
- out[1] = xy + wz;
- out[2] = xz - wy;
- out[3] = 0;
- out[4] = xy - wz;
- out[5] = 1 - (xx + zz);
- out[6] = yz + wx;
- out[7] = 0;
- out[8] = xz + wy;
- out[9] = yz - wx;
- out[10] = 1 - (xx + yy);
- out[11] = 0;
- out[12] = v[0];
- out[13] = v[1];
- out[14] = v[2];
- out[15] = 1;
- return out;
- };
- /**
- * Creates a matrix from a quaternion rotation, vector translation and vector scale
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.translate(dest, vec);
- * var quatMat = mat4.create();
- * quat4.toMat4(quat, quatMat);
- * mat4.multiply(dest, quatMat);
- * mat4.scale(dest, scale)
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {quat4} q Rotation quaternion
- * @param {vec3} v Translation vector
- * @param {vec3} s Scaling vector
- * @returns {mat4} out
- */
- mat4.fromRotationTranslationScale = function (out, q, v, s) {
- // Quaternion math
- var x = q[0], y = q[1], z = q[2], w = q[3],
- x2 = x + x,
- y2 = y + y,
- z2 = z + z,
- xx = x * x2,
- xy = x * y2,
- xz = x * z2,
- yy = y * y2,
- yz = y * z2,
- zz = z * z2,
- wx = w * x2,
- wy = w * y2,
- wz = w * z2,
- sx = s[0],
- sy = s[1],
- sz = s[2];
- out[0] = (1 - (yy + zz)) * sx;
- out[1] = (xy + wz) * sx;
- out[2] = (xz - wy) * sx;
- out[3] = 0;
- out[4] = (xy - wz) * sy;
- out[5] = (1 - (xx + zz)) * sy;
- out[6] = (yz + wx) * sy;
- out[7] = 0;
- out[8] = (xz + wy) * sz;
- out[9] = (yz - wx) * sz;
- out[10] = (1 - (xx + yy)) * sz;
- out[11] = 0;
- out[12] = v[0];
- out[13] = v[1];
- out[14] = v[2];
- out[15] = 1;
- return out;
- };
- /**
- * Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.translate(dest, vec);
- * mat4.translate(dest, origin);
- * var quatMat = mat4.create();
- * quat4.toMat4(quat, quatMat);
- * mat4.multiply(dest, quatMat);
- * mat4.scale(dest, scale)
- * mat4.translate(dest, negativeOrigin);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {quat4} q Rotation quaternion
- * @param {vec3} v Translation vector
- * @param {vec3} s Scaling vector
- * @param {vec3} o The origin vector around which to scale and rotate
- * @returns {mat4} out
- */
- mat4.fromRotationTranslationScaleOrigin = function (out, q, v, s, o) {
- // Quaternion math
- var x = q[0], y = q[1], z = q[2], w = q[3],
- x2 = x + x,
- y2 = y + y,
- z2 = z + z,
- xx = x * x2,
- xy = x * y2,
- xz = x * z2,
- yy = y * y2,
- yz = y * z2,
- zz = z * z2,
- wx = w * x2,
- wy = w * y2,
- wz = w * z2,
- sx = s[0],
- sy = s[1],
- sz = s[2],
- ox = o[0],
- oy = o[1],
- oz = o[2];
- out[0] = (1 - (yy + zz)) * sx;
- out[1] = (xy + wz) * sx;
- out[2] = (xz - wy) * sx;
- out[3] = 0;
- out[4] = (xy - wz) * sy;
- out[5] = (1 - (xx + zz)) * sy;
- out[6] = (yz + wx) * sy;
- out[7] = 0;
- out[8] = (xz + wy) * sz;
- out[9] = (yz - wx) * sz;
- out[10] = (1 - (xx + yy)) * sz;
- out[11] = 0;
- out[12] = v[0] + ox - (out[0] * ox + out[4] * oy + out[8] * oz);
- out[13] = v[1] + oy - (out[1] * ox + out[5] * oy + out[9] * oz);
- out[14] = v[2] + oz - (out[2] * ox + out[6] * oy + out[10] * oz);
- out[15] = 1;
- return out;
- };
- mat4.fromQuat = function (out, q) {
- var x = q[0], y = q[1], z = q[2], w = q[3],
- x2 = x + x,
- y2 = y + y,
- z2 = z + z,
- xx = x * x2,
- yx = y * x2,
- yy = y * y2,
- zx = z * x2,
- zy = z * y2,
- zz = z * z2,
- wx = w * x2,
- wy = w * y2,
- wz = w * z2;
- out[0] = 1 - yy - zz;
- out[1] = yx + wz;
- out[2] = zx - wy;
- out[3] = 0;
- out[4] = yx - wz;
- out[5] = 1 - xx - zz;
- out[6] = zy + wx;
- out[7] = 0;
- out[8] = zx + wy;
- out[9] = zy - wx;
- out[10] = 1 - xx - yy;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- };
- /**
- * Generates a frustum matrix with the given bounds
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {Number} left Left bound of the frustum
- * @param {Number} right Right bound of the frustum
- * @param {Number} bottom Bottom bound of the frustum
- * @param {Number} top Top bound of the frustum
- * @param {Number} near Near bound of the frustum
- * @param {Number} far Far bound of the frustum
- * @returns {mat4} out
- */
- mat4.frustum = function (out, left, right, bottom, top, near, far) {
- var rl = 1 / (right - left),
- tb = 1 / (top - bottom),
- nf = 1 / (near - far);
- out[0] = (near * 2) * rl;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = (near * 2) * tb;
- out[6] = 0;
- out[7] = 0;
- out[8] = (right + left) * rl;
- out[9] = (top + bottom) * tb;
- out[10] = (far + near) * nf;
- out[11] = -1;
- out[12] = 0;
- out[13] = 0;
- out[14] = (far * near * 2) * nf;
- out[15] = 0;
- return out;
- };
- /**
- * Generates a perspective projection matrix with the given bounds
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {number} fovy Vertical field of view in radians
- * @param {number} aspect Aspect ratio. typically viewport width/height
- * @param {number} near Near bound of the frustum
- * @param {number} far Far bound of the frustum
- * @returns {mat4} out
- */
- mat4.perspective = function (out, fovy, aspect, near, far) {
- var f = 1.0 / Math.tan(fovy / 2),
- nf = 1 / (near - far);
- out[0] = f / aspect;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = f;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = (far + near) * nf;
- out[11] = -1;
- out[12] = 0;
- out[13] = 0;
- out[14] = (2 * far * near) * nf;
- out[15] = 0;
- return out;
- };
- /**
- * Generates a perspective projection matrix with the given field of view.
- * This is primarily useful for generating projection matrices to be used
- * with the still experiemental WebVR API.
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {number} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees
- * @param {number} near Near bound of the frustum
- * @param {number} far Far bound of the frustum
- * @returns {mat4} out
- */
- mat4.perspectiveFromFieldOfView = function (out, fov, near, far) {
- var upTan = Math.tan(fov.upDegrees * Math.PI/180.0),
- downTan = Math.tan(fov.downDegrees * Math.PI/180.0),
- leftTan = Math.tan(fov.leftDegrees * Math.PI/180.0),
- rightTan = Math.tan(fov.rightDegrees * Math.PI/180.0),
- xScale = 2.0 / (leftTan + rightTan),
- yScale = 2.0 / (upTan + downTan);
- out[0] = xScale;
- out[1] = 0.0;
- out[2] = 0.0;
- out[3] = 0.0;
- out[4] = 0.0;
- out[5] = yScale;
- out[6] = 0.0;
- out[7] = 0.0;
- out[8] = -((leftTan - rightTan) * xScale * 0.5);
- out[9] = ((upTan - downTan) * yScale * 0.5);
- out[10] = far / (near - far);
- out[11] = -1.0;
- out[12] = 0.0;
- out[13] = 0.0;
- out[14] = (far * near) / (near - far);
- out[15] = 0.0;
- return out;
- }
- /**
- * Generates a orthogonal projection matrix with the given bounds
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {number} left Left bound of the frustum
- * @param {number} right Right bound of the frustum
- * @param {number} bottom Bottom bound of the frustum
- * @param {number} top Top bound of the frustum
- * @param {number} near Near bound of the frustum
- * @param {number} far Far bound of the frustum
- * @returns {mat4} out
- */
- mat4.ortho = function (out, left, right, bottom, top, near, far) {
- var lr = 1 / (left - right),
- bt = 1 / (bottom - top),
- nf = 1 / (near - far);
- out[0] = -2 * lr;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = -2 * bt;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 2 * nf;
- out[11] = 0;
- out[12] = (left + right) * lr;
- out[13] = (top + bottom) * bt;
- out[14] = (far + near) * nf;
- out[15] = 1;
- return out;
- };
- /**
- * Generates a look-at matrix with the given eye position, focal point, and up axis
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {vec3} eye Position of the viewer
- * @param {vec3} center Point the viewer is looking at
- * @param {vec3} up vec3 pointing up
- * @returns {mat4} out
- */
- mat4.lookAt = function (out, eye, center, up) {
- var x0, x1, x2, y0, y1, y2, z0, z1, z2, len,
- eyex = eye[0],
- eyey = eye[1],
- eyez = eye[2],
- upx = up[0],
- upy = up[1],
- upz = up[2],
- centerx = center[0],
- centery = center[1],
- centerz = center[2];
- if (Math.abs(eyex - centerx) < glMatrix.EPSILON &&
- Math.abs(eyey - centery) < glMatrix.EPSILON &&
- Math.abs(eyez - centerz) < glMatrix.EPSILON) {
- return mat4.identity(out);
- }
- z0 = eyex - centerx;
- z1 = eyey - centery;
- z2 = eyez - centerz;
- len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
- z0 *= len;
- z1 *= len;
- z2 *= len;
- x0 = upy * z2 - upz * z1;
- x1 = upz * z0 - upx * z2;
- x2 = upx * z1 - upy * z0;
- len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
- if (!len) {
- x0 = 0;
- x1 = 0;
- x2 = 0;
- } else {
- len = 1 / len;
- x0 *= len;
- x1 *= len;
- x2 *= len;
- }
- y0 = z1 * x2 - z2 * x1;
- y1 = z2 * x0 - z0 * x2;
- y2 = z0 * x1 - z1 * x0;
- len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
- if (!len) {
- y0 = 0;
- y1 = 0;
- y2 = 0;
- } else {
- len = 1 / len;
- y0 *= len;
- y1 *= len;
- y2 *= len;
- }
- out[0] = x0;
- out[1] = y0;
- out[2] = z0;
- out[3] = 0;
- out[4] = x1;
- out[5] = y1;
- out[6] = z1;
- out[7] = 0;
- out[8] = x2;
- out[9] = y2;
- out[10] = z2;
- out[11] = 0;
- out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
- out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
- out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
- out[15] = 1;
- return out;
- };
- /**
- * Returns a string representation of a mat4
- *
- * @param {mat4} mat matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
- mat4.str = function (a) {
- return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' +
- a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' +
- a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' +
- a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')';
- };
- /**
- * Returns Frobenius norm of a mat4
- *
- * @param {mat4} a the matrix to calculate Frobenius norm of
- * @returns {Number} Frobenius norm
- */
- mat4.frob = function (a) {
- return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2) ))
- };
- module.exports = mat4;
- /***/ },
- /* 6 */
- /***/ function(module, exports, __webpack_require__) {
- /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE. */
- var glMatrix = __webpack_require__(1);
- var mat3 = __webpack_require__(4);
- var vec3 = __webpack_require__(7);
- var vec4 = __webpack_require__(8);
- /**
- * @class Quaternion
- * @name quat
- */
- var quat = {};
- /**
- * Creates a new identity quat
- *
- * @returns {quat} a new quaternion
- */
- quat.create = function() {
- var out = new glMatrix.ARRAY_TYPE(4);
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- };
- /**
- * Sets a quaternion to represent the shortest rotation from one
- * vector to another.
- *
- * Both vectors are assumed to be unit length.
- *
- * @param {quat} out the receiving quaternion.
- * @param {vec3} a the initial vector
- * @param {vec3} b the destination vector
- * @returns {quat} out
- */
- quat.rotationTo = (function() {
- var tmpvec3 = vec3.create();
- var xUnitVec3 = vec3.fromValues(1,0,0);
- var yUnitVec3 = vec3.fromValues(0,1,0);
- return function(out, a, b) {
- var dot = vec3.dot(a, b);
- if (dot < -0.999999) {
- vec3.cross(tmpvec3, xUnitVec3, a);
- if (vec3.length(tmpvec3) < 0.000001)
- vec3.cross(tmpvec3, yUnitVec3, a);
- vec3.normalize(tmpvec3, tmpvec3);
- quat.setAxisAngle(out, tmpvec3, Math.PI);
- return out;
- } else if (dot > 0.999999) {
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- } else {
- vec3.cross(tmpvec3, a, b);
- out[0] = tmpvec3[0];
- out[1] = tmpvec3[1];
- out[2] = tmpvec3[2];
- out[3] = 1 + dot;
- return quat.normalize(out, out);
- }
- };
- })();
- /**
- * Sets the specified quaternion with values corresponding to the given
- * axes. Each axis is a vec3 and is expected to be unit length and
- * perpendicular to all other specified axes.
- *
- * @param {vec3} view the vector representing the viewing direction
- * @param {vec3} right the vector representing the local "right" direction
- * @param {vec3} up the vector representing the local "up" direction
- * @returns {quat} out
- */
- quat.setAxes = (function() {
- var matr = mat3.create();
- return function(out, view, right, up) {
- matr[0] = right[0];
- matr[3] = right[1];
- matr[6] = right[2];
- matr[1] = up[0];
- matr[4] = up[1];
- matr[7] = up[2];
- matr[2] = -view[0];
- matr[5] = -view[1];
- matr[8] = -view[2];
- return quat.normalize(out, quat.fromMat3(out, matr));
- };
- })();
- /**
- * Creates a new quat initialized with values from an existing quaternion
- *
- * @param {quat} a quaternion to clone
- * @returns {quat} a new quaternion
- * @function
- */
- quat.clone = vec4.clone;
- /**
- * Creates a new quat initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {quat} a new quaternion
- * @function
- */
- quat.fromValues = vec4.fromValues;
- /**
- * Copy the values from one quat to another
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the source quaternion
- * @returns {quat} out
- * @function
- */
- quat.copy = vec4.copy;
- /**
- * Set the components of a quat to the given values
- *
- * @param {quat} out the receiving quaternion
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {quat} out
- * @function
- */
- quat.set = vec4.set;
- /**
- * Set a quat to the identity quaternion
- *
- * @param {quat} out the receiving quaternion
- * @returns {quat} out
- */
- quat.identity = function(out) {
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- };
- /**
- * Sets a quat from the given angle and rotation axis,
- * then returns it.
- *
- * @param {quat} out the receiving quaternion
- * @param {vec3} axis the axis around which to rotate
- * @param {Number} rad the angle in radians
- * @returns {quat} out
- **/
- quat.setAxisAngle = function(out, axis, rad) {
- rad = rad * 0.5;
- var s = Math.sin(rad);
- out[0] = s * axis[0];
- out[1] = s * axis[1];
- out[2] = s * axis[2];
- out[3] = Math.cos(rad);
- return out;
- };
- /**
- * Adds two quat's
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @returns {quat} out
- * @function
- */
- quat.add = vec4.add;
- /**
- * Multiplies two quat's
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @returns {quat} out
- */
- quat.multiply = function(out, a, b) {
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- bx = b[0], by = b[1], bz = b[2], bw = b[3];
- out[0] = ax * bw + aw * bx + ay * bz - az * by;
- out[1] = ay * bw + aw * by + az * bx - ax * bz;
- out[2] = az * bw + aw * bz + ax * by - ay * bx;
- out[3] = aw * bw - ax * bx - ay * by - az * bz;
- return out;
- };
- /**
- * Alias for {@link quat.multiply}
- * @function
- */
- quat.mul = quat.multiply;
- /**
- * Scales a quat by a scalar number
- *
- * @param {quat} out the receiving vector
- * @param {quat} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {quat} out
- * @function
- */
- quat.scale = vec4.scale;
- /**
- * Rotates a quaternion by the given angle about the X axis
- *
- * @param {quat} out quat receiving operation result
- * @param {quat} a quat to rotate
- * @param {number} rad angle (in radians) to rotate
- * @returns {quat} out
- */
- quat.rotateX = function (out, a, rad) {
- rad *= 0.5;
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- bx = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw + aw * bx;
- out[1] = ay * bw + az * bx;
- out[2] = az * bw - ay * bx;
- out[3] = aw * bw - ax * bx;
- return out;
- };
- /**
- * Rotates a quaternion by the given angle about the Y axis
- *
- * @param {quat} out quat receiving operation result
- * @param {quat} a quat to rotate
- * @param {number} rad angle (in radians) to rotate
- * @returns {quat} out
- */
- quat.rotateY = function (out, a, rad) {
- rad *= 0.5;
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- by = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw - az * by;
- out[1] = ay * bw + aw * by;
- out[2] = az * bw + ax * by;
- out[3] = aw * bw - ay * by;
- return out;
- };
- /**
- * Rotates a quaternion by the given angle about the Z axis
- *
- * @param {quat} out quat receiving operation result
- * @param {quat} a quat to rotate
- * @param {number} rad angle (in radians) to rotate
- * @returns {quat} out
- */
- quat.rotateZ = function (out, a, rad) {
- rad *= 0.5;
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- bz = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw + ay * bz;
- out[1] = ay * bw - ax * bz;
- out[2] = az * bw + aw * bz;
- out[3] = aw * bw - az * bz;
- return out;
- };
- /**
- * Calculates the W component of a quat from the X, Y, and Z components.
- * Assumes that quaternion is 1 unit in length.
- * Any existing W component will be ignored.
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quat to calculate W component of
- * @returns {quat} out
- */
- quat.calculateW = function (out, a) {
- var x = a[0], y = a[1], z = a[2];
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
- return out;
- };
- /**
- * Calculates the dot product of two quat's
- *
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @returns {Number} dot product of a and b
- * @function
- */
- quat.dot = vec4.dot;
- /**
- * Performs a linear interpolation between two quat's
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {quat} out
- * @function
- */
- quat.lerp = vec4.lerp;
- /**
- * Performs a spherical linear interpolation between two quat
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {quat} out
- */
- quat.slerp = function (out, a, b, t) {
- // benchmarks:
- // http://jsperf.com/quaternion-slerp-implementations
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- bx = b[0], by = b[1], bz = b[2], bw = b[3];
- var omega, cosom, sinom, scale0, scale1;
- // calc cosine
- cosom = ax * bx + ay * by + az * bz + aw * bw;
- // adjust signs (if necessary)
- if ( cosom < 0.0 ) {
- cosom = -cosom;
- bx = - bx;
- by = - by;
- bz = - bz;
- bw = - bw;
- }
- // calculate coefficients
- if ( (1.0 - cosom) > 0.000001 ) {
- // standard case (slerp)
- omega = Math.acos(cosom);
- sinom = Math.sin(omega);
- scale0 = Math.sin((1.0 - t) * omega) / sinom;
- scale1 = Math.sin(t * omega) / sinom;
- } else {
- // "from" and "to" quaternions are very close
- // ... so we can do a linear interpolation
- scale0 = 1.0 - t;
- scale1 = t;
- }
- // calculate final values
- out[0] = scale0 * ax + scale1 * bx;
- out[1] = scale0 * ay + scale1 * by;
- out[2] = scale0 * az + scale1 * bz;
- out[3] = scale0 * aw + scale1 * bw;
- return out;
- };
- /**
- * Performs a spherical linear interpolation with two control points
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @param {quat} c the third operand
- * @param {quat} d the fourth operand
- * @param {Number} t interpolation amount
- * @returns {quat} out
- */
- quat.sqlerp = (function () {
- var temp1 = quat.create();
- var temp2 = quat.create();
- return function (out, a, b, c, d, t) {
- quat.slerp(temp1, a, d, t);
- quat.slerp(temp2, b, c, t);
- quat.slerp(out, temp1, temp2, 2 * t * (1 - t));
- return out;
- };
- }());
- /**
- * Calculates the inverse of a quat
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quat to calculate inverse of
- * @returns {quat} out
- */
- quat.invert = function(out, a) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
- dot = a0*a0 + a1*a1 + a2*a2 + a3*a3,
- invDot = dot ? 1.0/dot : 0;
- // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
- out[0] = -a0*invDot;
- out[1] = -a1*invDot;
- out[2] = -a2*invDot;
- out[3] = a3*invDot;
- return out;
- };
- /**
- * Calculates the conjugate of a quat
- * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quat to calculate conjugate of
- * @returns {quat} out
- */
- quat.conjugate = function (out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- out[3] = a[3];
- return out;
- };
- /**
- * Calculates the length of a quat
- *
- * @param {quat} a vector to calculate length of
- * @returns {Number} length of a
- * @function
- */
- quat.length = vec4.length;
- /**
- * Alias for {@link quat.length}
- * @function
- */
- quat.len = quat.length;
- /**
- * Calculates the squared length of a quat
- *
- * @param {quat} a vector to calculate squared length of
- * @returns {Number} squared length of a
- * @function
- */
- quat.squaredLength = vec4.squaredLength;
- /**
- * Alias for {@link quat.squaredLength}
- * @function
- */
- quat.sqrLen = quat.squaredLength;
- /**
- * Normalize a quat
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quaternion to normalize
- * @returns {quat} out
- * @function
- */
- quat.normalize = vec4.normalize;
- /**
- * Creates a quaternion from the given 3x3 rotation matrix.
- *
- * NOTE: The resultant quaternion is not normalized, so you should be sure
- * to renormalize the quaternion yourself where necessary.
- *
- * @param {quat} out the receiving quaternion
- * @param {mat3} m rotation matrix
- * @returns {quat} out
- * @function
- */
- quat.fromMat3 = function(out, m) {
- // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
- // article "Quaternion Calculus and Fast Animation".
- var fTrace = m[0] + m[4] + m[8];
- var fRoot;
- if ( fTrace > 0.0 ) {
- // |w| > 1/2, may as well choose w > 1/2
- fRoot = Math.sqrt(fTrace + 1.0); // 2w
- out[3] = 0.5 * fRoot;
- fRoot = 0.5/fRoot; // 1/(4w)
- out[0] = (m[5]-m[7])*fRoot;
- out[1] = (m[6]-m[2])*fRoot;
- out[2] = (m[1]-m[3])*fRoot;
- } else {
- // |w| <= 1/2
- var i = 0;
- if ( m[4] > m[0] )
- i = 1;
- if ( m[8] > m[i*3+i] )
- i = 2;
- var j = (i+1)%3;
- var k = (i+2)%3;
- fRoot = Math.sqrt(m[i*3+i]-m[j*3+j]-m[k*3+k] + 1.0);
- out[i] = 0.5 * fRoot;
- fRoot = 0.5 / fRoot;
- out[3] = (m[j*3+k] - m[k*3+j]) * fRoot;
- out[j] = (m[j*3+i] + m[i*3+j]) * fRoot;
- out[k] = (m[k*3+i] + m[i*3+k]) * fRoot;
- }
- return out;
- };
- /**
- * Returns a string representation of a quatenion
- *
- * @param {quat} vec vector to represent as a string
- * @returns {String} string representation of the vector
- */
- quat.str = function (a) {
- return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
- };
- module.exports = quat;
- /***/ },
- /* 7 */
- /***/ function(module, exports, __webpack_require__) {
- /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE. */
- var glMatrix = __webpack_require__(1);
- /**
- * @class 3 Dimensional Vector
- * @name vec3
- */
- var vec3 = {};
- /**
- * Creates a new, empty vec3
- *
- * @returns {vec3} a new 3D vector
- */
- vec3.create = function() {
- var out = new glMatrix.ARRAY_TYPE(3);
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- return out;
- };
- /**
- * Creates a new vec3 initialized with values from an existing vector
- *
- * @param {vec3} a vector to clone
- * @returns {vec3} a new 3D vector
- */
- vec3.clone = function(a) {
- var out = new glMatrix.ARRAY_TYPE(3);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- return out;
- };
- /**
- * Creates a new vec3 initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @returns {vec3} a new 3D vector
- */
- vec3.fromValues = function(x, y, z) {
- var out = new glMatrix.ARRAY_TYPE(3);
- out[0] = x;
- out[1] = y;
- out[2] = z;
- return out;
- };
- /**
- * Copy the values from one vec3 to another
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the source vector
- * @returns {vec3} out
- */
- vec3.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- return out;
- };
- /**
- * Set the components of a vec3 to the given values
- *
- * @param {vec3} out the receiving vector
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @returns {vec3} out
- */
- vec3.set = function(out, x, y, z) {
- out[0] = x;
- out[1] = y;
- out[2] = z;
- return out;
- };
- /**
- * Adds two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.add = function(out, a, b) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- return out;
- };
- /**
- * Subtracts vector b from vector a
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.subtract = function(out, a, b) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- out[2] = a[2] - b[2];
- return out;
- };
- /**
- * Alias for {@link vec3.subtract}
- * @function
- */
- vec3.sub = vec3.subtract;
- /**
- * Multiplies two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.multiply = function(out, a, b) {
- out[0] = a[0] * b[0];
- out[1] = a[1] * b[1];
- out[2] = a[2] * b[2];
- return out;
- };
- /**
- * Alias for {@link vec3.multiply}
- * @function
- */
- vec3.mul = vec3.multiply;
- /**
- * Divides two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.divide = function(out, a, b) {
- out[0] = a[0] / b[0];
- out[1] = a[1] / b[1];
- out[2] = a[2] / b[2];
- return out;
- };
- /**
- * Alias for {@link vec3.divide}
- * @function
- */
- vec3.div = vec3.divide;
- /**
- * Returns the minimum of two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.min = function(out, a, b) {
- out[0] = Math.min(a[0], b[0]);
- out[1] = Math.min(a[1], b[1]);
- out[2] = Math.min(a[2], b[2]);
- return out;
- };
- /**
- * Returns the maximum of two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.max = function(out, a, b) {
- out[0] = Math.max(a[0], b[0]);
- out[1] = Math.max(a[1], b[1]);
- out[2] = Math.max(a[2], b[2]);
- return out;
- };
- /**
- * Scales a vec3 by a scalar number
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {vec3} out
- */
- vec3.scale = function(out, a, b) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- out[2] = a[2] * b;
- return out;
- };
- /**
- * Adds two vec3's after scaling the second operand by a scalar value
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @param {Number} scale the amount to scale b by before adding
- * @returns {vec3} out
- */
- vec3.scaleAndAdd = function(out, a, b, scale) {
- out[0] = a[0] + (b[0] * scale);
- out[1] = a[1] + (b[1] * scale);
- out[2] = a[2] + (b[2] * scale);
- return out;
- };
- /**
- * Calculates the euclidian distance between two vec3's
- *
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {Number} distance between a and b
- */
- vec3.distance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2];
- return Math.sqrt(x*x + y*y + z*z);
- };
- /**
- * Alias for {@link vec3.distance}
- * @function
- */
- vec3.dist = vec3.distance;
- /**
- * Calculates the squared euclidian distance between two vec3's
- *
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {Number} squared distance between a and b
- */
- vec3.squaredDistance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2];
- return x*x + y*y + z*z;
- };
- /**
- * Alias for {@link vec3.squaredDistance}
- * @function
- */
- vec3.sqrDist = vec3.squaredDistance;
- /**
- * Calculates the length of a vec3
- *
- * @param {vec3} a vector to calculate length of
- * @returns {Number} length of a
- */
- vec3.length = function (a) {
- var x = a[0],
- y = a[1],
- z = a[2];
- return Math.sqrt(x*x + y*y + z*z);
- };
- /**
- * Alias for {@link vec3.length}
- * @function
- */
- vec3.len = vec3.length;
- /**
- * Calculates the squared length of a vec3
- *
- * @param {vec3} a vector to calculate squared length of
- * @returns {Number} squared length of a
- */
- vec3.squaredLength = function (a) {
- var x = a[0],
- y = a[1],
- z = a[2];
- return x*x + y*y + z*z;
- };
- /**
- * Alias for {@link vec3.squaredLength}
- * @function
- */
- vec3.sqrLen = vec3.squaredLength;
- /**
- * Negates the components of a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to negate
- * @returns {vec3} out
- */
- vec3.negate = function(out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- return out;
- };
- /**
- * Returns the inverse of the components of a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to invert
- * @returns {vec3} out
- */
- vec3.inverse = function(out, a) {
- out[0] = 1.0 / a[0];
- out[1] = 1.0 / a[1];
- out[2] = 1.0 / a[2];
- return out;
- };
- /**
- * Normalize a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to normalize
- * @returns {vec3} out
- */
- vec3.normalize = function(out, a) {
- var x = a[0],
- y = a[1],
- z = a[2];
- var len = x*x + y*y + z*z;
- if (len > 0) {
- //TODO: evaluate use of glm_invsqrt here?
- len = 1 / Math.sqrt(len);
- out[0] = a[0] * len;
- out[1] = a[1] * len;
- out[2] = a[2] * len;
- }
- return out;
- };
- /**
- * Calculates the dot product of two vec3's
- *
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {Number} dot product of a and b
- */
- vec3.dot = function (a, b) {
- return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
- };
- /**
- * Computes the cross product of two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.cross = function(out, a, b) {
- var ax = a[0], ay = a[1], az = a[2],
- bx = b[0], by = b[1], bz = b[2];
- out[0] = ay * bz - az * by;
- out[1] = az * bx - ax * bz;
- out[2] = ax * by - ay * bx;
- return out;
- };
- /**
- * Performs a linear interpolation between two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {vec3} out
- */
- vec3.lerp = function (out, a, b, t) {
- var ax = a[0],
- ay = a[1],
- az = a[2];
- out[0] = ax + t * (b[0] - ax);
- out[1] = ay + t * (b[1] - ay);
- out[2] = az + t * (b[2] - az);
- return out;
- };
- /**
- * Performs a hermite interpolation with two control points
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @param {vec3} c the third operand
- * @param {vec3} d the fourth operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {vec3} out
- */
- vec3.hermite = function (out, a, b, c, d, t) {
- var factorTimes2 = t * t,
- factor1 = factorTimes2 * (2 * t - 3) + 1,
- factor2 = factorTimes2 * (t - 2) + t,
- factor3 = factorTimes2 * (t - 1),
- factor4 = factorTimes2 * (3 - 2 * t);
- out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
- out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
- out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
- return out;
- };
- /**
- * Performs a bezier interpolation with two control points
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @param {vec3} c the third operand
- * @param {vec3} d the fourth operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {vec3} out
- */
- vec3.bezier = function (out, a, b, c, d, t) {
- var inverseFactor = 1 - t,
- inverseFactorTimesTwo = inverseFactor * inverseFactor,
- factorTimes2 = t * t,
- factor1 = inverseFactorTimesTwo * inverseFactor,
- factor2 = 3 * t * inverseFactorTimesTwo,
- factor3 = 3 * factorTimes2 * inverseFactor,
- factor4 = factorTimes2 * t;
- out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
- out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
- out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
- return out;
- };
- /**
- * Generates a random vector with the given scale
- *
- * @param {vec3} out the receiving vector
- * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
- * @returns {vec3} out
- */
- vec3.random = function (out, scale) {
- scale = scale || 1.0;
- var r = glMatrix.RANDOM() * 2.0 * Math.PI;
- var z = (glMatrix.RANDOM() * 2.0) - 1.0;
- var zScale = Math.sqrt(1.0-z*z) * scale;
- out[0] = Math.cos(r) * zScale;
- out[1] = Math.sin(r) * zScale;
- out[2] = z * scale;
- return out;
- };
- /**
- * Transforms the vec3 with a mat4.
- * 4th vector component is implicitly '1'
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to transform
- * @param {mat4} m matrix to transform with
- * @returns {vec3} out
- */
- vec3.transformMat4 = function(out, a, m) {
- var x = a[0], y = a[1], z = a[2],
- w = m[3] * x + m[7] * y + m[11] * z + m[15];
- w = w || 1.0;
- out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
- out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
- out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
- return out;
- };
- /**
- * Transforms the vec3 with a mat3.
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to transform
- * @param {mat4} m the 3x3 matrix to transform with
- * @returns {vec3} out
- */
- vec3.transformMat3 = function(out, a, m) {
- var x = a[0], y = a[1], z = a[2];
- out[0] = x * m[0] + y * m[3] + z * m[6];
- out[1] = x * m[1] + y * m[4] + z * m[7];
- out[2] = x * m[2] + y * m[5] + z * m[8];
- return out;
- };
- /**
- * Transforms the vec3 with a quat
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to transform
- * @param {quat} q quaternion to transform with
- * @returns {vec3} out
- */
- vec3.transformQuat = function(out, a, q) {
- // benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations
- var x = a[0], y = a[1], z = a[2],
- qx = q[0], qy = q[1], qz = q[2], qw = q[3],
- // calculate quat * vec
- ix = qw * x + qy * z - qz * y,
- iy = qw * y + qz * x - qx * z,
- iz = qw * z + qx * y - qy * x,
- iw = -qx * x - qy * y - qz * z;
- // calculate result * inverse quat
- out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
- out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
- out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
- return out;
- };
- /**
- * Rotate a 3D vector around the x-axis
- * @param {vec3} out The receiving vec3
- * @param {vec3} a The vec3 point to rotate
- * @param {vec3} b The origin of the rotation
- * @param {Number} c The angle of rotation
- * @returns {vec3} out
- */
- vec3.rotateX = function(out, a, b, c){
- var p = [], r=[];
- //Translate point to the origin
- p[0] = a[0] - b[0];
- p[1] = a[1] - b[1];
- p[2] = a[2] - b[2];
- //perform rotation
- r[0] = p[0];
- r[1] = p[1]*Math.cos(c) - p[2]*Math.sin(c);
- r[2] = p[1]*Math.sin(c) + p[2]*Math.cos(c);
- //translate to correct position
- out[0] = r[0] + b[0];
- out[1] = r[1] + b[1];
- out[2] = r[2] + b[2];
- return out;
- };
- /**
- * Rotate a 3D vector around the y-axis
- * @param {vec3} out The receiving vec3
- * @param {vec3} a The vec3 point to rotate
- * @param {vec3} b The origin of the rotation
- * @param {Number} c The angle of rotation
- * @returns {vec3} out
- */
- vec3.rotateY = function(out, a, b, c){
- var p = [], r=[];
- //Translate point to the origin
- p[0] = a[0] - b[0];
- p[1] = a[1] - b[1];
- p[2] = a[2] - b[2];
- //perform rotation
- r[0] = p[2]*Math.sin(c) + p[0]*Math.cos(c);
- r[1] = p[1];
- r[2] = p[2]*Math.cos(c) - p[0]*Math.sin(c);
- //translate to correct position
- out[0] = r[0] + b[0];
- out[1] = r[1] + b[1];
- out[2] = r[2] + b[2];
- return out;
- };
- /**
- * Rotate a 3D vector around the z-axis
- * @param {vec3} out The receiving vec3
- * @param {vec3} a The vec3 point to rotate
- * @param {vec3} b The origin of the rotation
- * @param {Number} c The angle of rotation
- * @returns {vec3} out
- */
- vec3.rotateZ = function(out, a, b, c){
- var p = [], r=[];
- //Translate point to the origin
- p[0] = a[0] - b[0];
- p[1] = a[1] - b[1];
- p[2] = a[2] - b[2];
- //perform rotation
- r[0] = p[0]*Math.cos(c) - p[1]*Math.sin(c);
- r[1] = p[0]*Math.sin(c) + p[1]*Math.cos(c);
- r[2] = p[2];
- //translate to correct position
- out[0] = r[0] + b[0];
- out[1] = r[1] + b[1];
- out[2] = r[2] + b[2];
- return out;
- };
- /**
- * Perform some operation over an array of vec3s.
- *
- * @param {Array} a the array of vectors to iterate over
- * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed
- * @param {Number} offset Number of elements to skip at the beginning of the array
- * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array
- * @param {Function} fn Function to call for each vector in the array
- * @param {Object} [arg] additional argument to pass to fn
- * @returns {Array} a
- * @function
- */
- vec3.forEach = (function() {
- var vec = vec3.create();
- return function(a, stride, offset, count, fn, arg) {
- var i, l;
- if(!stride) {
- stride = 3;
- }
- if(!offset) {
- offset = 0;
- }
- if(count) {
- l = Math.min((count * stride) + offset, a.length);
- } else {
- l = a.length;
- }
- for(i = offset; i < l; i += stride) {
- vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2];
- fn(vec, vec, arg);
- a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2];
- }
- return a;
- };
- })();
- /**
- * Get the angle between two 3D vectors
- * @param {vec3} a The first operand
- * @param {vec3} b The second operand
- * @returns {Number} The angle in radians
- */
- vec3.angle = function(a, b) {
- var tempA = vec3.fromValues(a[0], a[1], a[2]);
- var tempB = vec3.fromValues(b[0], b[1], b[2]);
- vec3.normalize(tempA, tempA);
- vec3.normalize(tempB, tempB);
- var cosine = vec3.dot(tempA, tempB);
- if(cosine > 1.0){
- return 0;
- } else {
- return Math.acos(cosine);
- }
- };
- /**
- * Returns a string representation of a vector
- *
- * @param {vec3} vec vector to represent as a string
- * @returns {String} string representation of the vector
- */
- vec3.str = function (a) {
- return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')';
- };
- module.exports = vec3;
- /***/ },
- /* 8 */
- /***/ function(module, exports, __webpack_require__) {
- /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE. */
- var glMatrix = __webpack_require__(1);
- /**
- * @class 4 Dimensional Vector
- * @name vec4
- */
- var vec4 = {};
- /**
- * Creates a new, empty vec4
- *
- * @returns {vec4} a new 4D vector
- */
- vec4.create = function() {
- var out = new glMatrix.ARRAY_TYPE(4);
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- return out;
- };
- /**
- * Creates a new vec4 initialized with values from an existing vector
- *
- * @param {vec4} a vector to clone
- * @returns {vec4} a new 4D vector
- */
- vec4.clone = function(a) {
- var out = new glMatrix.ARRAY_TYPE(4);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- };
- /**
- * Creates a new vec4 initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {vec4} a new 4D vector
- */
- vec4.fromValues = function(x, y, z, w) {
- var out = new glMatrix.ARRAY_TYPE(4);
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = w;
- return out;
- };
- /**
- * Copy the values from one vec4 to another
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the source vector
- * @returns {vec4} out
- */
- vec4.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- };
- /**
- * Set the components of a vec4 to the given values
- *
- * @param {vec4} out the receiving vector
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {vec4} out
- */
- vec4.set = function(out, x, y, z, w) {
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = w;
- return out;
- };
- /**
- * Adds two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
- vec4.add = function(out, a, b) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- out[3] = a[3] + b[3];
- return out;
- };
- /**
- * Subtracts vector b from vector a
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
- vec4.subtract = function(out, a, b) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- out[2] = a[2] - b[2];
- out[3] = a[3] - b[3];
- return out;
- };
- /**
- * Alias for {@link vec4.subtract}
- * @function
- */
- vec4.sub = vec4.subtract;
- /**
- * Multiplies two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
- vec4.multiply = function(out, a, b) {
- out[0] = a[0] * b[0];
- out[1] = a[1] * b[1];
- out[2] = a[2] * b[2];
- out[3] = a[3] * b[3];
- return out;
- };
- /**
- * Alias for {@link vec4.multiply}
- * @function
- */
- vec4.mul = vec4.multiply;
- /**
- * Divides two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
- vec4.divide = function(out, a, b) {
- out[0] = a[0] / b[0];
- out[1] = a[1] / b[1];
- out[2] = a[2] / b[2];
- out[3] = a[3] / b[3];
- return out;
- };
- /**
- * Alias for {@link vec4.divide}
- * @function
- */
- vec4.div = vec4.divide;
- /**
- * Returns the minimum of two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
- vec4.min = function(out, a, b) {
- out[0] = Math.min(a[0], b[0]);
- out[1] = Math.min(a[1], b[1]);
- out[2] = Math.min(a[2], b[2]);
- out[3] = Math.min(a[3], b[3]);
- return out;
- };
- /**
- * Returns the maximum of two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
- vec4.max = function(out, a, b) {
- out[0] = Math.max(a[0], b[0]);
- out[1] = Math.max(a[1], b[1]);
- out[2] = Math.max(a[2], b[2]);
- out[3] = Math.max(a[3], b[3]);
- return out;
- };
- /**
- * Scales a vec4 by a scalar number
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {vec4} out
- */
- vec4.scale = function(out, a, b) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- out[2] = a[2] * b;
- out[3] = a[3] * b;
- return out;
- };
- /**
- * Adds two vec4's after scaling the second operand by a scalar value
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @param {Number} scale the amount to scale b by before adding
- * @returns {vec4} out
- */
- vec4.scaleAndAdd = function(out, a, b, scale) {
- out[0] = a[0] + (b[0] * scale);
- out[1] = a[1] + (b[1] * scale);
- out[2] = a[2] + (b[2] * scale);
- out[3] = a[3] + (b[3] * scale);
- return out;
- };
- /**
- * Calculates the euclidian distance between two vec4's
- *
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {Number} distance between a and b
- */
- vec4.distance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2],
- w = b[3] - a[3];
- return Math.sqrt(x*x + y*y + z*z + w*w);
- };
- /**
- * Alias for {@link vec4.distance}
- * @function
- */
- vec4.dist = vec4.distance;
- /**
- * Calculates the squared euclidian distance between two vec4's
- *
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {Number} squared distance between a and b
- */
- vec4.squaredDistance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2],
- w = b[3] - a[3];
- return x*x + y*y + z*z + w*w;
- };
- /**
- * Alias for {@link vec4.squaredDistance}
- * @function
- */
- vec4.sqrDist = vec4.squaredDistance;
- /**
- * Calculates the length of a vec4
- *
- * @param {vec4} a vector to calculate length of
- * @returns {Number} length of a
- */
- vec4.length = function (a) {
- var x = a[0],
- y = a[1],
- z = a[2],
- w = a[3];
- return Math.sqrt(x*x + y*y + z*z + w*w);
- };
- /**
- * Alias for {@link vec4.length}
- * @function
- */
- vec4.len = vec4.length;
- /**
- * Calculates the squared length of a vec4
- *
- * @param {vec4} a vector to calculate squared length of
- * @returns {Number} squared length of a
- */
- vec4.squaredLength = function (a) {
- var x = a[0],
- y = a[1],
- z = a[2],
- w = a[3];
- return x*x + y*y + z*z + w*w;
- };
- /**
- * Alias for {@link vec4.squaredLength}
- * @function
- */
- vec4.sqrLen = vec4.squaredLength;
- /**
- * Negates the components of a vec4
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a vector to negate
- * @returns {vec4} out
- */
- vec4.negate = function(out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- out[3] = -a[3];
- return out;
- };
- /**
- * Returns the inverse of the components of a vec4
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a vector to invert
- * @returns {vec4} out
- */
- vec4.inverse = function(out, a) {
- out[0] = 1.0 / a[0];
- out[1] = 1.0 / a[1];
- out[2] = 1.0 / a[2];
- out[3] = 1.0 / a[3];
- return out;
- };
- /**
- * Normalize a vec4
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a vector to normalize
- * @returns {vec4} out
- */
- vec4.normalize = function(out, a) {
- var x = a[0],
- y = a[1],
- z = a[2],
- w = a[3];
- var len = x*x + y*y + z*z + w*w;
- if (len > 0) {
- len = 1 / Math.sqrt(len);
- out[0] = x * len;
- out[1] = y * len;
- out[2] = z * len;
- out[3] = w * len;
- }
- return out;
- };
- /**
- * Calculates the dot product of two vec4's
- *
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {Number} dot product of a and b
- */
- vec4.dot = function (a, b) {
- return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
- };
- /**
- * Performs a linear interpolation between two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {vec4} out
- */
- vec4.lerp = function (out, a, b, t) {
- var ax = a[0],
- ay = a[1],
- az = a[2],
- aw = a[3];
- out[0] = ax + t * (b[0] - ax);
- out[1] = ay + t * (b[1] - ay);
- out[2] = az + t * (b[2] - az);
- out[3] = aw + t * (b[3] - aw);
- return out;
- };
- /**
- * Generates a random vector with the given scale
- *
- * @param {vec4} out the receiving vector
- * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
- * @returns {vec4} out
- */
- vec4.random = function (out, scale) {
- scale = scale || 1.0;
- //TODO: This is a pretty awful way of doing this. Find something better.
- out[0] = glMatrix.RANDOM();
- out[1] = glMatrix.RANDOM();
- out[2] = glMatrix.RANDOM();
- out[3] = glMatrix.RANDOM();
- vec4.normalize(out, out);
- vec4.scale(out, out, scale);
- return out;
- };
- /**
- * Transforms the vec4 with a mat4.
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the vector to transform
- * @param {mat4} m matrix to transform with
- * @returns {vec4} out
- */
- vec4.transformMat4 = function(out, a, m) {
- var x = a[0], y = a[1], z = a[2], w = a[3];
- out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
- out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
- out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
- out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
- return out;
- };
- /**
- * Transforms the vec4 with a quat
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the vector to transform
- * @param {quat} q quaternion to transform with
- * @returns {vec4} out
- */
- vec4.transformQuat = function(out, a, q) {
- var x = a[0], y = a[1], z = a[2],
- qx = q[0], qy = q[1], qz = q[2], qw = q[3],
- // calculate quat * vec
- ix = qw * x + qy * z - qz * y,
- iy = qw * y + qz * x - qx * z,
- iz = qw * z + qx * y - qy * x,
- iw = -qx * x - qy * y - qz * z;
- // calculate result * inverse quat
- out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
- out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
- out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
- out[3] = a[3];
- return out;
- };
- /**
- * Perform some operation over an array of vec4s.
- *
- * @param {Array} a the array of vectors to iterate over
- * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed
- * @param {Number} offset Number of elements to skip at the beginning of the array
- * @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array
- * @param {Function} fn Function to call for each vector in the array
- * @param {Object} [arg] additional argument to pass to fn
- * @returns {Array} a
- * @function
- */
- vec4.forEach = (function() {
- var vec = vec4.create();
- return function(a, stride, offset, count, fn, arg) {
- var i, l;
- if(!stride) {
- stride = 4;
- }
- if(!offset) {
- offset = 0;
- }
- if(count) {
- l = Math.min((count * stride) + offset, a.length);
- } else {
- l = a.length;
- }
- for(i = offset; i < l; i += stride) {
- vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2]; vec[3] = a[i+3];
- fn(vec, vec, arg);
- a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2]; a[i+3] = vec[3];
- }
- return a;
- };
- })();
- /**
- * Returns a string representation of a vector
- *
- * @param {vec4} vec vector to represent as a string
- * @returns {String} string representation of the vector
- */
- vec4.str = function (a) {
- return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
- };
- module.exports = vec4;
- /***/ },
- /* 9 */
- /***/ function(module, exports, __webpack_require__) {
- /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
- Permission is hereby granted, free of charge, to any person obtaining a copy
- of this software and associated documentation files (the "Software"), to deal
- in the Software without restriction, including without limitation the rights
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- copies of the Software, and to permit persons to whom the Software is
- furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
- all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- THE SOFTWARE. */
- var glMatrix = __webpack_require__(1);
- /**
- * @class 2 Dimensional Vector
- * @name vec2
- */
- var vec2 = {};
- /**
- * Creates a new, empty vec2
- *
- * @returns {vec2} a new 2D vector
- */
- vec2.create = function() {
- var out = new glMatrix.ARRAY_TYPE(2);
- out[0] = 0;
- out[1] = 0;
- return out;
- };
- /**
- * Creates a new vec2 initialized with values from an existing vector
- *
- * @param {vec2} a vector to clone
- * @returns {vec2} a new 2D vector
- */
- vec2.clone = function(a) {
- var out = new glMatrix.ARRAY_TYPE(2);
- out[0] = a[0];
- out[1] = a[1];
- return out;
- };
- /**
- * Creates a new vec2 initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @returns {vec2} a new 2D vector
- */
- vec2.fromValues = function(x, y) {
- var out = new glMatrix.ARRAY_TYPE(2);
- out[0] = x;
- out[1] = y;
- return out;
- };
- /**
- * Copy the values from one vec2 to another
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the source vector
- * @returns {vec2} out
- */
- vec2.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- return out;
- };
- /**
- * Set the components of a vec2 to the given values
- *
- * @param {vec2} out the receiving vector
- * @param {Number} x X component
- * @param {Number} y Y component
- * @returns {vec2} out
- */
- vec2.set = function(out, x, y) {
- out[0] = x;
- out[1] = y;
- return out;
- };
- /**
- * Adds two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
- vec2.add = function(out, a, b) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- return out;
- };
- /**
- * Subtracts vector b from vector a
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
- vec2.subtract = function(out, a, b) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- return out;
- };
- /**
- * Alias for {@link vec2.subtract}
- * @function
- */
- vec2.sub = vec2.subtract;
- /**
- * Multiplies two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
- vec2.multiply = function(out, a, b) {
- out[0] = a[0] * b[0];
- out[1] = a[1] * b[1];
- return out;
- };
- /**
- * Alias for {@link vec2.multiply}
- * @function
- */
- vec2.mul = vec2.multiply;
- /**
- * Divides two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
- vec2.divide = function(out, a, b) {
- out[0] = a[0] / b[0];
- out[1] = a[1] / b[1];
- return out;
- };
- /**
- * Alias for {@link vec2.divide}
- * @function
- */
- vec2.div = vec2.divide;
- /**
- * Returns the minimum of two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
- vec2.min = function(out, a, b) {
- out[0] = Math.min(a[0], b[0]);
- out[1] = Math.min(a[1], b[1]);
- return out;
- };
- /**
- * Returns the maximum of two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
- vec2.max = function(out, a, b) {
- out[0] = Math.max(a[0], b[0]);
- out[1] = Math.max(a[1], b[1]);
- return out;
- };
- /**
- * Scales a vec2 by a scalar number
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {vec2} out
- */
- vec2.scale = function(out, a, b) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- return out;
- };
- /**
- * Adds two vec2's after scaling the second operand by a scalar value
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @param {Number} scale the amount to scale b by before adding
- * @returns {vec2} out
- */
- vec2.scaleAndAdd = function(out, a, b, scale) {
- out[0] = a[0] + (b[0] * scale);
- out[1] = a[1] + (b[1] * scale);
- return out;
- };
- /**
- * Calculates the euclidian distance between two vec2's
- *
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {Number} distance between a and b
- */
- vec2.distance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1];
- return Math.sqrt(x*x + y*y);
- };
- /**
- * Alias for {@link vec2.distance}
- * @function
- */
- vec2.dist = vec2.distance;
- /**
- * Calculates the squared euclidian distance between two vec2's
- *
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {Number} squared distance between a and b
- */
- vec2.squaredDistance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1];
- return x*x + y*y;
- };
- /**
- * Alias for {@link vec2.squaredDistance}
- * @function
- */
- vec2.sqrDist = vec2.squaredDistance;
- /**
- * Calculates the length of a vec2
- *
- * @param {vec2} a vector to calculate length of
- * @returns {Number} length of a
- */
- vec2.length = function (a) {
- var x = a[0],
- y = a[1];
- return Math.sqrt(x*x + y*y);
- };
- /**
- * Alias for {@link vec2.length}
- * @function
- */
- vec2.len = vec2.length;
- /**
- * Calculates the squared length of a vec2
- *
- * @param {vec2} a vector to calculate squared length of
- * @returns {Number} squared length of a
- */
- vec2.squaredLength = function (a) {
- var x = a[0],
- y = a[1];
- return x*x + y*y;
- };
- /**
- * Alias for {@link vec2.squaredLength}
- * @function
- */
- vec2.sqrLen = vec2.squaredLength;
- /**
- * Negates the components of a vec2
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a vector to negate
- * @returns {vec2} out
- */
- vec2.negate = function(out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- return out;
- };
- /**
- * Returns the inverse of the components of a vec2
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a vector to invert
- * @returns {vec2} out
- */
- vec2.inverse = function(out, a) {
- out[0] = 1.0 / a[0];
- out[1] = 1.0 / a[1];
- return out;
- };
- /**
- * Normalize a vec2
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a vector to normalize
- * @returns {vec2} out
- */
- vec2.normalize = function(out, a) {
- var x = a[0],
- y = a[1];
- var len = x*x + y*y;
- if (len > 0) {
- //TODO: evaluate use of glm_invsqrt here?
- len = 1 / Math.sqrt(len);
- out[0] = a[0] * len;
- out[1] = a[1] * len;
- }
- return out;
- };
- /**
- * Calculates the dot product of two vec2's
- *
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {Number} dot product of a and b
- */
- vec2.dot = function (a, b) {
- return a[0] * b[0] + a[1] * b[1];
- };
- /**
- * Computes the cross product of two vec2's
- * Note that the cross product must by definition produce a 3D vector
- *
- * @param {vec3} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec3} out
- */
- vec2.cross = function(out, a, b) {
- var z = a[0] * b[1] - a[1] * b[0];
- out[0] = out[1] = 0;
- out[2] = z;
- return out;
- };
- /**
- * Performs a linear interpolation between two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {vec2} out
- */
- vec2.lerp = function (out, a, b, t) {
- var ax = a[0],
- ay = a[1];
- out[0] = ax + t * (b[0] - ax);
- out[1] = ay + t * (b[1] - ay);
- return out;
- };
- /**
- * Generates a random vector with the given scale
- *
- * @param {vec2} out the receiving vector
- * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
- * @returns {vec2} out
- */
- vec2.random = function (out, scale) {
- scale = scale || 1.0;
- var r = glMatrix.RANDOM() * 2.0 * Math.PI;
- out[0] = Math.cos(r) * scale;
- out[1] = Math.sin(r) * scale;
- return out;
- };
- /**
- * Transforms the vec2 with a mat2
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to transform
- * @param {mat2} m matrix to transform with
- * @returns {vec2} out
- */
- vec2.transformMat2 = function(out, a, m) {
- var x = a[0],
- y = a[1];
- out[0] = m[0] * x + m[2] * y;
- out[1] = m[1] * x + m[3] * y;
- return out;
- };
- /**
- * Transforms the vec2 with a mat2d
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to transform
- * @param {mat2d} m matrix to transform with
- * @returns {vec2} out
- */
- vec2.transformMat2d = function(out, a, m) {
- var x = a[0],
- y = a[1];
- out[0] = m[0] * x + m[2] * y + m[4];
- out[1] = m[1] * x + m[3] * y + m[5];
- return out;
- };
- /**
- * Transforms the vec2 with a mat3
- * 3rd vector component is implicitly '1'
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to transform
- * @param {mat3} m matrix to transform with
- * @returns {vec2} out
- */
- vec2.transformMat3 = function(out, a, m) {
- var x = a[0],
- y = a[1];
- out[0] = m[0] * x + m[3] * y + m[6];
- out[1] = m[1] * x + m[4] * y + m[7];
- return out;
- };
- /**
- * Transforms the vec2 with a mat4
- * 3rd vector component is implicitly '0'
- * 4th vector component is implicitly '1'
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to transform
- * @param {mat4} m matrix to transform with
- * @returns {vec2} out
- */
- vec2.transformMat4 = function(out, a, m) {
- var x = a[0],
- y = a[1];
- out[0] = m[0] * x + m[4] * y + m[12];
- out[1] = m[1] * x + m[5] * y + m[13];
- return out;
- };
- /**
- * Perform some operation over an array of vec2s.
- *
- * @param {Array} a the array of vectors to iterate over
- * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed
- * @param {Number} offset Number of elements to skip at the beginning of the array
- * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array
- * @param {Function} fn Function to call for each vector in the array
- * @param {Object} [arg] additional argument to pass to fn
- * @returns {Array} a
- * @function
- */
- vec2.forEach = (function() {
- var vec = vec2.create();
- return function(a, stride, offset, count, fn, arg) {
- var i, l;
- if(!stride) {
- stride = 2;
- }
- if(!offset) {
- offset = 0;
- }
- if(count) {
- l = Math.min((count * stride) + offset, a.length);
- } else {
- l = a.length;
- }
- for(i = offset; i < l; i += stride) {
- vec[0] = a[i]; vec[1] = a[i+1];
- fn(vec, vec, arg);
- a[i] = vec[0]; a[i+1] = vec[1];
- }
- return a;
- };
- })();
- /**
- * Returns a string representation of a vector
- *
- * @param {vec2} vec vector to represent as a string
- * @returns {String} string representation of the vector
- */
- vec2.str = function (a) {
- return 'vec2(' + a[0] + ', ' + a[1] + ')';
- };
- module.exports = vec2;
- /***/ }
- /******/ ])
- });
- ;
|