| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292 |
- /**
- * @fileoverview gl-matrix - High performance matrix and vector operations
- * @author Brandon Jones
- * @author Colin MacKenzie IV
- * @version 2.2.2
- */
- /* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
- (function(_global) {
- "use strict";
- var shim = {};
- if (typeof(exports) === 'undefined') {
- if(typeof define == 'function' && typeof define.amd == 'object' && define.amd) {
- shim.exports = {};
- define(function() {
- return shim.exports;
- });
- } else {
- // gl-matrix lives in a browser, define its namespaces in global
- shim.exports = typeof(window) !== 'undefined' ? window : _global;
- }
- }
- else {
- // gl-matrix lives in commonjs, define its namespaces in exports
- shim.exports = exports;
- }
- (function(exports) {
- /* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
- if(!GLMAT_EPSILON) {
- var GLMAT_EPSILON = 0.000001;
- }
- if(!GLMAT_ARRAY_TYPE) {
- var GLMAT_ARRAY_TYPE = (typeof Float32Array !== 'undefined') ? Float32Array : Array;
- }
- if(!GLMAT_RANDOM) {
- var GLMAT_RANDOM = Math.random;
- }
- /**
- * @class Common utilities
- * @name glMatrix
- */
- var glMatrix = {};
- /**
- * Sets the type of array used when creating new vectors and matrices
- *
- * @param {Type} type Array type, such as Float32Array or Array
- */
- glMatrix.setMatrixArrayType = function(type) {
- GLMAT_ARRAY_TYPE = type;
- }
- if(typeof(exports) !== 'undefined') {
- exports.glMatrix = glMatrix;
- }
- var degree = Math.PI / 180;
- /**
- * Convert Degree To Radian
- *
- * @param {Number} Angle in Degrees
- */
- glMatrix.toRadian = function(a){
- return a * degree;
- }
- ;
- /* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
- /**
- * @class 2 Dimensional Vector
- * @name vec2
- */
- var vec2 = {};
- /**
- * Creates a new, empty vec2
- *
- * @returns {vec2} a new 2D vector
- */
- vec2.create = function() {
- var out = new GLMAT_ARRAY_TYPE(2);
- out[0] = 0;
- out[1] = 0;
- return out;
- };
- /**
- * Creates a new vec2 initialized with values from an existing vector
- *
- * @param {vec2} a vector to clone
- * @returns {vec2} a new 2D vector
- */
- vec2.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(2);
- out[0] = a[0];
- out[1] = a[1];
- return out;
- };
- /**
- * Creates a new vec2 initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @returns {vec2} a new 2D vector
- */
- vec2.fromValues = function(x, y) {
- var out = new GLMAT_ARRAY_TYPE(2);
- out[0] = x;
- out[1] = y;
- return out;
- };
- /**
- * Copy the values from one vec2 to another
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the source vector
- * @returns {vec2} out
- */
- vec2.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- return out;
- };
- /**
- * Set the components of a vec2 to the given values
- *
- * @param {vec2} out the receiving vector
- * @param {Number} x X component
- * @param {Number} y Y component
- * @returns {vec2} out
- */
- vec2.set = function(out, x, y) {
- out[0] = x;
- out[1] = y;
- return out;
- };
- /**
- * Adds two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
- vec2.add = function(out, a, b) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- return out;
- };
- /**
- * Subtracts vector b from vector a
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
- vec2.subtract = function(out, a, b) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- return out;
- };
- /**
- * Alias for {@link vec2.subtract}
- * @function
- */
- vec2.sub = vec2.subtract;
- /**
- * Multiplies two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
- vec2.multiply = function(out, a, b) {
- out[0] = a[0] * b[0];
- out[1] = a[1] * b[1];
- return out;
- };
- /**
- * Alias for {@link vec2.multiply}
- * @function
- */
- vec2.mul = vec2.multiply;
- /**
- * Divides two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
- vec2.divide = function(out, a, b) {
- out[0] = a[0] / b[0];
- out[1] = a[1] / b[1];
- return out;
- };
- /**
- * Alias for {@link vec2.divide}
- * @function
- */
- vec2.div = vec2.divide;
- /**
- * Returns the minimum of two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
- vec2.min = function(out, a, b) {
- out[0] = Math.min(a[0], b[0]);
- out[1] = Math.min(a[1], b[1]);
- return out;
- };
- /**
- * Returns the maximum of two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec2} out
- */
- vec2.max = function(out, a, b) {
- out[0] = Math.max(a[0], b[0]);
- out[1] = Math.max(a[1], b[1]);
- return out;
- };
- /**
- * Scales a vec2 by a scalar number
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {vec2} out
- */
- vec2.scale = function(out, a, b) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- return out;
- };
- /**
- * Adds two vec2's after scaling the second operand by a scalar value
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @param {Number} scale the amount to scale b by before adding
- * @returns {vec2} out
- */
- vec2.scaleAndAdd = function(out, a, b, scale) {
- out[0] = a[0] + (b[0] * scale);
- out[1] = a[1] + (b[1] * scale);
- return out;
- };
- /**
- * Calculates the euclidian distance between two vec2's
- *
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {Number} distance between a and b
- */
- vec2.distance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1];
- return Math.sqrt(x*x + y*y);
- };
- /**
- * Alias for {@link vec2.distance}
- * @function
- */
- vec2.dist = vec2.distance;
- /**
- * Calculates the squared euclidian distance between two vec2's
- *
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {Number} squared distance between a and b
- */
- vec2.squaredDistance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1];
- return x*x + y*y;
- };
- /**
- * Alias for {@link vec2.squaredDistance}
- * @function
- */
- vec2.sqrDist = vec2.squaredDistance;
- /**
- * Calculates the length of a vec2
- *
- * @param {vec2} a vector to calculate length of
- * @returns {Number} length of a
- */
- vec2.length = function (a) {
- var x = a[0],
- y = a[1];
- return Math.sqrt(x*x + y*y);
- };
- /**
- * Alias for {@link vec2.length}
- * @function
- */
- vec2.len = vec2.length;
- /**
- * Calculates the squared length of a vec2
- *
- * @param {vec2} a vector to calculate squared length of
- * @returns {Number} squared length of a
- */
- vec2.squaredLength = function (a) {
- var x = a[0],
- y = a[1];
- return x*x + y*y;
- };
- /**
- * Alias for {@link vec2.squaredLength}
- * @function
- */
- vec2.sqrLen = vec2.squaredLength;
- /**
- * Negates the components of a vec2
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a vector to negate
- * @returns {vec2} out
- */
- vec2.negate = function(out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- return out;
- };
- /**
- * Returns the inverse of the components of a vec2
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a vector to invert
- * @returns {vec2} out
- */
- vec2.inverse = function(out, a) {
- out[0] = 1.0 / a[0];
- out[1] = 1.0 / a[1];
- return out;
- };
- /**
- * Normalize a vec2
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a vector to normalize
- * @returns {vec2} out
- */
- vec2.normalize = function(out, a) {
- var x = a[0],
- y = a[1];
- var len = x*x + y*y;
- if (len > 0) {
- //TODO: evaluate use of glm_invsqrt here?
- len = 1 / Math.sqrt(len);
- out[0] = a[0] * len;
- out[1] = a[1] * len;
- }
- return out;
- };
- /**
- * Calculates the dot product of two vec2's
- *
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {Number} dot product of a and b
- */
- vec2.dot = function (a, b) {
- return a[0] * b[0] + a[1] * b[1];
- };
- /**
- * Computes the cross product of two vec2's
- * Note that the cross product must by definition produce a 3D vector
- *
- * @param {vec3} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @returns {vec3} out
- */
- vec2.cross = function(out, a, b) {
- var z = a[0] * b[1] - a[1] * b[0];
- out[0] = out[1] = 0;
- out[2] = z;
- return out;
- };
- /**
- * Performs a linear interpolation between two vec2's
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the first operand
- * @param {vec2} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {vec2} out
- */
- vec2.lerp = function (out, a, b, t) {
- var ax = a[0],
- ay = a[1];
- out[0] = ax + t * (b[0] - ax);
- out[1] = ay + t * (b[1] - ay);
- return out;
- };
- /**
- * Generates a random vector with the given scale
- *
- * @param {vec2} out the receiving vector
- * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
- * @returns {vec2} out
- */
- vec2.random = function (out, scale) {
- scale = scale || 1.0;
- var r = GLMAT_RANDOM() * 2.0 * Math.PI;
- out[0] = Math.cos(r) * scale;
- out[1] = Math.sin(r) * scale;
- return out;
- };
- /**
- * Transforms the vec2 with a mat2
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to transform
- * @param {mat2} m matrix to transform with
- * @returns {vec2} out
- */
- vec2.transformMat2 = function(out, a, m) {
- var x = a[0],
- y = a[1];
- out[0] = m[0] * x + m[2] * y;
- out[1] = m[1] * x + m[3] * y;
- return out;
- };
- /**
- * Transforms the vec2 with a mat2d
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to transform
- * @param {mat2d} m matrix to transform with
- * @returns {vec2} out
- */
- vec2.transformMat2d = function(out, a, m) {
- var x = a[0],
- y = a[1];
- out[0] = m[0] * x + m[2] * y + m[4];
- out[1] = m[1] * x + m[3] * y + m[5];
- return out;
- };
- /**
- * Transforms the vec2 with a mat3
- * 3rd vector component is implicitly '1'
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to transform
- * @param {mat3} m matrix to transform with
- * @returns {vec2} out
- */
- vec2.transformMat3 = function(out, a, m) {
- var x = a[0],
- y = a[1];
- out[0] = m[0] * x + m[3] * y + m[6];
- out[1] = m[1] * x + m[4] * y + m[7];
- return out;
- };
- /**
- * Transforms the vec2 with a mat4
- * 3rd vector component is implicitly '0'
- * 4th vector component is implicitly '1'
- *
- * @param {vec2} out the receiving vector
- * @param {vec2} a the vector to transform
- * @param {mat4} m matrix to transform with
- * @returns {vec2} out
- */
- vec2.transformMat4 = function(out, a, m) {
- var x = a[0],
- y = a[1];
- out[0] = m[0] * x + m[4] * y + m[12];
- out[1] = m[1] * x + m[5] * y + m[13];
- return out;
- };
- /**
- * Perform some operation over an array of vec2s.
- *
- * @param {Array} a the array of vectors to iterate over
- * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed
- * @param {Number} offset Number of elements to skip at the beginning of the array
- * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array
- * @param {Function} fn Function to call for each vector in the array
- * @param {Object} [arg] additional argument to pass to fn
- * @returns {Array} a
- * @function
- */
- vec2.forEach = (function() {
- var vec = vec2.create();
- return function(a, stride, offset, count, fn, arg) {
- var i, l;
- if(!stride) {
- stride = 2;
- }
- if(!offset) {
- offset = 0;
- }
- if(count) {
- l = Math.min((count * stride) + offset, a.length);
- } else {
- l = a.length;
- }
- for(i = offset; i < l; i += stride) {
- vec[0] = a[i]; vec[1] = a[i+1];
- fn(vec, vec, arg);
- a[i] = vec[0]; a[i+1] = vec[1];
- }
- return a;
- };
- })();
- /**
- * Returns a string representation of a vector
- *
- * @param {vec2} vec vector to represent as a string
- * @returns {String} string representation of the vector
- */
- vec2.str = function (a) {
- return 'vec2(' + a[0] + ', ' + a[1] + ')';
- };
- if(typeof(exports) !== 'undefined') {
- exports.vec2 = vec2;
- }
- ;
- /* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
- /**
- * @class 3 Dimensional Vector
- * @name vec3
- */
- var vec3 = {};
- /**
- * Creates a new, empty vec3
- *
- * @returns {vec3} a new 3D vector
- */
- vec3.create = function() {
- var out = new GLMAT_ARRAY_TYPE(3);
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- return out;
- };
- /**
- * Creates a new vec3 initialized with values from an existing vector
- *
- * @param {vec3} a vector to clone
- * @returns {vec3} a new 3D vector
- */
- vec3.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(3);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- return out;
- };
- /**
- * Creates a new vec3 initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @returns {vec3} a new 3D vector
- */
- vec3.fromValues = function(x, y, z) {
- var out = new GLMAT_ARRAY_TYPE(3);
- out[0] = x;
- out[1] = y;
- out[2] = z;
- return out;
- };
- /**
- * Copy the values from one vec3 to another
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the source vector
- * @returns {vec3} out
- */
- vec3.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- return out;
- };
- /**
- * Set the components of a vec3 to the given values
- *
- * @param {vec3} out the receiving vector
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @returns {vec3} out
- */
- vec3.set = function(out, x, y, z) {
- out[0] = x;
- out[1] = y;
- out[2] = z;
- return out;
- };
- /**
- * Adds two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.add = function(out, a, b) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- return out;
- };
- /**
- * Subtracts vector b from vector a
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.subtract = function(out, a, b) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- out[2] = a[2] - b[2];
- return out;
- };
- /**
- * Alias for {@link vec3.subtract}
- * @function
- */
- vec3.sub = vec3.subtract;
- /**
- * Multiplies two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.multiply = function(out, a, b) {
- out[0] = a[0] * b[0];
- out[1] = a[1] * b[1];
- out[2] = a[2] * b[2];
- return out;
- };
- /**
- * Alias for {@link vec3.multiply}
- * @function
- */
- vec3.mul = vec3.multiply;
- /**
- * Divides two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.divide = function(out, a, b) {
- out[0] = a[0] / b[0];
- out[1] = a[1] / b[1];
- out[2] = a[2] / b[2];
- return out;
- };
- /**
- * Alias for {@link vec3.divide}
- * @function
- */
- vec3.div = vec3.divide;
- /**
- * Returns the minimum of two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.min = function(out, a, b) {
- out[0] = Math.min(a[0], b[0]);
- out[1] = Math.min(a[1], b[1]);
- out[2] = Math.min(a[2], b[2]);
- return out;
- };
- /**
- * Returns the maximum of two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.max = function(out, a, b) {
- out[0] = Math.max(a[0], b[0]);
- out[1] = Math.max(a[1], b[1]);
- out[2] = Math.max(a[2], b[2]);
- return out;
- };
- /**
- * Scales a vec3 by a scalar number
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {vec3} out
- */
- vec3.scale = function(out, a, b) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- out[2] = a[2] * b;
- return out;
- };
- /**
- * Adds two vec3's after scaling the second operand by a scalar value
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @param {Number} scale the amount to scale b by before adding
- * @returns {vec3} out
- */
- vec3.scaleAndAdd = function(out, a, b, scale) {
- out[0] = a[0] + (b[0] * scale);
- out[1] = a[1] + (b[1] * scale);
- out[2] = a[2] + (b[2] * scale);
- return out;
- };
- /**
- * Calculates the euclidian distance between two vec3's
- *
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {Number} distance between a and b
- */
- vec3.distance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2];
- return Math.sqrt(x*x + y*y + z*z);
- };
- /**
- * Alias for {@link vec3.distance}
- * @function
- */
- vec3.dist = vec3.distance;
- /**
- * Calculates the squared euclidian distance between two vec3's
- *
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {Number} squared distance between a and b
- */
- vec3.squaredDistance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2];
- return x*x + y*y + z*z;
- };
- /**
- * Alias for {@link vec3.squaredDistance}
- * @function
- */
- vec3.sqrDist = vec3.squaredDistance;
- /**
- * Calculates the length of a vec3
- *
- * @param {vec3} a vector to calculate length of
- * @returns {Number} length of a
- */
- vec3.length = function (a) {
- var x = a[0],
- y = a[1],
- z = a[2];
- return Math.sqrt(x*x + y*y + z*z);
- };
- /**
- * Alias for {@link vec3.length}
- * @function
- */
- vec3.len = vec3.length;
- /**
- * Calculates the squared length of a vec3
- *
- * @param {vec3} a vector to calculate squared length of
- * @returns {Number} squared length of a
- */
- vec3.squaredLength = function (a) {
- var x = a[0],
- y = a[1],
- z = a[2];
- return x*x + y*y + z*z;
- };
- /**
- * Alias for {@link vec3.squaredLength}
- * @function
- */
- vec3.sqrLen = vec3.squaredLength;
- /**
- * Negates the components of a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to negate
- * @returns {vec3} out
- */
- vec3.negate = function(out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- return out;
- };
- /**
- * Returns the inverse of the components of a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to invert
- * @returns {vec3} out
- */
- vec3.inverse = function(out, a) {
- out[0] = 1.0 / a[0];
- out[1] = 1.0 / a[1];
- out[2] = 1.0 / a[2];
- return out;
- };
- /**
- * Normalize a vec3
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a vector to normalize
- * @returns {vec3} out
- */
- vec3.normalize = function(out, a) {
- var x = a[0],
- y = a[1],
- z = a[2];
- var len = x*x + y*y + z*z;
- if (len > 0) {
- //TODO: evaluate use of glm_invsqrt here?
- len = 1 / Math.sqrt(len);
- out[0] = a[0] * len;
- out[1] = a[1] * len;
- out[2] = a[2] * len;
- }
- return out;
- };
- /**
- * Calculates the dot product of two vec3's
- *
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {Number} dot product of a and b
- */
- vec3.dot = function (a, b) {
- return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
- };
- /**
- * Computes the cross product of two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @returns {vec3} out
- */
- vec3.cross = function(out, a, b) {
- var ax = a[0], ay = a[1], az = a[2],
- bx = b[0], by = b[1], bz = b[2];
- out[0] = ay * bz - az * by;
- out[1] = az * bx - ax * bz;
- out[2] = ax * by - ay * bx;
- return out;
- };
- /**
- * Performs a linear interpolation between two vec3's
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the first operand
- * @param {vec3} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {vec3} out
- */
- vec3.lerp = function (out, a, b, t) {
- var ax = a[0],
- ay = a[1],
- az = a[2];
- out[0] = ax + t * (b[0] - ax);
- out[1] = ay + t * (b[1] - ay);
- out[2] = az + t * (b[2] - az);
- return out;
- };
- /**
- * Generates a random vector with the given scale
- *
- * @param {vec3} out the receiving vector
- * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
- * @returns {vec3} out
- */
- vec3.random = function (out, scale) {
- scale = scale || 1.0;
- var r = GLMAT_RANDOM() * 2.0 * Math.PI;
- var z = (GLMAT_RANDOM() * 2.0) - 1.0;
- var zScale = Math.sqrt(1.0-z*z) * scale;
- out[0] = Math.cos(r) * zScale;
- out[1] = Math.sin(r) * zScale;
- out[2] = z * scale;
- return out;
- };
- /**
- * Transforms the vec3 with a mat4.
- * 4th vector component is implicitly '1'
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to transform
- * @param {mat4} m matrix to transform with
- * @returns {vec3} out
- */
- vec3.transformMat4 = function(out, a, m) {
- var x = a[0], y = a[1], z = a[2],
- w = m[3] * x + m[7] * y + m[11] * z + m[15];
- w = w || 1.0;
- out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
- out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
- out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
- return out;
- };
- /**
- * Transforms the vec3 with a mat3.
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to transform
- * @param {mat4} m the 3x3 matrix to transform with
- * @returns {vec3} out
- */
- vec3.transformMat3 = function(out, a, m) {
- var x = a[0], y = a[1], z = a[2];
- out[0] = x * m[0] + y * m[3] + z * m[6];
- out[1] = x * m[1] + y * m[4] + z * m[7];
- out[2] = x * m[2] + y * m[5] + z * m[8];
- return out;
- };
- /**
- * Transforms the vec3 with a quat
- *
- * @param {vec3} out the receiving vector
- * @param {vec3} a the vector to transform
- * @param {quat} q quaternion to transform with
- * @returns {vec3} out
- */
- vec3.transformQuat = function(out, a, q) {
- // benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations
- var x = a[0], y = a[1], z = a[2],
- qx = q[0], qy = q[1], qz = q[2], qw = q[3],
- // calculate quat * vec
- ix = qw * x + qy * z - qz * y,
- iy = qw * y + qz * x - qx * z,
- iz = qw * z + qx * y - qy * x,
- iw = -qx * x - qy * y - qz * z;
- // calculate result * inverse quat
- out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
- out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
- out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
- return out;
- };
- /**
- * Rotate a 3D vector around the x-axis
- * @param {vec3} out The receiving vec3
- * @param {vec3} a The vec3 point to rotate
- * @param {vec3} b The origin of the rotation
- * @param {Number} c The angle of rotation
- * @returns {vec3} out
- */
- vec3.rotateX = function(out, a, b, c){
- var p = [], r=[];
- //Translate point to the origin
- p[0] = a[0] - b[0];
- p[1] = a[1] - b[1];
- p[2] = a[2] - b[2];
- //perform rotation
- r[0] = p[0];
- r[1] = p[1]*Math.cos(c) - p[2]*Math.sin(c);
- r[2] = p[1]*Math.sin(c) + p[2]*Math.cos(c);
- //translate to correct position
- out[0] = r[0] + b[0];
- out[1] = r[1] + b[1];
- out[2] = r[2] + b[2];
- return out;
- };
- /**
- * Rotate a 3D vector around the y-axis
- * @param {vec3} out The receiving vec3
- * @param {vec3} a The vec3 point to rotate
- * @param {vec3} b The origin of the rotation
- * @param {Number} c The angle of rotation
- * @returns {vec3} out
- */
- vec3.rotateY = function(out, a, b, c){
- var p = [], r=[];
- //Translate point to the origin
- p[0] = a[0] - b[0];
- p[1] = a[1] - b[1];
- p[2] = a[2] - b[2];
- //perform rotation
- r[0] = p[2]*Math.sin(c) + p[0]*Math.cos(c);
- r[1] = p[1];
- r[2] = p[2]*Math.cos(c) - p[0]*Math.sin(c);
- //translate to correct position
- out[0] = r[0] + b[0];
- out[1] = r[1] + b[1];
- out[2] = r[2] + b[2];
- return out;
- };
- /**
- * Rotate a 3D vector around the z-axis
- * @param {vec3} out The receiving vec3
- * @param {vec3} a The vec3 point to rotate
- * @param {vec3} b The origin of the rotation
- * @param {Number} c The angle of rotation
- * @returns {vec3} out
- */
- vec3.rotateZ = function(out, a, b, c){
- var p = [], r=[];
- //Translate point to the origin
- p[0] = a[0] - b[0];
- p[1] = a[1] - b[1];
- p[2] = a[2] - b[2];
- //perform rotation
- r[0] = p[0]*Math.cos(c) - p[1]*Math.sin(c);
- r[1] = p[0]*Math.sin(c) + p[1]*Math.cos(c);
- r[2] = p[2];
- //translate to correct position
- out[0] = r[0] + b[0];
- out[1] = r[1] + b[1];
- out[2] = r[2] + b[2];
- return out;
- };
- /**
- * Perform some operation over an array of vec3s.
- *
- * @param {Array} a the array of vectors to iterate over
- * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed
- * @param {Number} offset Number of elements to skip at the beginning of the array
- * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array
- * @param {Function} fn Function to call for each vector in the array
- * @param {Object} [arg] additional argument to pass to fn
- * @returns {Array} a
- * @function
- */
- vec3.forEach = (function() {
- var vec = vec3.create();
- return function(a, stride, offset, count, fn, arg) {
- var i, l;
- if(!stride) {
- stride = 3;
- }
- if(!offset) {
- offset = 0;
- }
- if(count) {
- l = Math.min((count * stride) + offset, a.length);
- } else {
- l = a.length;
- }
- for(i = offset; i < l; i += stride) {
- vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2];
- fn(vec, vec, arg);
- a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2];
- }
- return a;
- };
- })();
- /**
- * Returns a string representation of a vector
- *
- * @param {vec3} vec vector to represent as a string
- * @returns {String} string representation of the vector
- */
- vec3.str = function (a) {
- return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')';
- };
- if(typeof(exports) !== 'undefined') {
- exports.vec3 = vec3;
- }
- ;
- /* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
- /**
- * @class 4 Dimensional Vector
- * @name vec4
- */
- var vec4 = {};
- /**
- * Creates a new, empty vec4
- *
- * @returns {vec4} a new 4D vector
- */
- vec4.create = function() {
- var out = new GLMAT_ARRAY_TYPE(4);
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- return out;
- };
- /**
- * Creates a new vec4 initialized with values from an existing vector
- *
- * @param {vec4} a vector to clone
- * @returns {vec4} a new 4D vector
- */
- vec4.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(4);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- };
- /**
- * Creates a new vec4 initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {vec4} a new 4D vector
- */
- vec4.fromValues = function(x, y, z, w) {
- var out = new GLMAT_ARRAY_TYPE(4);
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = w;
- return out;
- };
- /**
- * Copy the values from one vec4 to another
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the source vector
- * @returns {vec4} out
- */
- vec4.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- };
- /**
- * Set the components of a vec4 to the given values
- *
- * @param {vec4} out the receiving vector
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {vec4} out
- */
- vec4.set = function(out, x, y, z, w) {
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = w;
- return out;
- };
- /**
- * Adds two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
- vec4.add = function(out, a, b) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- out[3] = a[3] + b[3];
- return out;
- };
- /**
- * Subtracts vector b from vector a
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
- vec4.subtract = function(out, a, b) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- out[2] = a[2] - b[2];
- out[3] = a[3] - b[3];
- return out;
- };
- /**
- * Alias for {@link vec4.subtract}
- * @function
- */
- vec4.sub = vec4.subtract;
- /**
- * Multiplies two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
- vec4.multiply = function(out, a, b) {
- out[0] = a[0] * b[0];
- out[1] = a[1] * b[1];
- out[2] = a[2] * b[2];
- out[3] = a[3] * b[3];
- return out;
- };
- /**
- * Alias for {@link vec4.multiply}
- * @function
- */
- vec4.mul = vec4.multiply;
- /**
- * Divides two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
- vec4.divide = function(out, a, b) {
- out[0] = a[0] / b[0];
- out[1] = a[1] / b[1];
- out[2] = a[2] / b[2];
- out[3] = a[3] / b[3];
- return out;
- };
- /**
- * Alias for {@link vec4.divide}
- * @function
- */
- vec4.div = vec4.divide;
- /**
- * Returns the minimum of two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
- vec4.min = function(out, a, b) {
- out[0] = Math.min(a[0], b[0]);
- out[1] = Math.min(a[1], b[1]);
- out[2] = Math.min(a[2], b[2]);
- out[3] = Math.min(a[3], b[3]);
- return out;
- };
- /**
- * Returns the maximum of two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {vec4} out
- */
- vec4.max = function(out, a, b) {
- out[0] = Math.max(a[0], b[0]);
- out[1] = Math.max(a[1], b[1]);
- out[2] = Math.max(a[2], b[2]);
- out[3] = Math.max(a[3], b[3]);
- return out;
- };
- /**
- * Scales a vec4 by a scalar number
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {vec4} out
- */
- vec4.scale = function(out, a, b) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- out[2] = a[2] * b;
- out[3] = a[3] * b;
- return out;
- };
- /**
- * Adds two vec4's after scaling the second operand by a scalar value
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @param {Number} scale the amount to scale b by before adding
- * @returns {vec4} out
- */
- vec4.scaleAndAdd = function(out, a, b, scale) {
- out[0] = a[0] + (b[0] * scale);
- out[1] = a[1] + (b[1] * scale);
- out[2] = a[2] + (b[2] * scale);
- out[3] = a[3] + (b[3] * scale);
- return out;
- };
- /**
- * Calculates the euclidian distance between two vec4's
- *
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {Number} distance between a and b
- */
- vec4.distance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2],
- w = b[3] - a[3];
- return Math.sqrt(x*x + y*y + z*z + w*w);
- };
- /**
- * Alias for {@link vec4.distance}
- * @function
- */
- vec4.dist = vec4.distance;
- /**
- * Calculates the squared euclidian distance between two vec4's
- *
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {Number} squared distance between a and b
- */
- vec4.squaredDistance = function(a, b) {
- var x = b[0] - a[0],
- y = b[1] - a[1],
- z = b[2] - a[2],
- w = b[3] - a[3];
- return x*x + y*y + z*z + w*w;
- };
- /**
- * Alias for {@link vec4.squaredDistance}
- * @function
- */
- vec4.sqrDist = vec4.squaredDistance;
- /**
- * Calculates the length of a vec4
- *
- * @param {vec4} a vector to calculate length of
- * @returns {Number} length of a
- */
- vec4.length = function (a) {
- var x = a[0],
- y = a[1],
- z = a[2],
- w = a[3];
- return Math.sqrt(x*x + y*y + z*z + w*w);
- };
- /**
- * Alias for {@link vec4.length}
- * @function
- */
- vec4.len = vec4.length;
- /**
- * Calculates the squared length of a vec4
- *
- * @param {vec4} a vector to calculate squared length of
- * @returns {Number} squared length of a
- */
- vec4.squaredLength = function (a) {
- var x = a[0],
- y = a[1],
- z = a[2],
- w = a[3];
- return x*x + y*y + z*z + w*w;
- };
- /**
- * Alias for {@link vec4.squaredLength}
- * @function
- */
- vec4.sqrLen = vec4.squaredLength;
- /**
- * Negates the components of a vec4
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a vector to negate
- * @returns {vec4} out
- */
- vec4.negate = function(out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- out[3] = -a[3];
- return out;
- };
- /**
- * Returns the inverse of the components of a vec4
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a vector to invert
- * @returns {vec4} out
- */
- vec4.inverse = function(out, a) {
- out[0] = 1.0 / a[0];
- out[1] = 1.0 / a[1];
- out[2] = 1.0 / a[2];
- out[3] = 1.0 / a[3];
- return out;
- };
- /**
- * Normalize a vec4
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a vector to normalize
- * @returns {vec4} out
- */
- vec4.normalize = function(out, a) {
- var x = a[0],
- y = a[1],
- z = a[2],
- w = a[3];
- var len = x*x + y*y + z*z + w*w;
- if (len > 0) {
- len = 1 / Math.sqrt(len);
- out[0] = a[0] * len;
- out[1] = a[1] * len;
- out[2] = a[2] * len;
- out[3] = a[3] * len;
- }
- return out;
- };
- /**
- * Calculates the dot product of two vec4's
- *
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @returns {Number} dot product of a and b
- */
- vec4.dot = function (a, b) {
- return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
- };
- /**
- * Performs a linear interpolation between two vec4's
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the first operand
- * @param {vec4} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {vec4} out
- */
- vec4.lerp = function (out, a, b, t) {
- var ax = a[0],
- ay = a[1],
- az = a[2],
- aw = a[3];
- out[0] = ax + t * (b[0] - ax);
- out[1] = ay + t * (b[1] - ay);
- out[2] = az + t * (b[2] - az);
- out[3] = aw + t * (b[3] - aw);
- return out;
- };
- /**
- * Generates a random vector with the given scale
- *
- * @param {vec4} out the receiving vector
- * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
- * @returns {vec4} out
- */
- vec4.random = function (out, scale) {
- scale = scale || 1.0;
- //TODO: This is a pretty awful way of doing this. Find something better.
- out[0] = GLMAT_RANDOM();
- out[1] = GLMAT_RANDOM();
- out[2] = GLMAT_RANDOM();
- out[3] = GLMAT_RANDOM();
- vec4.normalize(out, out);
- vec4.scale(out, out, scale);
- return out;
- };
- /**
- * Transforms the vec4 with a mat4.
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the vector to transform
- * @param {mat4} m matrix to transform with
- * @returns {vec4} out
- */
- vec4.transformMat4 = function(out, a, m) {
- var x = a[0], y = a[1], z = a[2], w = a[3];
- out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
- out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
- out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
- out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
- return out;
- };
- /**
- * Transforms the vec4 with a quat
- *
- * @param {vec4} out the receiving vector
- * @param {vec4} a the vector to transform
- * @param {quat} q quaternion to transform with
- * @returns {vec4} out
- */
- vec4.transformQuat = function(out, a, q) {
- var x = a[0], y = a[1], z = a[2],
- qx = q[0], qy = q[1], qz = q[2], qw = q[3],
- // calculate quat * vec
- ix = qw * x + qy * z - qz * y,
- iy = qw * y + qz * x - qx * z,
- iz = qw * z + qx * y - qy * x,
- iw = -qx * x - qy * y - qz * z;
- // calculate result * inverse quat
- out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
- out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
- out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
- return out;
- };
- /**
- * Perform some operation over an array of vec4s.
- *
- * @param {Array} a the array of vectors to iterate over
- * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed
- * @param {Number} offset Number of elements to skip at the beginning of the array
- * @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array
- * @param {Function} fn Function to call for each vector in the array
- * @param {Object} [arg] additional argument to pass to fn
- * @returns {Array} a
- * @function
- */
- vec4.forEach = (function() {
- var vec = vec4.create();
- return function(a, stride, offset, count, fn, arg) {
- var i, l;
- if(!stride) {
- stride = 4;
- }
- if(!offset) {
- offset = 0;
- }
- if(count) {
- l = Math.min((count * stride) + offset, a.length);
- } else {
- l = a.length;
- }
- for(i = offset; i < l; i += stride) {
- vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2]; vec[3] = a[i+3];
- fn(vec, vec, arg);
- a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2]; a[i+3] = vec[3];
- }
- return a;
- };
- })();
- /**
- * Returns a string representation of a vector
- *
- * @param {vec4} vec vector to represent as a string
- * @returns {String} string representation of the vector
- */
- vec4.str = function (a) {
- return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
- };
- if(typeof(exports) !== 'undefined') {
- exports.vec4 = vec4;
- }
- ;
- /* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
- /**
- * @class 2x2 Matrix
- * @name mat2
- */
- var mat2 = {};
- /**
- * Creates a new identity mat2
- *
- * @returns {mat2} a new 2x2 matrix
- */
- mat2.create = function() {
- var out = new GLMAT_ARRAY_TYPE(4);
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- };
- /**
- * Creates a new mat2 initialized with values from an existing matrix
- *
- * @param {mat2} a matrix to clone
- * @returns {mat2} a new 2x2 matrix
- */
- mat2.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(4);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- };
- /**
- * Copy the values from one mat2 to another
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the source matrix
- * @returns {mat2} out
- */
- mat2.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- };
- /**
- * Set a mat2 to the identity matrix
- *
- * @param {mat2} out the receiving matrix
- * @returns {mat2} out
- */
- mat2.identity = function(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- };
- /**
- * Transpose the values of a mat2
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the source matrix
- * @returns {mat2} out
- */
- mat2.transpose = function(out, a) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- var a1 = a[1];
- out[1] = a[2];
- out[2] = a1;
- } else {
- out[0] = a[0];
- out[1] = a[2];
- out[2] = a[1];
- out[3] = a[3];
- }
- return out;
- };
- /**
- * Inverts a mat2
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the source matrix
- * @returns {mat2} out
- */
- mat2.invert = function(out, a) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
- // Calculate the determinant
- det = a0 * a3 - a2 * a1;
- if (!det) {
- return null;
- }
- det = 1.0 / det;
- out[0] = a3 * det;
- out[1] = -a1 * det;
- out[2] = -a2 * det;
- out[3] = a0 * det;
- return out;
- };
- /**
- * Calculates the adjugate of a mat2
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the source matrix
- * @returns {mat2} out
- */
- mat2.adjoint = function(out, a) {
- // Caching this value is nessecary if out == a
- var a0 = a[0];
- out[0] = a[3];
- out[1] = -a[1];
- out[2] = -a[2];
- out[3] = a0;
- return out;
- };
- /**
- * Calculates the determinant of a mat2
- *
- * @param {mat2} a the source matrix
- * @returns {Number} determinant of a
- */
- mat2.determinant = function (a) {
- return a[0] * a[3] - a[2] * a[1];
- };
- /**
- * Multiplies two mat2's
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the first operand
- * @param {mat2} b the second operand
- * @returns {mat2} out
- */
- mat2.multiply = function (out, a, b) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
- var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
- out[0] = a0 * b0 + a2 * b1;
- out[1] = a1 * b0 + a3 * b1;
- out[2] = a0 * b2 + a2 * b3;
- out[3] = a1 * b2 + a3 * b3;
- return out;
- };
- /**
- * Alias for {@link mat2.multiply}
- * @function
- */
- mat2.mul = mat2.multiply;
- /**
- * Rotates a mat2 by the given angle
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat2} out
- */
- mat2.rotate = function (out, a, rad) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
- s = Math.sin(rad),
- c = Math.cos(rad);
- out[0] = a0 * c + a2 * s;
- out[1] = a1 * c + a3 * s;
- out[2] = a0 * -s + a2 * c;
- out[3] = a1 * -s + a3 * c;
- return out;
- };
- /**
- * Scales the mat2 by the dimensions in the given vec2
- *
- * @param {mat2} out the receiving matrix
- * @param {mat2} a the matrix to rotate
- * @param {vec2} v the vec2 to scale the matrix by
- * @returns {mat2} out
- **/
- mat2.scale = function(out, a, v) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
- v0 = v[0], v1 = v[1];
- out[0] = a0 * v0;
- out[1] = a1 * v0;
- out[2] = a2 * v1;
- out[3] = a3 * v1;
- return out;
- };
- /**
- * Returns a string representation of a mat2
- *
- * @param {mat2} mat matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
- mat2.str = function (a) {
- return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
- };
- /**
- * Returns Frobenius norm of a mat2
- *
- * @param {mat2} a the matrix to calculate Frobenius norm of
- * @returns {Number} Frobenius norm
- */
- mat2.frob = function (a) {
- return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2)))
- };
- /**
- * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix
- * @param {mat2} L the lower triangular matrix
- * @param {mat2} D the diagonal matrix
- * @param {mat2} U the upper triangular matrix
- * @param {mat2} a the input matrix to factorize
- */
- mat2.LDU = function (L, D, U, a) {
- L[2] = a[2]/a[0];
- U[0] = a[0];
- U[1] = a[1];
- U[3] = a[3] - L[2] * U[1];
- return [L, D, U];
- };
- if(typeof(exports) !== 'undefined') {
- exports.mat2 = mat2;
- }
- ;
- /* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
- /**
- * @class 2x3 Matrix
- * @name mat2d
- *
- * @description
- * A mat2d contains six elements defined as:
- * <pre>
- * [a, c, tx,
- * b, d, ty]
- * </pre>
- * This is a short form for the 3x3 matrix:
- * <pre>
- * [a, c, tx,
- * b, d, ty,
- * 0, 0, 1]
- * </pre>
- * The last row is ignored so the array is shorter and operations are faster.
- */
- var mat2d = {};
- /**
- * Creates a new identity mat2d
- *
- * @returns {mat2d} a new 2x3 matrix
- */
- mat2d.create = function() {
- var out = new GLMAT_ARRAY_TYPE(6);
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- out[4] = 0;
- out[5] = 0;
- return out;
- };
- /**
- * Creates a new mat2d initialized with values from an existing matrix
- *
- * @param {mat2d} a matrix to clone
- * @returns {mat2d} a new 2x3 matrix
- */
- mat2d.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(6);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- return out;
- };
- /**
- * Copy the values from one mat2d to another
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the source matrix
- * @returns {mat2d} out
- */
- mat2d.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- return out;
- };
- /**
- * Set a mat2d to the identity matrix
- *
- * @param {mat2d} out the receiving matrix
- * @returns {mat2d} out
- */
- mat2d.identity = function(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- out[4] = 0;
- out[5] = 0;
- return out;
- };
- /**
- * Inverts a mat2d
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the source matrix
- * @returns {mat2d} out
- */
- mat2d.invert = function(out, a) {
- var aa = a[0], ab = a[1], ac = a[2], ad = a[3],
- atx = a[4], aty = a[5];
- var det = aa * ad - ab * ac;
- if(!det){
- return null;
- }
- det = 1.0 / det;
- out[0] = ad * det;
- out[1] = -ab * det;
- out[2] = -ac * det;
- out[3] = aa * det;
- out[4] = (ac * aty - ad * atx) * det;
- out[5] = (ab * atx - aa * aty) * det;
- return out;
- };
- /**
- * Calculates the determinant of a mat2d
- *
- * @param {mat2d} a the source matrix
- * @returns {Number} determinant of a
- */
- mat2d.determinant = function (a) {
- return a[0] * a[3] - a[1] * a[2];
- };
- /**
- * Multiplies two mat2d's
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the first operand
- * @param {mat2d} b the second operand
- * @returns {mat2d} out
- */
- mat2d.multiply = function (out, a, b) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5],
- b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3], b4 = b[4], b5 = b[5];
- out[0] = a0 * b0 + a2 * b1;
- out[1] = a1 * b0 + a3 * b1;
- out[2] = a0 * b2 + a2 * b3;
- out[3] = a1 * b2 + a3 * b3;
- out[4] = a0 * b4 + a2 * b5 + a4;
- out[5] = a1 * b4 + a3 * b5 + a5;
- return out;
- };
- /**
- * Alias for {@link mat2d.multiply}
- * @function
- */
- mat2d.mul = mat2d.multiply;
- /**
- * Rotates a mat2d by the given angle
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat2d} out
- */
- mat2d.rotate = function (out, a, rad) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5],
- s = Math.sin(rad),
- c = Math.cos(rad);
- out[0] = a0 * c + a2 * s;
- out[1] = a1 * c + a3 * s;
- out[2] = a0 * -s + a2 * c;
- out[3] = a1 * -s + a3 * c;
- out[4] = a4;
- out[5] = a5;
- return out;
- };
- /**
- * Scales the mat2d by the dimensions in the given vec2
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the matrix to translate
- * @param {vec2} v the vec2 to scale the matrix by
- * @returns {mat2d} out
- **/
- mat2d.scale = function(out, a, v) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5],
- v0 = v[0], v1 = v[1];
- out[0] = a0 * v0;
- out[1] = a1 * v0;
- out[2] = a2 * v1;
- out[3] = a3 * v1;
- out[4] = a4;
- out[5] = a5;
- return out;
- };
- /**
- * Translates the mat2d by the dimensions in the given vec2
- *
- * @param {mat2d} out the receiving matrix
- * @param {mat2d} a the matrix to translate
- * @param {vec2} v the vec2 to translate the matrix by
- * @returns {mat2d} out
- **/
- mat2d.translate = function(out, a, v) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4], a5 = a[5],
- v0 = v[0], v1 = v[1];
- out[0] = a0;
- out[1] = a1;
- out[2] = a2;
- out[3] = a3;
- out[4] = a0 * v0 + a2 * v1 + a4;
- out[5] = a1 * v0 + a3 * v1 + a5;
- return out;
- };
- /**
- * Returns a string representation of a mat2d
- *
- * @param {mat2d} a matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
- mat2d.str = function (a) {
- return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' +
- a[3] + ', ' + a[4] + ', ' + a[5] + ')';
- };
- /**
- * Returns Frobenius norm of a mat2d
- *
- * @param {mat2d} a the matrix to calculate Frobenius norm of
- * @returns {Number} Frobenius norm
- */
- mat2d.frob = function (a) {
- return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + 1))
- };
- if(typeof(exports) !== 'undefined') {
- exports.mat2d = mat2d;
- }
- ;
- /* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
- /**
- * @class 3x3 Matrix
- * @name mat3
- */
- var mat3 = {};
- /**
- * Creates a new identity mat3
- *
- * @returns {mat3} a new 3x3 matrix
- */
- mat3.create = function() {
- var out = new GLMAT_ARRAY_TYPE(9);
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 1;
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 1;
- return out;
- };
- /**
- * Copies the upper-left 3x3 values into the given mat3.
- *
- * @param {mat3} out the receiving 3x3 matrix
- * @param {mat4} a the source 4x4 matrix
- * @returns {mat3} out
- */
- mat3.fromMat4 = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[4];
- out[4] = a[5];
- out[5] = a[6];
- out[6] = a[8];
- out[7] = a[9];
- out[8] = a[10];
- return out;
- };
- /**
- * Creates a new mat3 initialized with values from an existing matrix
- *
- * @param {mat3} a matrix to clone
- * @returns {mat3} a new 3x3 matrix
- */
- mat3.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(9);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- return out;
- };
- /**
- * Copy the values from one mat3 to another
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
- mat3.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- return out;
- };
- /**
- * Set a mat3 to the identity matrix
- *
- * @param {mat3} out the receiving matrix
- * @returns {mat3} out
- */
- mat3.identity = function(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 1;
- out[5] = 0;
- out[6] = 0;
- out[7] = 0;
- out[8] = 1;
- return out;
- };
- /**
- * Transpose the values of a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
- mat3.transpose = function(out, a) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- var a01 = a[1], a02 = a[2], a12 = a[5];
- out[1] = a[3];
- out[2] = a[6];
- out[3] = a01;
- out[5] = a[7];
- out[6] = a02;
- out[7] = a12;
- } else {
- out[0] = a[0];
- out[1] = a[3];
- out[2] = a[6];
- out[3] = a[1];
- out[4] = a[4];
- out[5] = a[7];
- out[6] = a[2];
- out[7] = a[5];
- out[8] = a[8];
- }
- return out;
- };
- /**
- * Inverts a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
- mat3.invert = function(out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
- b01 = a22 * a11 - a12 * a21,
- b11 = -a22 * a10 + a12 * a20,
- b21 = a21 * a10 - a11 * a20,
- // Calculate the determinant
- det = a00 * b01 + a01 * b11 + a02 * b21;
- if (!det) {
- return null;
- }
- det = 1.0 / det;
- out[0] = b01 * det;
- out[1] = (-a22 * a01 + a02 * a21) * det;
- out[2] = (a12 * a01 - a02 * a11) * det;
- out[3] = b11 * det;
- out[4] = (a22 * a00 - a02 * a20) * det;
- out[5] = (-a12 * a00 + a02 * a10) * det;
- out[6] = b21 * det;
- out[7] = (-a21 * a00 + a01 * a20) * det;
- out[8] = (a11 * a00 - a01 * a10) * det;
- return out;
- };
- /**
- * Calculates the adjugate of a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the source matrix
- * @returns {mat3} out
- */
- mat3.adjoint = function(out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8];
- out[0] = (a11 * a22 - a12 * a21);
- out[1] = (a02 * a21 - a01 * a22);
- out[2] = (a01 * a12 - a02 * a11);
- out[3] = (a12 * a20 - a10 * a22);
- out[4] = (a00 * a22 - a02 * a20);
- out[5] = (a02 * a10 - a00 * a12);
- out[6] = (a10 * a21 - a11 * a20);
- out[7] = (a01 * a20 - a00 * a21);
- out[8] = (a00 * a11 - a01 * a10);
- return out;
- };
- /**
- * Calculates the determinant of a mat3
- *
- * @param {mat3} a the source matrix
- * @returns {Number} determinant of a
- */
- mat3.determinant = function (a) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8];
- return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
- };
- /**
- * Multiplies two mat3's
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the first operand
- * @param {mat3} b the second operand
- * @returns {mat3} out
- */
- mat3.multiply = function (out, a, b) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
- b00 = b[0], b01 = b[1], b02 = b[2],
- b10 = b[3], b11 = b[4], b12 = b[5],
- b20 = b[6], b21 = b[7], b22 = b[8];
- out[0] = b00 * a00 + b01 * a10 + b02 * a20;
- out[1] = b00 * a01 + b01 * a11 + b02 * a21;
- out[2] = b00 * a02 + b01 * a12 + b02 * a22;
- out[3] = b10 * a00 + b11 * a10 + b12 * a20;
- out[4] = b10 * a01 + b11 * a11 + b12 * a21;
- out[5] = b10 * a02 + b11 * a12 + b12 * a22;
- out[6] = b20 * a00 + b21 * a10 + b22 * a20;
- out[7] = b20 * a01 + b21 * a11 + b22 * a21;
- out[8] = b20 * a02 + b21 * a12 + b22 * a22;
- return out;
- };
- /**
- * Alias for {@link mat3.multiply}
- * @function
- */
- mat3.mul = mat3.multiply;
- /**
- * Translate a mat3 by the given vector
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to translate
- * @param {vec2} v vector to translate by
- * @returns {mat3} out
- */
- mat3.translate = function(out, a, v) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
- x = v[0], y = v[1];
- out[0] = a00;
- out[1] = a01;
- out[2] = a02;
- out[3] = a10;
- out[4] = a11;
- out[5] = a12;
- out[6] = x * a00 + y * a10 + a20;
- out[7] = x * a01 + y * a11 + a21;
- out[8] = x * a02 + y * a12 + a22;
- return out;
- };
- /**
- * Rotates a mat3 by the given angle
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat3} out
- */
- mat3.rotate = function (out, a, rad) {
- var a00 = a[0], a01 = a[1], a02 = a[2],
- a10 = a[3], a11 = a[4], a12 = a[5],
- a20 = a[6], a21 = a[7], a22 = a[8],
- s = Math.sin(rad),
- c = Math.cos(rad);
- out[0] = c * a00 + s * a10;
- out[1] = c * a01 + s * a11;
- out[2] = c * a02 + s * a12;
- out[3] = c * a10 - s * a00;
- out[4] = c * a11 - s * a01;
- out[5] = c * a12 - s * a02;
- out[6] = a20;
- out[7] = a21;
- out[8] = a22;
- return out;
- };
- /**
- * Scales the mat3 by the dimensions in the given vec2
- *
- * @param {mat3} out the receiving matrix
- * @param {mat3} a the matrix to rotate
- * @param {vec2} v the vec2 to scale the matrix by
- * @returns {mat3} out
- **/
- mat3.scale = function(out, a, v) {
- var x = v[0], y = v[1];
- out[0] = x * a[0];
- out[1] = x * a[1];
- out[2] = x * a[2];
- out[3] = y * a[3];
- out[4] = y * a[4];
- out[5] = y * a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- return out;
- };
- /**
- * Copies the values from a mat2d into a mat3
- *
- * @param {mat3} out the receiving matrix
- * @param {mat2d} a the matrix to copy
- * @returns {mat3} out
- **/
- mat3.fromMat2d = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = 0;
- out[3] = a[2];
- out[4] = a[3];
- out[5] = 0;
- out[6] = a[4];
- out[7] = a[5];
- out[8] = 1;
- return out;
- };
- /**
- * Calculates a 3x3 matrix from the given quaternion
- *
- * @param {mat3} out mat3 receiving operation result
- * @param {quat} q Quaternion to create matrix from
- *
- * @returns {mat3} out
- */
- mat3.fromQuat = function (out, q) {
- var x = q[0], y = q[1], z = q[2], w = q[3],
- x2 = x + x,
- y2 = y + y,
- z2 = z + z,
- xx = x * x2,
- yx = y * x2,
- yy = y * y2,
- zx = z * x2,
- zy = z * y2,
- zz = z * z2,
- wx = w * x2,
- wy = w * y2,
- wz = w * z2;
- out[0] = 1 - yy - zz;
- out[3] = yx - wz;
- out[6] = zx + wy;
- out[1] = yx + wz;
- out[4] = 1 - xx - zz;
- out[7] = zy - wx;
- out[2] = zx - wy;
- out[5] = zy + wx;
- out[8] = 1 - xx - yy;
- return out;
- };
- /**
- * Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix
- *
- * @param {mat3} out mat3 receiving operation result
- * @param {mat4} a Mat4 to derive the normal matrix from
- *
- * @returns {mat3} out
- */
- mat3.normalFromMat4 = function (out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
- b00 = a00 * a11 - a01 * a10,
- b01 = a00 * a12 - a02 * a10,
- b02 = a00 * a13 - a03 * a10,
- b03 = a01 * a12 - a02 * a11,
- b04 = a01 * a13 - a03 * a11,
- b05 = a02 * a13 - a03 * a12,
- b06 = a20 * a31 - a21 * a30,
- b07 = a20 * a32 - a22 * a30,
- b08 = a20 * a33 - a23 * a30,
- b09 = a21 * a32 - a22 * a31,
- b10 = a21 * a33 - a23 * a31,
- b11 = a22 * a33 - a23 * a32,
- // Calculate the determinant
- det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
- if (!det) {
- return null;
- }
- det = 1.0 / det;
- out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
- out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
- out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
- out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
- out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
- out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
- out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
- out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
- out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
- return out;
- };
- /**
- * Returns a string representation of a mat3
- *
- * @param {mat3} mat matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
- mat3.str = function (a) {
- return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' +
- a[3] + ', ' + a[4] + ', ' + a[5] + ', ' +
- a[6] + ', ' + a[7] + ', ' + a[8] + ')';
- };
- /**
- * Returns Frobenius norm of a mat3
- *
- * @param {mat3} a the matrix to calculate Frobenius norm of
- * @returns {Number} Frobenius norm
- */
- mat3.frob = function (a) {
- return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2)))
- };
- if(typeof(exports) !== 'undefined') {
- exports.mat3 = mat3;
- }
- ;
- /* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
- /**
- * @class 4x4 Matrix
- * @name mat4
- */
- var mat4 = {};
- /**
- * Creates a new identity mat4
- *
- * @returns {mat4} a new 4x4 matrix
- */
- mat4.create = function() {
- var out = new GLMAT_ARRAY_TYPE(16);
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- };
- /**
- * Creates a new mat4 initialized with values from an existing matrix
- *
- * @param {mat4} a matrix to clone
- * @returns {mat4} a new 4x4 matrix
- */
- mat4.clone = function(a) {
- var out = new GLMAT_ARRAY_TYPE(16);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- };
- /**
- * Copy the values from one mat4 to another
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
- mat4.copy = function(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- };
- /**
- * Set a mat4 to the identity matrix
- *
- * @param {mat4} out the receiving matrix
- * @returns {mat4} out
- */
- mat4.identity = function(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = 1;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 1;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- };
- /**
- * Transpose the values of a mat4
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
- mat4.transpose = function(out, a) {
- // If we are transposing ourselves we can skip a few steps but have to cache some values
- if (out === a) {
- var a01 = a[1], a02 = a[2], a03 = a[3],
- a12 = a[6], a13 = a[7],
- a23 = a[11];
- out[1] = a[4];
- out[2] = a[8];
- out[3] = a[12];
- out[4] = a01;
- out[6] = a[9];
- out[7] = a[13];
- out[8] = a02;
- out[9] = a12;
- out[11] = a[14];
- out[12] = a03;
- out[13] = a13;
- out[14] = a23;
- } else {
- out[0] = a[0];
- out[1] = a[4];
- out[2] = a[8];
- out[3] = a[12];
- out[4] = a[1];
- out[5] = a[5];
- out[6] = a[9];
- out[7] = a[13];
- out[8] = a[2];
- out[9] = a[6];
- out[10] = a[10];
- out[11] = a[14];
- out[12] = a[3];
- out[13] = a[7];
- out[14] = a[11];
- out[15] = a[15];
- }
- return out;
- };
- /**
- * Inverts a mat4
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
- mat4.invert = function(out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
- b00 = a00 * a11 - a01 * a10,
- b01 = a00 * a12 - a02 * a10,
- b02 = a00 * a13 - a03 * a10,
- b03 = a01 * a12 - a02 * a11,
- b04 = a01 * a13 - a03 * a11,
- b05 = a02 * a13 - a03 * a12,
- b06 = a20 * a31 - a21 * a30,
- b07 = a20 * a32 - a22 * a30,
- b08 = a20 * a33 - a23 * a30,
- b09 = a21 * a32 - a22 * a31,
- b10 = a21 * a33 - a23 * a31,
- b11 = a22 * a33 - a23 * a32,
- // Calculate the determinant
- det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
- if (!det) {
- return null;
- }
- det = 1.0 / det;
- out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
- out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
- out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
- out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
- out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
- out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
- out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
- out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
- out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
- out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
- out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
- out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
- out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
- out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
- out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
- out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
- return out;
- };
- /**
- * Calculates the adjugate of a mat4
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the source matrix
- * @returns {mat4} out
- */
- mat4.adjoint = function(out, a) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
- out[0] = (a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22));
- out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));
- out[2] = (a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12));
- out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));
- out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));
- out[5] = (a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22));
- out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));
- out[7] = (a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12));
- out[8] = (a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21));
- out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));
- out[10] = (a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11));
- out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));
- out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));
- out[13] = (a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21));
- out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));
- out[15] = (a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11));
- return out;
- };
- /**
- * Calculates the determinant of a mat4
- *
- * @param {mat4} a the source matrix
- * @returns {Number} determinant of a
- */
- mat4.determinant = function (a) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
- b00 = a00 * a11 - a01 * a10,
- b01 = a00 * a12 - a02 * a10,
- b02 = a00 * a13 - a03 * a10,
- b03 = a01 * a12 - a02 * a11,
- b04 = a01 * a13 - a03 * a11,
- b05 = a02 * a13 - a03 * a12,
- b06 = a20 * a31 - a21 * a30,
- b07 = a20 * a32 - a22 * a30,
- b08 = a20 * a33 - a23 * a30,
- b09 = a21 * a32 - a22 * a31,
- b10 = a21 * a33 - a23 * a31,
- b11 = a22 * a33 - a23 * a32;
- // Calculate the determinant
- return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
- };
- /**
- * Multiplies two mat4's
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the first operand
- * @param {mat4} b the second operand
- * @returns {mat4} out
- */
- mat4.multiply = function (out, a, b) {
- var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
- a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
- a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
- a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
- // Cache only the current line of the second matrix
- var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
- out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
- b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
- out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
- b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
- out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
- b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
- out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
- out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
- out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
- out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
- return out;
- };
- /**
- * Alias for {@link mat4.multiply}
- * @function
- */
- mat4.mul = mat4.multiply;
- /**
- * Translate a mat4 by the given vector
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to translate
- * @param {vec3} v vector to translate by
- * @returns {mat4} out
- */
- mat4.translate = function (out, a, v) {
- var x = v[0], y = v[1], z = v[2],
- a00, a01, a02, a03,
- a10, a11, a12, a13,
- a20, a21, a22, a23;
- if (a === out) {
- out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
- out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
- out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
- out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
- } else {
- a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
- a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
- a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
- out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03;
- out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13;
- out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23;
- out[12] = a00 * x + a10 * y + a20 * z + a[12];
- out[13] = a01 * x + a11 * y + a21 * z + a[13];
- out[14] = a02 * x + a12 * y + a22 * z + a[14];
- out[15] = a03 * x + a13 * y + a23 * z + a[15];
- }
- return out;
- };
- /**
- * Scales the mat4 by the dimensions in the given vec3
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to scale
- * @param {vec3} v the vec3 to scale the matrix by
- * @returns {mat4} out
- **/
- mat4.scale = function(out, a, v) {
- var x = v[0], y = v[1], z = v[2];
- out[0] = a[0] * x;
- out[1] = a[1] * x;
- out[2] = a[2] * x;
- out[3] = a[3] * x;
- out[4] = a[4] * y;
- out[5] = a[5] * y;
- out[6] = a[6] * y;
- out[7] = a[7] * y;
- out[8] = a[8] * z;
- out[9] = a[9] * z;
- out[10] = a[10] * z;
- out[11] = a[11] * z;
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- return out;
- };
- /**
- * Rotates a mat4 by the given angle
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @param {vec3} axis the axis to rotate around
- * @returns {mat4} out
- */
- mat4.rotate = function (out, a, rad, axis) {
- var x = axis[0], y = axis[1], z = axis[2],
- len = Math.sqrt(x * x + y * y + z * z),
- s, c, t,
- a00, a01, a02, a03,
- a10, a11, a12, a13,
- a20, a21, a22, a23,
- b00, b01, b02,
- b10, b11, b12,
- b20, b21, b22;
- if (Math.abs(len) < GLMAT_EPSILON) { return null; }
- len = 1 / len;
- x *= len;
- y *= len;
- z *= len;
- s = Math.sin(rad);
- c = Math.cos(rad);
- t = 1 - c;
- a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
- a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
- a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
- // Construct the elements of the rotation matrix
- b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s;
- b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s;
- b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c;
- // Perform rotation-specific matrix multiplication
- out[0] = a00 * b00 + a10 * b01 + a20 * b02;
- out[1] = a01 * b00 + a11 * b01 + a21 * b02;
- out[2] = a02 * b00 + a12 * b01 + a22 * b02;
- out[3] = a03 * b00 + a13 * b01 + a23 * b02;
- out[4] = a00 * b10 + a10 * b11 + a20 * b12;
- out[5] = a01 * b10 + a11 * b11 + a21 * b12;
- out[6] = a02 * b10 + a12 * b11 + a22 * b12;
- out[7] = a03 * b10 + a13 * b11 + a23 * b12;
- out[8] = a00 * b20 + a10 * b21 + a20 * b22;
- out[9] = a01 * b20 + a11 * b21 + a21 * b22;
- out[10] = a02 * b20 + a12 * b21 + a22 * b22;
- out[11] = a03 * b20 + a13 * b21 + a23 * b22;
- if (a !== out) { // If the source and destination differ, copy the unchanged last row
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- return out;
- };
- /**
- * Rotates a matrix by the given angle around the X axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- mat4.rotateX = function (out, a, rad) {
- var s = Math.sin(rad),
- c = Math.cos(rad),
- a10 = a[4],
- a11 = a[5],
- a12 = a[6],
- a13 = a[7],
- a20 = a[8],
- a21 = a[9],
- a22 = a[10],
- a23 = a[11];
- if (a !== out) { // If the source and destination differ, copy the unchanged rows
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- // Perform axis-specific matrix multiplication
- out[4] = a10 * c + a20 * s;
- out[5] = a11 * c + a21 * s;
- out[6] = a12 * c + a22 * s;
- out[7] = a13 * c + a23 * s;
- out[8] = a20 * c - a10 * s;
- out[9] = a21 * c - a11 * s;
- out[10] = a22 * c - a12 * s;
- out[11] = a23 * c - a13 * s;
- return out;
- };
- /**
- * Rotates a matrix by the given angle around the Y axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- mat4.rotateY = function (out, a, rad) {
- var s = Math.sin(rad),
- c = Math.cos(rad),
- a00 = a[0],
- a01 = a[1],
- a02 = a[2],
- a03 = a[3],
- a20 = a[8],
- a21 = a[9],
- a22 = a[10],
- a23 = a[11];
- if (a !== out) { // If the source and destination differ, copy the unchanged rows
- out[4] = a[4];
- out[5] = a[5];
- out[6] = a[6];
- out[7] = a[7];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- // Perform axis-specific matrix multiplication
- out[0] = a00 * c - a20 * s;
- out[1] = a01 * c - a21 * s;
- out[2] = a02 * c - a22 * s;
- out[3] = a03 * c - a23 * s;
- out[8] = a00 * s + a20 * c;
- out[9] = a01 * s + a21 * c;
- out[10] = a02 * s + a22 * c;
- out[11] = a03 * s + a23 * c;
- return out;
- };
- /**
- * Rotates a matrix by the given angle around the Z axis
- *
- * @param {mat4} out the receiving matrix
- * @param {mat4} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat4} out
- */
- mat4.rotateZ = function (out, a, rad) {
- var s = Math.sin(rad),
- c = Math.cos(rad),
- a00 = a[0],
- a01 = a[1],
- a02 = a[2],
- a03 = a[3],
- a10 = a[4],
- a11 = a[5],
- a12 = a[6],
- a13 = a[7];
- if (a !== out) { // If the source and destination differ, copy the unchanged last row
- out[8] = a[8];
- out[9] = a[9];
- out[10] = a[10];
- out[11] = a[11];
- out[12] = a[12];
- out[13] = a[13];
- out[14] = a[14];
- out[15] = a[15];
- }
- // Perform axis-specific matrix multiplication
- out[0] = a00 * c + a10 * s;
- out[1] = a01 * c + a11 * s;
- out[2] = a02 * c + a12 * s;
- out[3] = a03 * c + a13 * s;
- out[4] = a10 * c - a00 * s;
- out[5] = a11 * c - a01 * s;
- out[6] = a12 * c - a02 * s;
- out[7] = a13 * c - a03 * s;
- return out;
- };
- /**
- * Creates a matrix from a quaternion rotation and vector translation
- * This is equivalent to (but much faster than):
- *
- * mat4.identity(dest);
- * mat4.translate(dest, vec);
- * var quatMat = mat4.create();
- * quat4.toMat4(quat, quatMat);
- * mat4.multiply(dest, quatMat);
- *
- * @param {mat4} out mat4 receiving operation result
- * @param {quat4} q Rotation quaternion
- * @param {vec3} v Translation vector
- * @returns {mat4} out
- */
- mat4.fromRotationTranslation = function (out, q, v) {
- // Quaternion math
- var x = q[0], y = q[1], z = q[2], w = q[3],
- x2 = x + x,
- y2 = y + y,
- z2 = z + z,
- xx = x * x2,
- xy = x * y2,
- xz = x * z2,
- yy = y * y2,
- yz = y * z2,
- zz = z * z2,
- wx = w * x2,
- wy = w * y2,
- wz = w * z2;
- out[0] = 1 - (yy + zz);
- out[1] = xy + wz;
- out[2] = xz - wy;
- out[3] = 0;
- out[4] = xy - wz;
- out[5] = 1 - (xx + zz);
- out[6] = yz + wx;
- out[7] = 0;
- out[8] = xz + wy;
- out[9] = yz - wx;
- out[10] = 1 - (xx + yy);
- out[11] = 0;
- out[12] = v[0];
- out[13] = v[1];
- out[14] = v[2];
- out[15] = 1;
- return out;
- };
- mat4.fromQuat = function (out, q) {
- var x = q[0], y = q[1], z = q[2], w = q[3],
- x2 = x + x,
- y2 = y + y,
- z2 = z + z,
- xx = x * x2,
- yx = y * x2,
- yy = y * y2,
- zx = z * x2,
- zy = z * y2,
- zz = z * z2,
- wx = w * x2,
- wy = w * y2,
- wz = w * z2;
- out[0] = 1 - yy - zz;
- out[1] = yx + wz;
- out[2] = zx - wy;
- out[3] = 0;
- out[4] = yx - wz;
- out[5] = 1 - xx - zz;
- out[6] = zy + wx;
- out[7] = 0;
- out[8] = zx + wy;
- out[9] = zy - wx;
- out[10] = 1 - xx - yy;
- out[11] = 0;
- out[12] = 0;
- out[13] = 0;
- out[14] = 0;
- out[15] = 1;
- return out;
- };
- /**
- * Generates a frustum matrix with the given bounds
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {Number} left Left bound of the frustum
- * @param {Number} right Right bound of the frustum
- * @param {Number} bottom Bottom bound of the frustum
- * @param {Number} top Top bound of the frustum
- * @param {Number} near Near bound of the frustum
- * @param {Number} far Far bound of the frustum
- * @returns {mat4} out
- */
- mat4.frustum = function (out, left, right, bottom, top, near, far) {
- var rl = 1 / (right - left),
- tb = 1 / (top - bottom),
- nf = 1 / (near - far);
- out[0] = (near * 2) * rl;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = (near * 2) * tb;
- out[6] = 0;
- out[7] = 0;
- out[8] = (right + left) * rl;
- out[9] = (top + bottom) * tb;
- out[10] = (far + near) * nf;
- out[11] = -1;
- out[12] = 0;
- out[13] = 0;
- out[14] = (far * near * 2) * nf;
- out[15] = 0;
- return out;
- };
- /**
- * Generates a perspective projection matrix with the given bounds
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {number} fovy Vertical field of view in radians
- * @param {number} aspect Aspect ratio. typically viewport width/height
- * @param {number} near Near bound of the frustum
- * @param {number} far Far bound of the frustum
- * @returns {mat4} out
- */
- mat4.perspective = function (out, fovy, aspect, near, far) {
- var f = 1.0 / Math.tan(fovy / 2),
- nf = 1 / (near - far);
- out[0] = f / aspect;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = f;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = (far + near) * nf;
- out[11] = -1;
- out[12] = 0;
- out[13] = 0;
- out[14] = (2 * far * near) * nf;
- out[15] = 0;
- return out;
- };
- /**
- * Generates a orthogonal projection matrix with the given bounds
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {number} left Left bound of the frustum
- * @param {number} right Right bound of the frustum
- * @param {number} bottom Bottom bound of the frustum
- * @param {number} top Top bound of the frustum
- * @param {number} near Near bound of the frustum
- * @param {number} far Far bound of the frustum
- * @returns {mat4} out
- */
- mat4.ortho = function (out, left, right, bottom, top, near, far) {
- var lr = 1 / (left - right),
- bt = 1 / (bottom - top),
- nf = 1 / (near - far);
- out[0] = -2 * lr;
- out[1] = 0;
- out[2] = 0;
- out[3] = 0;
- out[4] = 0;
- out[5] = -2 * bt;
- out[6] = 0;
- out[7] = 0;
- out[8] = 0;
- out[9] = 0;
- out[10] = 2 * nf;
- out[11] = 0;
- out[12] = (left + right) * lr;
- out[13] = (top + bottom) * bt;
- out[14] = (far + near) * nf;
- out[15] = 1;
- return out;
- };
- /**
- * Generates a look-at matrix with the given eye position, focal point, and up axis
- *
- * @param {mat4} out mat4 frustum matrix will be written into
- * @param {vec3} eye Position of the viewer
- * @param {vec3} center Point the viewer is looking at
- * @param {vec3} up vec3 pointing up
- * @returns {mat4} out
- */
- mat4.lookAt = function (out, eye, center, up) {
- var x0, x1, x2, y0, y1, y2, z0, z1, z2, len,
- eyex = eye[0],
- eyey = eye[1],
- eyez = eye[2],
- upx = up[0],
- upy = up[1],
- upz = up[2],
- centerx = center[0],
- centery = center[1],
- centerz = center[2];
- if (Math.abs(eyex - centerx) < GLMAT_EPSILON &&
- Math.abs(eyey - centery) < GLMAT_EPSILON &&
- Math.abs(eyez - centerz) < GLMAT_EPSILON) {
- return mat4.identity(out);
- }
- z0 = eyex - centerx;
- z1 = eyey - centery;
- z2 = eyez - centerz;
- len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
- z0 *= len;
- z1 *= len;
- z2 *= len;
- x0 = upy * z2 - upz * z1;
- x1 = upz * z0 - upx * z2;
- x2 = upx * z1 - upy * z0;
- len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
- if (!len) {
- x0 = 0;
- x1 = 0;
- x2 = 0;
- } else {
- len = 1 / len;
- x0 *= len;
- x1 *= len;
- x2 *= len;
- }
- y0 = z1 * x2 - z2 * x1;
- y1 = z2 * x0 - z0 * x2;
- y2 = z0 * x1 - z1 * x0;
- len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
- if (!len) {
- y0 = 0;
- y1 = 0;
- y2 = 0;
- } else {
- len = 1 / len;
- y0 *= len;
- y1 *= len;
- y2 *= len;
- }
- out[0] = x0;
- out[1] = y0;
- out[2] = z0;
- out[3] = 0;
- out[4] = x1;
- out[5] = y1;
- out[6] = z1;
- out[7] = 0;
- out[8] = x2;
- out[9] = y2;
- out[10] = z2;
- out[11] = 0;
- out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
- out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
- out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
- out[15] = 1;
- return out;
- };
- /**
- * Returns a string representation of a mat4
- *
- * @param {mat4} mat matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
- mat4.str = function (a) {
- return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' +
- a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' +
- a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' +
- a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')';
- };
- /**
- * Returns Frobenius norm of a mat4
- *
- * @param {mat4} a the matrix to calculate Frobenius norm of
- * @returns {Number} Frobenius norm
- */
- mat4.frob = function (a) {
- return(Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2) ))
- };
- if(typeof(exports) !== 'undefined') {
- exports.mat4 = mat4;
- }
- ;
- /* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved.
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
- /**
- * @class Quaternion
- * @name quat
- */
- var quat = {};
- /**
- * Creates a new identity quat
- *
- * @returns {quat} a new quaternion
- */
- quat.create = function() {
- var out = new GLMAT_ARRAY_TYPE(4);
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- };
- /**
- * Sets a quaternion to represent the shortest rotation from one
- * vector to another.
- *
- * Both vectors are assumed to be unit length.
- *
- * @param {quat} out the receiving quaternion.
- * @param {vec3} a the initial vector
- * @param {vec3} b the destination vector
- * @returns {quat} out
- */
- quat.rotationTo = (function() {
- var tmpvec3 = vec3.create();
- var xUnitVec3 = vec3.fromValues(1,0,0);
- var yUnitVec3 = vec3.fromValues(0,1,0);
- return function(out, a, b) {
- var dot = vec3.dot(a, b);
- if (dot < -0.999999) {
- vec3.cross(tmpvec3, xUnitVec3, a);
- if (vec3.length(tmpvec3) < 0.000001)
- vec3.cross(tmpvec3, yUnitVec3, a);
- vec3.normalize(tmpvec3, tmpvec3);
- quat.setAxisAngle(out, tmpvec3, Math.PI);
- return out;
- } else if (dot > 0.999999) {
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- } else {
- vec3.cross(tmpvec3, a, b);
- out[0] = tmpvec3[0];
- out[1] = tmpvec3[1];
- out[2] = tmpvec3[2];
- out[3] = 1 + dot;
- return quat.normalize(out, out);
- }
- };
- })();
- /**
- * Sets the specified quaternion with values corresponding to the given
- * axes. Each axis is a vec3 and is expected to be unit length and
- * perpendicular to all other specified axes.
- *
- * @param {vec3} view the vector representing the viewing direction
- * @param {vec3} right the vector representing the local "right" direction
- * @param {vec3} up the vector representing the local "up" direction
- * @returns {quat} out
- */
- quat.setAxes = (function() {
- var matr = mat3.create();
- return function(out, view, right, up) {
- matr[0] = right[0];
- matr[3] = right[1];
- matr[6] = right[2];
- matr[1] = up[0];
- matr[4] = up[1];
- matr[7] = up[2];
- matr[2] = -view[0];
- matr[5] = -view[1];
- matr[8] = -view[2];
- return quat.normalize(out, quat.fromMat3(out, matr));
- };
- })();
- /**
- * Creates a new quat initialized with values from an existing quaternion
- *
- * @param {quat} a quaternion to clone
- * @returns {quat} a new quaternion
- * @function
- */
- quat.clone = vec4.clone;
- /**
- * Creates a new quat initialized with the given values
- *
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {quat} a new quaternion
- * @function
- */
- quat.fromValues = vec4.fromValues;
- /**
- * Copy the values from one quat to another
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the source quaternion
- * @returns {quat} out
- * @function
- */
- quat.copy = vec4.copy;
- /**
- * Set the components of a quat to the given values
- *
- * @param {quat} out the receiving quaternion
- * @param {Number} x X component
- * @param {Number} y Y component
- * @param {Number} z Z component
- * @param {Number} w W component
- * @returns {quat} out
- * @function
- */
- quat.set = vec4.set;
- /**
- * Set a quat to the identity quaternion
- *
- * @param {quat} out the receiving quaternion
- * @returns {quat} out
- */
- quat.identity = function(out) {
- out[0] = 0;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- };
- /**
- * Sets a quat from the given angle and rotation axis,
- * then returns it.
- *
- * @param {quat} out the receiving quaternion
- * @param {vec3} axis the axis around which to rotate
- * @param {Number} rad the angle in radians
- * @returns {quat} out
- **/
- quat.setAxisAngle = function(out, axis, rad) {
- rad = rad * 0.5;
- var s = Math.sin(rad);
- out[0] = s * axis[0];
- out[1] = s * axis[1];
- out[2] = s * axis[2];
- out[3] = Math.cos(rad);
- return out;
- };
- /**
- * Adds two quat's
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @returns {quat} out
- * @function
- */
- quat.add = vec4.add;
- /**
- * Multiplies two quat's
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @returns {quat} out
- */
- quat.multiply = function(out, a, b) {
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- bx = b[0], by = b[1], bz = b[2], bw = b[3];
- out[0] = ax * bw + aw * bx + ay * bz - az * by;
- out[1] = ay * bw + aw * by + az * bx - ax * bz;
- out[2] = az * bw + aw * bz + ax * by - ay * bx;
- out[3] = aw * bw - ax * bx - ay * by - az * bz;
- return out;
- };
- /**
- * Alias for {@link quat.multiply}
- * @function
- */
- quat.mul = quat.multiply;
- /**
- * Scales a quat by a scalar number
- *
- * @param {quat} out the receiving vector
- * @param {quat} a the vector to scale
- * @param {Number} b amount to scale the vector by
- * @returns {quat} out
- * @function
- */
- quat.scale = vec4.scale;
- /**
- * Rotates a quaternion by the given angle about the X axis
- *
- * @param {quat} out quat receiving operation result
- * @param {quat} a quat to rotate
- * @param {number} rad angle (in radians) to rotate
- * @returns {quat} out
- */
- quat.rotateX = function (out, a, rad) {
- rad *= 0.5;
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- bx = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw + aw * bx;
- out[1] = ay * bw + az * bx;
- out[2] = az * bw - ay * bx;
- out[3] = aw * bw - ax * bx;
- return out;
- };
- /**
- * Rotates a quaternion by the given angle about the Y axis
- *
- * @param {quat} out quat receiving operation result
- * @param {quat} a quat to rotate
- * @param {number} rad angle (in radians) to rotate
- * @returns {quat} out
- */
- quat.rotateY = function (out, a, rad) {
- rad *= 0.5;
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- by = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw - az * by;
- out[1] = ay * bw + aw * by;
- out[2] = az * bw + ax * by;
- out[3] = aw * bw - ay * by;
- return out;
- };
- /**
- * Rotates a quaternion by the given angle about the Z axis
- *
- * @param {quat} out quat receiving operation result
- * @param {quat} a quat to rotate
- * @param {number} rad angle (in radians) to rotate
- * @returns {quat} out
- */
- quat.rotateZ = function (out, a, rad) {
- rad *= 0.5;
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- bz = Math.sin(rad), bw = Math.cos(rad);
- out[0] = ax * bw + ay * bz;
- out[1] = ay * bw - ax * bz;
- out[2] = az * bw + aw * bz;
- out[3] = aw * bw - az * bz;
- return out;
- };
- /**
- * Calculates the W component of a quat from the X, Y, and Z components.
- * Assumes that quaternion is 1 unit in length.
- * Any existing W component will be ignored.
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quat to calculate W component of
- * @returns {quat} out
- */
- quat.calculateW = function (out, a) {
- var x = a[0], y = a[1], z = a[2];
- out[0] = x;
- out[1] = y;
- out[2] = z;
- out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
- return out;
- };
- /**
- * Calculates the dot product of two quat's
- *
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @returns {Number} dot product of a and b
- * @function
- */
- quat.dot = vec4.dot;
- /**
- * Performs a linear interpolation between two quat's
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {quat} out
- * @function
- */
- quat.lerp = vec4.lerp;
- /**
- * Performs a spherical linear interpolation between two quat
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a the first operand
- * @param {quat} b the second operand
- * @param {Number} t interpolation amount between the two inputs
- * @returns {quat} out
- */
- quat.slerp = function (out, a, b, t) {
- // benchmarks:
- // http://jsperf.com/quaternion-slerp-implementations
- var ax = a[0], ay = a[1], az = a[2], aw = a[3],
- bx = b[0], by = b[1], bz = b[2], bw = b[3];
- var omega, cosom, sinom, scale0, scale1;
- // calc cosine
- cosom = ax * bx + ay * by + az * bz + aw * bw;
- // adjust signs (if necessary)
- if ( cosom < 0.0 ) {
- cosom = -cosom;
- bx = - bx;
- by = - by;
- bz = - bz;
- bw = - bw;
- }
- // calculate coefficients
- if ( (1.0 - cosom) > 0.000001 ) {
- // standard case (slerp)
- omega = Math.acos(cosom);
- sinom = Math.sin(omega);
- scale0 = Math.sin((1.0 - t) * omega) / sinom;
- scale1 = Math.sin(t * omega) / sinom;
- } else {
- // "from" and "to" quaternions are very close
- // ... so we can do a linear interpolation
- scale0 = 1.0 - t;
- scale1 = t;
- }
- // calculate final values
- out[0] = scale0 * ax + scale1 * bx;
- out[1] = scale0 * ay + scale1 * by;
- out[2] = scale0 * az + scale1 * bz;
- out[3] = scale0 * aw + scale1 * bw;
- return out;
- };
- /**
- * Calculates the inverse of a quat
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quat to calculate inverse of
- * @returns {quat} out
- */
- quat.invert = function(out, a) {
- var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
- dot = a0*a0 + a1*a1 + a2*a2 + a3*a3,
- invDot = dot ? 1.0/dot : 0;
- // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
- out[0] = -a0*invDot;
- out[1] = -a1*invDot;
- out[2] = -a2*invDot;
- out[3] = a3*invDot;
- return out;
- };
- /**
- * Calculates the conjugate of a quat
- * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quat to calculate conjugate of
- * @returns {quat} out
- */
- quat.conjugate = function (out, a) {
- out[0] = -a[0];
- out[1] = -a[1];
- out[2] = -a[2];
- out[3] = a[3];
- return out;
- };
- /**
- * Calculates the length of a quat
- *
- * @param {quat} a vector to calculate length of
- * @returns {Number} length of a
- * @function
- */
- quat.length = vec4.length;
- /**
- * Alias for {@link quat.length}
- * @function
- */
- quat.len = quat.length;
- /**
- * Calculates the squared length of a quat
- *
- * @param {quat} a vector to calculate squared length of
- * @returns {Number} squared length of a
- * @function
- */
- quat.squaredLength = vec4.squaredLength;
- /**
- * Alias for {@link quat.squaredLength}
- * @function
- */
- quat.sqrLen = quat.squaredLength;
- /**
- * Normalize a quat
- *
- * @param {quat} out the receiving quaternion
- * @param {quat} a quaternion to normalize
- * @returns {quat} out
- * @function
- */
- quat.normalize = vec4.normalize;
- /**
- * Creates a quaternion from the given 3x3 rotation matrix.
- *
- * NOTE: The resultant quaternion is not normalized, so you should be sure
- * to renormalize the quaternion yourself where necessary.
- *
- * @param {quat} out the receiving quaternion
- * @param {mat3} m rotation matrix
- * @returns {quat} out
- * @function
- */
- quat.fromMat3 = function(out, m) {
- // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
- // article "Quaternion Calculus and Fast Animation".
- var fTrace = m[0] + m[4] + m[8];
- var fRoot;
- if ( fTrace > 0.0 ) {
- // |w| > 1/2, may as well choose w > 1/2
- fRoot = Math.sqrt(fTrace + 1.0); // 2w
- out[3] = 0.5 * fRoot;
- fRoot = 0.5/fRoot; // 1/(4w)
- out[0] = (m[5]-m[7])*fRoot;
- out[1] = (m[6]-m[2])*fRoot;
- out[2] = (m[1]-m[3])*fRoot;
- } else {
- // |w| <= 1/2
- var i = 0;
- if ( m[4] > m[0] )
- i = 1;
- if ( m[8] > m[i*3+i] )
- i = 2;
- var j = (i+1)%3;
- var k = (i+2)%3;
- fRoot = Math.sqrt(m[i*3+i]-m[j*3+j]-m[k*3+k] + 1.0);
- out[i] = 0.5 * fRoot;
- fRoot = 0.5 / fRoot;
- out[3] = (m[j*3+k] - m[k*3+j]) * fRoot;
- out[j] = (m[j*3+i] + m[i*3+j]) * fRoot;
- out[k] = (m[k*3+i] + m[i*3+k]) * fRoot;
- }
- return out;
- };
- /**
- * Returns a string representation of a quatenion
- *
- * @param {quat} vec vector to represent as a string
- * @returns {String} string representation of the vector
- */
- quat.str = function (a) {
- return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
- };
- if(typeof(exports) !== 'undefined') {
- exports.quat = quat;
- }
- ;
- })(shim.exports);
- })(this);
|