|
|
@@ -0,0 +1,300 @@
|
|
|
+#line 10001
|
|
|
+#ifdef COMPILEPS
|
|
|
+
|
|
|
+ //
|
|
|
+ // Legacy Importance Sampled IBL
|
|
|
+ //
|
|
|
+
|
|
|
+ // vec3 ImportanceSampleSimple(in vec2 Xi, in float roughness, in vec3 T, in vec3 B, in vec3 N)
|
|
|
+ // {
|
|
|
+ // float a = roughness * roughness;
|
|
|
+ // mat3 tbn = mat3(T, B, N);
|
|
|
+ // #ifdef IBLFAST
|
|
|
+ // const float blurFactor = 0.0;
|
|
|
+ // #else
|
|
|
+ // const float blurFactor = 5.0;
|
|
|
+ // #endif
|
|
|
+ // vec2 xx = Xi.xy * blurFactor;
|
|
|
+ // xx = xx - 1.0 * trunc(xx/1.0); // hlsl style modulo
|
|
|
+ // vec3 Xi3 = mix(vec3(0,0,1), normalize(vec3(xx, 1.0)), a);
|
|
|
+ // vec3 XiWS = tbn * Xi3;
|
|
|
+ // return normalize(N + XiWS);
|
|
|
+ // }
|
|
|
+
|
|
|
+ // // Karis '13
|
|
|
+ // vec3 ImportanceSampleGGX(in vec2 Xi, in float roughness, in vec3 T, in vec3 B, in vec3 N)
|
|
|
+ // {
|
|
|
+ // float a = roughness * roughness;
|
|
|
+ // float Phi = 2.0 * M_PI * Xi.x;
|
|
|
+ // float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
|
|
|
+ // float SinTheta = sqrt(1.0 - CosTheta * CosTheta);
|
|
|
+ // vec3 H = vec3(0,0,0);
|
|
|
+ // H.x = SinTheta * cos(Phi);
|
|
|
+ // H.y = SinTheta * sin(Phi);
|
|
|
+ // H.z = CosTheta;
|
|
|
+
|
|
|
+ // vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
|
|
|
+ // vec3 TangentX = normalize(cross(UpVector, N));
|
|
|
+ // vec3 TangentY = cross(N, TangentX);
|
|
|
+ // // Tangent to world space
|
|
|
+ // return TangentX * H.x + TangentY * H.y + N * H.z;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // #ifdef IBLFAST
|
|
|
+ // #define IMPORTANCE_SAMPLES 1
|
|
|
+ // #else
|
|
|
+ // #define IMPORTANCE_SAMPLES 4
|
|
|
+ // #endif
|
|
|
+
|
|
|
+ // #define IMPORTANCE_KERNEL_SIZE 16
|
|
|
+ // vec2 IMPORTANCE_KERNEL[IMPORTANCE_KERNEL_SIZE] = vec2[] (
|
|
|
+ // vec2(-0.0780436, 0.0558389),
|
|
|
+ // vec2(0.034318, -0.0635879),
|
|
|
+ // vec2(0.00230821, 0.0807279),
|
|
|
+ // vec2(0.0124638, 0.117585),
|
|
|
+ // vec2(0.093943, -0.0944602),
|
|
|
+ // vec2(0.139348, -0.109816),
|
|
|
+ // vec2(-0.181872, -0.129649),
|
|
|
+ // vec2(0.240066, -0.0494057),
|
|
|
+ // vec2(0.115965, -0.0374714),
|
|
|
+ // vec2(-0.294819, -0.100726),
|
|
|
+ // vec2(-0.149652, 0.37459),
|
|
|
+ // vec2(0.261695, -0.292813),
|
|
|
+ // vec2(-0.37944, -0.425145),
|
|
|
+ // vec2(0.628994, -0.189387),
|
|
|
+ // vec2(-0.331257, -0.646864),
|
|
|
+ // vec2(-0.467004, 0.439687)
|
|
|
+ // );
|
|
|
+
|
|
|
+ // float GetMipFromRougness(float roughness)
|
|
|
+ // {
|
|
|
+ // float smoothness = 1.0 - roughness;
|
|
|
+ // return (1.0 - smoothness * smoothness) * 10.0;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // /// Perform importance sampling
|
|
|
+ // /// reflectVec: calculated vector of reflection
|
|
|
+ // /// wsNormal: world-space normal of the surface
|
|
|
+ // /// toCamera: direction from the pixel to the camera
|
|
|
+ // /// specular: specular color
|
|
|
+ // /// roughness: surface roughness
|
|
|
+ // /// reflectionCubeColor: output color for diffuse
|
|
|
+ // // Implementation based on Epics 2013 course notes
|
|
|
+ // vec3 ImportanceSampling(in vec3 reflectVec, in vec3 tangent, in vec3 bitangent, in vec3 wsNormal, in vec3 toCamera, in vec3 diffColor, in vec3 specColor, in float roughness, inout vec3 reflectionCubeColor)
|
|
|
+ // {
|
|
|
+ // reflectionCubeColor = vec3(1,1,1);
|
|
|
+
|
|
|
+ // vec3 reflectSpec = normalize(GetSpecularDominantDir(wsNormal, reflectVec, roughness));
|
|
|
+
|
|
|
+ // vec3 V = normalize(-toCamera);
|
|
|
+ // vec3 N = normalize(wsNormal);
|
|
|
+ // float ndv = clamp(abs(dot(N, V)), 0.0, 1.0);
|
|
|
+
|
|
|
+ // float specMipLevel = GetMipFromRougness(roughness);
|
|
|
+
|
|
|
+ // vec3 accumulatedColor = vec3(0,0,0);
|
|
|
+ // for (int i = 0; i < IMPORTANCE_SAMPLES; ++i)
|
|
|
+ // {
|
|
|
+ // vec3 kd = vec3(1,1,1);
|
|
|
+ // vec3 diffuseFactor = vec3(0,0,0);
|
|
|
+ // vec3 specularFactor = vec3(0,0,0);
|
|
|
+
|
|
|
+ // {
|
|
|
+ // // Diffuse IBL
|
|
|
+ // const float rough = 1.0;
|
|
|
+ // const float mipLevel = 9.0;
|
|
|
+
|
|
|
+ // vec3 H = ImportanceSampleSimple(IMPORTANCE_KERNEL[i], rough, tangent, bitangent, N);
|
|
|
+ // vec3 L = 2.0 * dot( V, H ) * H - V;
|
|
|
+
|
|
|
+ // float vdh = clamp(abs(dot(V, H)), 0.0, 1.0);
|
|
|
+ // float ndh = clamp(abs(dot(N, H)), 0.0, 1.0);
|
|
|
+ // float ndl = clamp(abs(dot(N, L)), 0.0, 1.0);
|
|
|
+
|
|
|
+ // vec3 sampledColor = textureLod(sZoneCubeMap, L, mipLevel).rgb;
|
|
|
+
|
|
|
+ // vec3 diffuseTerm = Diffuse(diffColor, rough, ndv, ndl, vdh);
|
|
|
+ // vec3 lightTerm = sampledColor;
|
|
|
+
|
|
|
+ // diffuseFactor = lightTerm * diffuseTerm;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // {
|
|
|
+ // // Specular IBL
|
|
|
+ // float rough = roughness;
|
|
|
+ // float mipLevel = specMipLevel;
|
|
|
+
|
|
|
+ // vec3 H = ImportanceSampleSimple(IMPORTANCE_KERNEL[i], rough, tangent, bitangent, N);
|
|
|
+ // vec3 L = 2.0 * dot( V, H ) * H - V;
|
|
|
+ // vec3 sampledColor = textureLod(sZoneCubeMap, L, mipLevel).rgb;
|
|
|
+
|
|
|
+ // float vdh = clamp(abs(dot(V, H)), 0.0, 1.0);
|
|
|
+ // float ndh = clamp(abs(dot(N, H)), 0.0, 1.0);
|
|
|
+ // float ndl = clamp(abs(dot(N, L)), 0.0, 1.0);
|
|
|
+
|
|
|
+ // vec3 fresnelTerm = Fresnel(specColor, vdh);
|
|
|
+ // float distTerm = 1.0; // Optimization, this term is mathematically cancelled out -- Distribution(ndh, roughness);
|
|
|
+ // float visTerm = Visibility(ndl, ndv, rough);
|
|
|
+
|
|
|
+ // vec3 lightTerm = sampledColor * ndl;
|
|
|
+
|
|
|
+ // float pdf = ndl > 0.05 ? ImportanceSamplePDF(distTerm, ndh, vdh) : 4.0; // reduce artifacts at extreme grazing angles
|
|
|
+
|
|
|
+ // vec3 specularTerm = SpecularBRDF(distTerm, fresnelTerm, visTerm, ndl, ndv);
|
|
|
+
|
|
|
+ // // energy conservation:
|
|
|
+ // // Specular conservation:
|
|
|
+ // specularFactor = lightTerm * specularTerm / pdf;
|
|
|
+ // specularFactor = max(
|
|
|
+ // clamp(normalize(specularFactor) * (length(sampledColor * specColor)), 0.0, 1.0),
|
|
|
+ // specularFactor
|
|
|
+ // );
|
|
|
+
|
|
|
+ // // Diffuse conservation:
|
|
|
+ // //kd = (sampledColor * specColor)/specularFactor; //energy conservation
|
|
|
+ // kd = 1.0 - specularFactor;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // accumulatedColor += specularFactor + diffuseFactor * kd;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // return (accumulatedColor / IMPORTANCE_SAMPLES);
|
|
|
+ // }
|
|
|
+
|
|
|
+ // vec3 ImportanceSamplingSimple(in vec3 reflectVec, in vec3 tangent, in vec3 bitangent, in vec3 wsNormal, in vec3 toCamera, in vec3 diffColor, in vec3 specColor, in float roughness, inout vec3 reflectionCubeColor)
|
|
|
+ // {
|
|
|
+ // reflectionCubeColor = vec3(1,1,1);
|
|
|
+
|
|
|
+ // reflectVec = normalize(GetSpecularDominantDir(wsNormal, reflectVec, roughness));
|
|
|
+
|
|
|
+ // vec3 Hn = normalize(-toCamera + wsNormal);
|
|
|
+ // float ndv = clamp(dot(-toCamera, wsNormal), 0.0, 1.0);
|
|
|
+ // float vdh = clamp(dot(-toCamera, Hn), 0.0, 1.0);
|
|
|
+ // float ndh = clamp(dot(wsNormal, Hn), 0.0, 1.0);
|
|
|
+
|
|
|
+ // vec3 accumulatedColor = vec3(0,0,0);
|
|
|
+ // for (int i = 0; i < IMPORTANCE_SAMPLES; ++i)
|
|
|
+ // {
|
|
|
+ // vec3 kd = vec3(1,1,1);
|
|
|
+ // vec3 diffuseFactor = vec3(0,0,0);
|
|
|
+ // vec3 specularFactor = vec3(0,0,0);
|
|
|
+
|
|
|
+ // {
|
|
|
+ // // Diffuse IBL
|
|
|
+ // const float rough = 1.0;
|
|
|
+ // const float mipLevel = 9.0;
|
|
|
+
|
|
|
+ // vec3 perturb = ImportanceSampleGGX(IMPORTANCE_KERNEL[i].xy, rough, tangent, bitangent, wsNormal);
|
|
|
+ // vec3 sampleVec = wsNormal + perturb; //perturb by the sample vector
|
|
|
+
|
|
|
+ // vec3 sampledColor = textureLod(sZoneCubeMap, sampleVec, mipLevel).rgb;
|
|
|
+ // float ndl = clamp(dot(sampleVec, wsNormal), 0.0, 1.0);
|
|
|
+
|
|
|
+ // vec3 diffuseTerm = Diffuse(diffColor, rough, ndv, ndl, vdh);
|
|
|
+ // vec3 lightTerm = sampledColor;
|
|
|
+
|
|
|
+ // diffuseFactor = lightTerm * diffuseTerm;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // {
|
|
|
+ // // Specular IBL
|
|
|
+ // float rough = roughness;
|
|
|
+ // float mipLevel = GetMipFromRougness(rough);
|
|
|
+
|
|
|
+ // vec3 perturb = ImportanceSampleGGX(IMPORTANCE_KERNEL[i].xy, rough, tangent, bitangent, reflectVec);
|
|
|
+ // vec3 sampleVec = reflectVec + perturb; //perturb by the sample vector
|
|
|
+
|
|
|
+ // vec3 sampledColor = textureCube(sZoneCubeMap, sampleVec, mipLevel).rgb;
|
|
|
+ // float ndl = clamp(dot(sampleVec, wsNormal), 0.0, 1.0);
|
|
|
+
|
|
|
+ // vec3 fresnelTerm = SchlickFresnel(specColor, ndh) ;
|
|
|
+ // float distTerm = 1.0; //Optimization, this term is mathematically cancelled out //Distribution(ndh, roughness);
|
|
|
+ // float visTerm = SmithGGXVisibility(ndl, ndv, rough);
|
|
|
+ // vec3 lightTerm = sampledColor * ndl;
|
|
|
+
|
|
|
+ // float pdf = 1.0; //ImportanceSamplePDF(distTerm, ndh, vdh);
|
|
|
+
|
|
|
+ // specularFactor = lightTerm * SpecularBRDF(distTerm, fresnelTerm, visTerm, ndl, ndv) / pdf;
|
|
|
+ // specularFactor *= pdf * ndv * (4.0 * ndl * ndv); // hacks
|
|
|
+ // kd = (1.0 - clamp(specularFactor, 0.0, 1.0)); //energy conservation
|
|
|
+ // }
|
|
|
+
|
|
|
+ // accumulatedColor += specularFactor + diffuseFactor * kd;
|
|
|
+ // }
|
|
|
+
|
|
|
+ // return accumulatedColor / IMPORTANCE_SAMPLES;
|
|
|
+ // }
|
|
|
+
|
|
|
+ /// Determine reflection vector based on surface roughness, rougher uses closer to the normal and smoother uses closer to the reflection vector
|
|
|
+ /// normal: surface normal
|
|
|
+ /// reflection: vector of reflection off of the surface
|
|
|
+ /// roughness: surface roughness
|
|
|
+ vec3 GetSpecularDominantDir(vec3 normal, vec3 reflection, float roughness)
|
|
|
+ {
|
|
|
+ float smoothness = 1.0 - roughness;
|
|
|
+ float lerpFactor = smoothness * (sqrt(smoothness) + roughness);
|
|
|
+ return mix(normal, reflection, lerpFactor);
|
|
|
+ }
|
|
|
+
|
|
|
+ float GetMipFromRougness(float roughness)
|
|
|
+ {
|
|
|
+ float smoothness = 1.0 - roughness;
|
|
|
+ return (1.0 - smoothness * smoothness) * 10.0;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ vec3 EnvBRDFApprox (vec3 SpecularColor, float Roughness, float NoV)
|
|
|
+ {
|
|
|
+ vec4 c0 = vec4(-1, -0.0275, -0.572, 0.022 );
|
|
|
+ vec4 c1 = vec4(1, 0.0425, 1.0, -0.04 );
|
|
|
+ vec4 r = Roughness * c0 + c1;
|
|
|
+ float a004 = min( r.x * r.x, exp2( -9.28 * NoV ) ) * r.x + r.y;
|
|
|
+ vec2 AB = vec2( -1.04, 1.04 ) * a004 + r.zw;
|
|
|
+ return SpecularColor * AB.x + AB.y;
|
|
|
+ }
|
|
|
+
|
|
|
+ /// Calculate IBL contributation
|
|
|
+ /// reflectVec: reflection vector for cube sampling
|
|
|
+ /// wsNormal: surface normal in word space
|
|
|
+ /// toCamera: normalized direction from surface point to camera
|
|
|
+ /// roughness: surface roughness
|
|
|
+ /// ambientOcclusion: ambient occlusion
|
|
|
+ vec3 ImageBasedLighting(vec3 reflectVec, vec3 tangent, vec3 bitangent, vec3 wsNormal, vec3 toCamera, vec3 diffColor, vec3 specColor, float roughness, inout vec3 reflectionCubeColor)
|
|
|
+ {
|
|
|
+ reflectVec = GetSpecularDominantDir(wsNormal, reflectVec, roughness);
|
|
|
+ float ndv = clamp(dot(-toCamera, wsNormal), 0.0, 1.0);
|
|
|
+
|
|
|
+ // PMREM Mipmapmode https://seblagarde.wordpress.com/2012/06/10/amd-cubemapgen-for-physically-based-rendering/
|
|
|
+ //float GlossScale = 16.0;
|
|
|
+ //float GlossBias = 5.0;
|
|
|
+ float mipSelect = roughness * 9.0; //exp2(GlossScale * roughness * roughness + GlossBias) - exp2(GlossBias);
|
|
|
+
|
|
|
+ // OpenGL ES does not support textureLod without extensions and does not have the sZoneCubeMap sampler,
|
|
|
+ // so for now, sample without explicit LOD, and from the environment sampler, where the zone texture will be put
|
|
|
+ // on mobile hardware
|
|
|
+ #ifndef GL_ES
|
|
|
+ vec3 cube = textureLod(sZoneCubeMap, reflectVec, mipSelect).rgb;
|
|
|
+ vec3 cubeD = textureLod(sZoneCubeMap, wsNormal, 9.0).rgb;
|
|
|
+ #else
|
|
|
+ vec3 cube = textureCube(sEnvCubeMap, reflectVec).rgb;
|
|
|
+ vec3 cubeD = textureCube(sEnvCubeMap, wsNormal).rgb;
|
|
|
+ #endif
|
|
|
+
|
|
|
+ // Fake the HDR texture
|
|
|
+ float brightness = clamp(cAmbientColor.a, 0.0, 1.0);
|
|
|
+ float darknessCutoff = clamp((cAmbientColor.a - 1.0) * 0.1, 0.0, 0.25);
|
|
|
+
|
|
|
+ const float hdrMaxBrightness = 5.0;
|
|
|
+ vec3 hdrCube = pow(cube + darknessCutoff, vec3(max(1.0, cAmbientColor.a)));
|
|
|
+ hdrCube += max(vec3(0.0), hdrCube - vec3(1.0)) * hdrMaxBrightness;
|
|
|
+
|
|
|
+ vec3 hdrCubeD = pow(cubeD + darknessCutoff, vec3(max(1.0, cAmbientColor.a)));
|
|
|
+ hdrCubeD += max(vec3(0.0), hdrCubeD - vec3(1.0)) * hdrMaxBrightness;
|
|
|
+
|
|
|
+ vec3 environmentSpecular = EnvBRDFApprox(specColor, roughness, ndv);
|
|
|
+ vec3 environmentDiffuse = EnvBRDFApprox(diffColor, 1.0, ndv);
|
|
|
+
|
|
|
+ return (hdrCube * environmentSpecular + hdrCubeD * environmentDiffuse) * brightness;
|
|
|
+ //return ImportanceSampling(reflectVec, tangent, bitangent, wsNormal, toCamera, diffColor, specColor, roughness, reflectionCubeColor);
|
|
|
+ }
|
|
|
+#endif
|