#include "Raster.h" #ifdef ATOMIC_PLATFORM_WINDOWS #include #endif namespace AtomicGlow { namespace { /// Return the maximum of the two arguments. For floating point values, it returns the second value if the first is NaN. template inline const T & _max(const T & a, const T & b) { return (b < a) ? a : b; } /// Return the maximum of the three arguments. template inline const T & _max3(const T & a, const T & b, const T & c) { return _max(a, _max(b, c)); } /// Return the minimum of two values. template inline const T & _min(const T & a, const T & b) { return (a < b) ? a : b; } /// Return the maximum of the three arguments. template inline const T & _min3(const T & a, const T & b, const T & c) { return _min(a, _min(b, c)); } /// Clamp between two values. template inline const T & _clamp(const T & x, const T & a, const T & b) { return _min(_max(x, a), b); } inline bool isFinite(const float f) { #ifdef ATOMIC_PLATFORM_WINDOWS return _finite(f) != 0; #endif #ifdef ATOMIC_PLATFORM_OSX return isfinite(f); #endif #ifdef ATOMIC_PLATFORM_LINUX return finitef(f); #endif } static inline float delta(float bot, float top, float ih) { return (bot - top) * ih; } static inline Vector2 delta(const Vector2& bot, const Vector2& top, float ih) { return (bot - top) * ih; } static inline Vector3 delta(const Vector3& bot, const Vector3& top, float ih) { return (bot - top) * ih; } // @@ The implementation in nvmath.h should be equivalent. static inline int iround(float f) { // @@ Optimize this. return int(floorf(f+0.5f)); //return int(round(f)); //return int(f); } class ClippedTriangle { public: ClippedTriangle(const Vector2& a, const Vector2& b, const Vector2& c) { m_numVertices = 3; m_activeVertexBuffer = 0; m_verticesA[0]=a; m_verticesA[1]=b; m_verticesA[2]=c; m_vertexBuffers[0] = m_verticesA; m_vertexBuffers[1] = m_verticesB; } unsigned vertexCount() { return m_numVertices; } const Vector2 * vertices() { return m_vertexBuffers[m_activeVertexBuffer]; } inline void clipHorizontalPlane(float offset, float clipdirection) { Vector2 * v = m_vertexBuffers[m_activeVertexBuffer]; m_activeVertexBuffer ^= 1; Vector2 * v2 = m_vertexBuffers[m_activeVertexBuffer]; v[m_numVertices] = v[0]; float dy2, dy1 = offset - v[0].y_; int dy2in, dy1in = clipdirection*dy1 >= 0; unsigned p=0; for (unsigned k=0; k= 0; if (dy1in) v2[p++] = v[k]; if ( dy1in + dy2in == 1 ) // not both in/out { float dx = v[k+1].x_ - v[k].x_; float dy = v[k+1].y_ - v[k].y_; v2[p++] = Vector2(v[k].x_ + dy1*(dx/dy), offset); } dy1 = dy2; dy1in = dy2in; } m_numVertices = p; //for (uint k=0; k= 0; unsigned p=0; for (unsigned k=0; k= 0; if (dx1in) v2[p++] = v[k]; if ( dx1in + dx2in == 1 ) // not both in/out { float dx = v[k+1].x_ - v[k].x_; float dy = v[k+1].y_ - v[k].y_; v2[p++] = Vector2(offset, v[k].y_ + dx1*(dy/dx)); } dx1 = dx2; dx1in = dx2in; } m_numVertices = p; //for (uint k=0; kv1 = v0; this->v2 = v2; this->v3 = v1; // Set barycentric coordinates. this->t1 = t0; this->t2 = t2; this->t3 = t1; // make sure every triangle is front facing. flipBackface(); // Compute deltas. valid = computeDeltas(); computeUnitInwardNormals(); } /// Compute texture space deltas. /// This method takes two edge vectors that form a basis, determines the /// coordinates of the canonic vectors in that basis, and computes the /// texture gradient that corresponds to those vectors. bool Triangle::computeDeltas() { Vector2 e0 = v3 - v1; Vector2 e1 = v2 - v1; Vector3 de0 = t3 - t1; Vector3 de1 = t2 - t1; float denom = 1.0f / (e0.y_ * e1.x_ - e1.y_ * e0.x_); if (!isFinite(denom)) { return false; } float lambda1 = - e1.y_ * denom; float lambda2 = e0.y_ * denom; float lambda3 = e1.x_ * denom; float lambda4 = - e0.x_ * denom; dx = de0 * lambda1 + de1 * lambda2; dy = de0 * lambda3 + de1 * lambda4; return true; } // compute unit inward normals for each edge. void Triangle::computeUnitInwardNormals() { n1 = v1 - v2; n1 = Vector2(-n1.y_, n1.x_); n1 = n1 * (1.0f/sqrtf(n1.x_*n1.x_ + n1.y_*n1.y_)); n2 = v2 - v3; n2 = Vector2(-n2.y_, n2.x_); n2 = n2 * (1.0f/sqrtf(n2.x_*n2.x_ + n2.y_*n2.y_)); n3 = v3 - v1; n3 = Vector2(-n3.y_, n3.x_); n3 = n3 * (1.0f/sqrtf(n3.x_*n3.x_ + n3.y_*n3.y_)); } void Triangle::flipBackface() { // check if triangle is backfacing, if so, swap two vertices if ( ((v3.x_-v1.x_)*(v2.y_-v1.y_) - (v3.y_-v1.y_)*(v2.x_-v1.x_)) < 0 ) { Vector2 hv=v1; v1=v2; v2=hv; // swap pos Vector3 ht=t1; t1=t2; t2=ht; // swap tex } } bool Triangle::draw(const Vector2 & extents, bool enableScissors, RasterSamplingCallback cb, void * param) { // 28.4 fixed-point coordinates const int Y1 = iround(16.0f * v1.y_); const int Y2 = iround(16.0f * v2.y_); const int Y3 = iround(16.0f * v3.y_); const int X1 = iround(16.0f * v1.x_); const int X2 = iround(16.0f * v2.x_); const int X3 = iround(16.0f * v3.x_); // Deltas const int DX12 = X1 - X2; const int DX23 = X2 - X3; const int DX31 = X3 - X1; const int DY12 = Y1 - Y2; const int DY23 = Y2 - Y3; const int DY31 = Y3 - Y1; // Fixed-point deltas const int FDX12 = DX12 << 4; const int FDX23 = DX23 << 4; const int FDX31 = DX31 << 4; const int FDY12 = DY12 << 4; const int FDY23 = DY23 << 4; const int FDY31 = DY31 << 4; int minx, miny, maxx, maxy; if (enableScissors) { int frustumX0 = 0 << 4; int frustumY0 = 0 << 4; int frustumX1 = (int)extents.x_ << 4; int frustumY1 = (int)extents.y_ << 4; // Bounding rectangle minx = (_max(_min3(X1, X2, X3), frustumX0) + 0xF) >> 4; miny = (_max(_min3(Y1, Y2, Y3), frustumY0) + 0xF) >> 4; maxx = (_min(_max3(X1, X2, X3), frustumX1) + 0xF) >> 4; maxy = (_min(_max3(Y1, Y2, Y3), frustumY1) + 0xF) >> 4; } else { // Bounding rectangle minx = (_min3(X1, X2, X3) + 0xF) >> 4; miny = (_min3(Y1, Y2, Y3) + 0xF) >> 4; maxx = (_max3(X1, X2, X3) + 0xF) >> 4; maxy = (_max3(Y1, Y2, Y3) + 0xF) >> 4; } // Block size, standard 8x8 (must be power of two) const int q = 8; // @@ This won't work when minx,miny are negative. This code path is not used. Leaving as is for now. assert(minx >= 0); assert(miny >= 0); // Start in corner of 8x8 block minx &= ~(q - 1); miny &= ~(q - 1); // Half-edge constants int C1 = DY12 * X1 - DX12 * Y1; int C2 = DY23 * X2 - DX23 * Y2; int C3 = DY31 * X3 - DX31 * Y3; // Correct for fill convention if(DY12 < 0 || (DY12 == 0 && DX12 > 0)) C1++; if(DY23 < 0 || (DY23 == 0 && DX23 > 0)) C2++; if(DY31 < 0 || (DY31 == 0 && DX31 > 0)) C3++; // Loop through blocks for(int y = miny; y < maxy; y += q) { for(int x = minx; x < maxx; x += q) { // Corners of block int x0 = x << 4; int x1 = (x + q - 1) << 4; int y0 = y << 4; int y1 = (y + q - 1) << 4; // Evaluate half-space functions bool a00 = C1 + DX12 * y0 - DY12 * x0 > 0; bool a10 = C1 + DX12 * y0 - DY12 * x1 > 0; bool a01 = C1 + DX12 * y1 - DY12 * x0 > 0; bool a11 = C1 + DX12 * y1 - DY12 * x1 > 0; int a = (a00 << 0) | (a10 << 1) | (a01 << 2) | (a11 << 3); bool b00 = C2 + DX23 * y0 - DY23 * x0 > 0; bool b10 = C2 + DX23 * y0 - DY23 * x1 > 0; bool b01 = C2 + DX23 * y1 - DY23 * x0 > 0; bool b11 = C2 + DX23 * y1 - DY23 * x1 > 0; int b = (b00 << 0) | (b10 << 1) | (b01 << 2) | (b11 << 3); bool c00 = C3 + DX31 * y0 - DY31 * x0 > 0; bool c10 = C3 + DX31 * y0 - DY31 * x1 > 0; bool c01 = C3 + DX31 * y1 - DY31 * x0 > 0; bool c11 = C3 + DX31 * y1 - DY31 * x1 > 0; int c = (c00 << 0) | (c10 << 1) | (c01 << 2) | (c11 << 3); // Skip block when outside an edge if(a == 0x0 || b == 0x0 || c == 0x0) continue; // Accept whole block when totally covered if(a == 0xF && b == 0xF && c == 0xF) { Vector3 texRow = t1 + dy*(y0 - v1.y_) + dx*(x0 - v1.x_); for(int iy = y; iy < y + q; iy++) { Vector3 tex = texRow; for(int ix = x; ix < x + q; ix++) { //Vector3 tex = t1 + dx * (ix - v1.x_) + dy * (iy - v1.y_); if (!cb(param, ix, iy, tex, dx, dy, 1.0)) { // early out. return false; } tex += dx; } texRow += dy; } } else // Partially covered block { int CY1 = C1 + DX12 * y0 - DY12 * x0; int CY2 = C2 + DX23 * y0 - DY23 * x0; int CY3 = C3 + DX31 * y0 - DY31 * x0; Vector3 texRow = t1 + dy*(y0 - v1.y_) + dx*(x0 - v1.x_); for(int iy = y; iy < y + q; iy++) { int CX1 = CY1; int CX2 = CY2; int CX3 = CY3; Vector3 tex = texRow; for(int ix = x; ix < x + q; ix++) { if(CX1 > 0 && CX2 > 0 && CX3 > 0) { if (!cb(param, ix, iy, tex, dx, dy, 1.0)) { // early out. return false; } } CX1 -= FDY12; CX2 -= FDY23; CX3 -= FDY31; tex += dx; } CY1 += FDX12; CY2 += FDX23; CY3 += FDX31; texRow += dy; } } } } return true; } #define PX_INSIDE 1.0f/sqrt(2.0f) #define PX_OUTSIDE -1.0f/sqrt(2.0f) #define BK_SIZE 8 #define BK_INSIDE sqrt(BK_SIZE*BK_SIZE/2.0f) #define BK_OUTSIDE -sqrt(BK_SIZE*BK_SIZE/2.0f) // extents has to be multiple of BK_SIZE!! bool Triangle::drawAA(const Vector2& extents, bool enableScissors, RasterSamplingCallback cb, void * param) { float minx, miny, maxx, maxy; if (enableScissors) { // Bounding rectangle minx = floorf(_max(_min3(v1.x_, v2.x_, v3.x_), 0.0f)); miny = floorf(_max(_min3(v1.y_, v2.y_, v3.y_), 0.0f)); maxx = ceilf( _min(_max3(v1.x_, v2.x_, v3.x_), extents.x_-1.0f)); maxy = ceilf( _min(_max3(v1.y_, v2.y_, v3.y_), extents.y_-1.0f)); } else { // Bounding rectangle minx = floorf(_min3(v1.x_, v2.x_, v3.x_)); miny = floorf(_min3(v1.y_, v2.y_, v3.y_)); maxx = ceilf( _max3(v1.x_, v2.x_, v3.x_)); maxy = ceilf( _max3(v1.y_, v2.y_, v3.y_)); } // There's no reason to align the blocks to the viewport, instead we align them to the origin of the triangle bounds. minx = floorf(minx); miny = floorf(miny); //minx = (float)(((int)minx) & (~((int)BK_SIZE - 1))); // align to blocksize (we don't need to worry about blocks partially out of viewport) //miny = (float)(((int)miny) & (~((int)BK_SIZE - 1))); minx += 0.5; miny +=0.5; // sampling at texel centers! maxx += 0.5; maxy +=0.5; // Half-edge constants float C1 = n1.x_ * (-v1.x_) + n1.y_ * (-v1.y_); float C2 = n2.x_ * (-v2.x_) + n2.y_ * (-v2.y_); float C3 = n3.x_ * (-v3.x_) + n3.y_ * (-v3.y_); // Loop through blocks for(float y0 = miny; y0 <= maxy; y0 += BK_SIZE) { for(float x0 = minx; x0 <= maxx; x0 += BK_SIZE) { // Corners of block float xc = (x0 + (BK_SIZE-1)/2.0f); float yc = (y0 + (BK_SIZE-1)/2.0f); // Evaluate half-space functions float aC = C1 + n1.x_ * xc + n1.y_ * yc; float bC = C2 + n2.x_ * xc + n2.y_ * yc; float cC = C3 + n3.x_ * xc + n3.y_ * yc; // Skip block when outside an edge if( (aC <= BK_OUTSIDE) || (bC <= BK_OUTSIDE) || (cC <= BK_OUTSIDE) ) continue; // Accept whole block when totally covered if( (aC >= BK_INSIDE) && (bC >= BK_INSIDE) && (cC >= BK_INSIDE) ) { Vector3 texRow = t1 + dy*(y0 - v1.y_) + dx*(x0 - v1.x_); for (float y = y0; y < y0 + BK_SIZE; y++) { Vector3 tex = texRow; for(float x = x0; x < x0 + BK_SIZE; x++) { if (!cb(param, (int)x, (int)y, tex, dx, dy, 1.0f)) { return false; } tex += dx; } texRow += dy; } } else // Partially covered block { float CY1 = C1 + n1.x_ * x0 + n1.y_ * y0; float CY2 = C2 + n2.x_ * x0 + n2.y_ * y0; float CY3 = C3 + n3.x_ * x0 + n3.y_ * y0; Vector3 texRow = t1 + dy*(y0 - v1.y_) + dx*(x0 - v1.x_); for(float y = y0; y < y0 + BK_SIZE; y++) { float CX1 = CY1; float CX2 = CY2; float CX3 = CY3; Vector3 tex = texRow; for (float x = x0; x < x0 + BK_SIZE; x++) { if (CX1 >= PX_INSIDE && CX2 >= PX_INSIDE && CX3 >= PX_INSIDE) { // pixel completely covered Vector3 tex = t1 + dx * (x - v1.x_) + dy * (y - v1.y_); if (!cb(param, (int)x, (int)y, tex, dx, dy, 1.0f)) { return false; } } else if ((CX1 >= PX_OUTSIDE) && (CX2 >= PX_OUTSIDE) && (CX3 >= PX_OUTSIDE)) { // triangle partially covers pixel. do clipping. ClippedTriangle ct(v1-Vector2(x,y), v2-Vector2(x,y), v3-Vector2(x,y)); ct.clipAABox(-0.5, -0.5, 0.5, 0.5); Vector2 centroid = ct.centroid(); float area = ct.area(); if (area > 0.0f) { Vector3 texCent = tex - dx*centroid.x_ - dy*centroid.y_; //nvCheck(texCent.x_ >= -0.1f && texCent.x_ <= 1.1f); // @@ Centroid is not very exact... //nvCheck(texCent.y_ >= -0.1f && texCent.y_ <= 1.1f); //nvCheck(texCent.z >= -0.1f && texCent.z <= 1.1f); //Vector3 texCent2 = t1 + dx * (x - v1.x_) + dy * (y - v1.y_); if (!cb(param, (int)x, (int)y, texCent, dx, dy, area)) { return false; } } } CX1 += n1.x_; CX2 += n2.x_; CX3 += n3.x_; tex += dx; } CY1 += n1.y_; CY2 += n2.y_; CY3 += n3.y_; texRow += dy; } } } } return true; } } // namespace /// Process the given triangle. bool Raster::DrawTriangle(bool antialias, const Vector2& extents, bool enableScissors, const Vector2 v[3], RasterSamplingCallback cb, void* param) { Triangle tri(v[0], v[1], v[2], Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1)); if (tri.valid) { if (antialias) { return tri.drawAA(extents, enableScissors, cb, param); } else { return tri.draw(extents, enableScissors, cb, param); } } return true; } inline float triangleArea(const Vector2& v1, const Vector2& v2, const Vector2& v3) { return 0.5f * (v3.x_ * v1.y_ + v1.x_ * v2.y_ + v2.x_ * v3.y_ - v2.x_ * v1.y_ - v3.x_ * v2.y_ - v1.x_ * v3.y_); } /// Process the given quad. bool Raster::DrawQuad(bool antialias, const Vector2& extents, bool enableScissors, const Vector2 v[4], RasterSamplingCallback cb, void * param) { bool sign0 = triangleArea(v[0], v[1], v[2]) > 0.0f; bool sign1 = triangleArea(v[0], v[2], v[3]) > 0.0f; // Divide the quad into two non overlapping triangles. if (sign0 == sign1) { Triangle tri0(v[0], v[1], v[2], Vector3(0,0,0), Vector3(1,0,0), Vector3(1,1,0)); Triangle tri1(v[0], v[2], v[3], Vector3(0,0,0), Vector3(1,1,0), Vector3(0,1,0)); if (tri0.valid && tri1.valid) { if (antialias) { return tri0.drawAA(extents, enableScissors, cb, param) && tri1.drawAA(extents, enableScissors, cb, param); } else { return tri0.draw(extents, enableScissors, cb, param) && tri1.draw(extents, enableScissors, cb, param); } } } else { Triangle tri0(v[0], v[1], v[3], Vector3(0,0,0), Vector3(1,0,0), Vector3(0,1,0)); Triangle tri1(v[1], v[2], v[3], Vector3(1,0,0), Vector3(1,1,0), Vector3(0,1,0)); if (tri0.valid && tri1.valid) { if (antialias) { return tri0.drawAA(extents, enableScissors, cb, param) && tri1.drawAA(extents, enableScissors, cb, param); } else { return tri0.draw(extents, enableScissors, cb, param) && tri1.draw(extents, enableScissors, cb, param); } } } return true; } }