// // Copyright (c) 2008-2017 the Urho3D project. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #include "../Precompiled.h" #include "../Core/Context.h" #include "../Core/Profiler.h" #include "../IO/Log.h" #include "../IO/MemoryBuffer.h" #include "../Physics/CollisionShape.h" #include "../Physics/Constraint.h" #include "../Physics/PhysicsUtils.h" #include "../Physics/PhysicsWorld.h" #include "../Physics/RigidBody.h" #include "../Resource/ResourceCache.h" #include "../Resource/ResourceEvents.h" #include "../Scene/Scene.h" #include "../Scene/SceneEvents.h" #include "../Scene/SmoothedTransform.h" // ATOMIC BEGIN #include #include #include // ATOMIC END namespace Atomic { static const float DEFAULT_MASS = 0.0f; static const float DEFAULT_FRICTION = 0.5f; static const float DEFAULT_RESTITUTION = 0.0f; static const float DEFAULT_ROLLING_FRICTION = 0.0f; static const unsigned DEFAULT_COLLISION_LAYER = 0x1; static const unsigned DEFAULT_COLLISION_MASK = M_MAX_UNSIGNED; static const char* collisionEventModeNames[] = { "Never", "When Active", "Always", 0 }; extern const char* PHYSICS_CATEGORY; RigidBody::RigidBody(Context* context) : Component(context), gravityOverride_(Vector3::ZERO), centerOfMass_(Vector3::ZERO), mass_(DEFAULT_MASS), collisionLayer_(DEFAULT_COLLISION_LAYER), collisionMask_(DEFAULT_COLLISION_MASK), collisionEventMode_(COLLISION_ACTIVE), lastPosition_(Vector3::ZERO), lastRotation_(Quaternion::IDENTITY), kinematic_(false), trigger_(false), useGravity_(true), readdBody_(false), inWorld_(false), enableMassUpdate_(true), hasSimulated_(false) { compoundShape_ = new btCompoundShape(); shiftedCompoundShape_ = new btCompoundShape(); } RigidBody::~RigidBody() { ReleaseBody(); if (physicsWorld_) physicsWorld_->RemoveRigidBody(this); } void RigidBody::RegisterObject(Context* context) { context->RegisterFactory(PHYSICS_CATEGORY); ATOMIC_ACCESSOR_ATTRIBUTE("Is Enabled", IsEnabled, SetEnabled, bool, true, AM_DEFAULT); ATOMIC_MIXED_ACCESSOR_ATTRIBUTE("Physics Rotation", GetRotation, SetRotation, Quaternion, Quaternion::IDENTITY, AM_FILE | AM_NOEDIT); ATOMIC_MIXED_ACCESSOR_ATTRIBUTE("Physics Position", GetPosition, SetPosition, Vector3, Vector3::ZERO, AM_FILE | AM_NOEDIT); ATOMIC_ATTRIBUTE("Mass", float, mass_, DEFAULT_MASS, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Friction", GetFriction, SetFriction, float, DEFAULT_FRICTION, AM_DEFAULT); ATOMIC_MIXED_ACCESSOR_ATTRIBUTE("Anisotropic Friction", GetAnisotropicFriction, SetAnisotropicFriction, Vector3, Vector3::ONE, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Rolling Friction", GetRollingFriction, SetRollingFriction, float, DEFAULT_ROLLING_FRICTION, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Restitution", GetRestitution, SetRestitution, float, DEFAULT_RESTITUTION, AM_DEFAULT); ATOMIC_MIXED_ACCESSOR_ATTRIBUTE("Linear Velocity", GetLinearVelocity, SetLinearVelocity, Vector3, Vector3::ZERO, AM_DEFAULT | AM_LATESTDATA); ATOMIC_MIXED_ACCESSOR_ATTRIBUTE("Angular Velocity", GetAngularVelocity, SetAngularVelocity, Vector3, Vector3::ZERO, AM_FILE); ATOMIC_MIXED_ACCESSOR_ATTRIBUTE("Linear Factor", GetLinearFactor, SetLinearFactor, Vector3, Vector3::ONE, AM_DEFAULT); ATOMIC_MIXED_ACCESSOR_ATTRIBUTE("Angular Factor", GetAngularFactor, SetAngularFactor, Vector3, Vector3::ONE, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Linear Damping", GetLinearDamping, SetLinearDamping, float, 0.0f, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Angular Damping", GetAngularDamping, SetAngularDamping, float, 0.0f, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Linear Rest Threshold", GetLinearRestThreshold, SetLinearRestThreshold, float, 0.8f, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Angular Rest Threshold", GetAngularRestThreshold, SetAngularRestThreshold, float, 1.0f, AM_DEFAULT); ATOMIC_ATTRIBUTE("Collision Layer", int, collisionLayer_, DEFAULT_COLLISION_LAYER, AM_DEFAULT); ATOMIC_ATTRIBUTE("Collision Mask", int, collisionMask_, DEFAULT_COLLISION_MASK, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Contact Threshold", GetContactProcessingThreshold, SetContactProcessingThreshold, float, BT_LARGE_FLOAT, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("CCD Radius", GetCcdRadius, SetCcdRadius, float, 0.0f, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("CCD Motion Threshold", GetCcdMotionThreshold, SetCcdMotionThreshold, float, 0.0f, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Network Angular Velocity", GetNetAngularVelocityAttr, SetNetAngularVelocityAttr, PODVector, Variant::emptyBuffer, AM_NET | AM_LATESTDATA | AM_NOEDIT); ATOMIC_ENUM_ATTRIBUTE("Collision Event Mode", collisionEventMode_, collisionEventModeNames, COLLISION_ACTIVE, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Use Gravity", GetUseGravity, SetUseGravity, bool, true, AM_DEFAULT); ATOMIC_ATTRIBUTE("Is Kinematic", bool, kinematic_, false, AM_DEFAULT); ATOMIC_ATTRIBUTE("Is Trigger", bool, trigger_, false, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Gravity Override", GetGravityOverride, SetGravityOverride, Vector3, Vector3::ZERO, AM_DEFAULT); } void RigidBody::OnSetAttribute(const AttributeInfo& attr, const Variant& src) { Serializable::OnSetAttribute(attr, src); // Change of any non-accessor attribute requires the rigid body to be re-added to the physics world if (!attr.accessor_) readdBody_ = true; } void RigidBody::ApplyAttributes() { if (readdBody_) AddBodyToWorld(); } void RigidBody::OnSetEnabled() { bool enabled = IsEnabledEffective(); if (enabled && !inWorld_) AddBodyToWorld(); else if (!enabled && inWorld_) RemoveBodyFromWorld(); } void RigidBody::getWorldTransform(btTransform& worldTrans) const { // We may be in a pathological state where a RigidBody exists without a scene node when this callback is fired, // so check to be sure if (node_) { lastPosition_ = node_->GetWorldPosition(); lastRotation_ = node_->GetWorldRotation(); worldTrans.setOrigin(ToBtVector3(lastPosition_ + lastRotation_ * centerOfMass_)); worldTrans.setRotation(ToBtQuaternion(lastRotation_)); } hasSimulated_ = true; } void RigidBody::setWorldTransform(const btTransform& worldTrans) { Quaternion newWorldRotation = ToQuaternion(worldTrans.getRotation()); Vector3 newWorldPosition = ToVector3(worldTrans.getOrigin()) - newWorldRotation * centerOfMass_; RigidBody* parentRigidBody = 0; // It is possible that the RigidBody component has been kept alive via a shared pointer, // while its scene node has already been destroyed if (node_) { // If the rigid body is parented to another rigid body, can not set the transform immediately. // In that case store it to PhysicsWorld for delayed assignment Node* parent = node_->GetParent(); if (parent != GetScene() && parent) parentRigidBody = parent->GetComponent(); if (!parentRigidBody) ApplyWorldTransform(newWorldPosition, newWorldRotation); else { DelayedWorldTransform delayed; delayed.rigidBody_ = this; delayed.parentRigidBody_ = parentRigidBody; delayed.worldPosition_ = newWorldPosition; delayed.worldRotation_ = newWorldRotation; physicsWorld_->AddDelayedWorldTransform(delayed); } MarkNetworkUpdate(); } hasSimulated_ = true; } void RigidBody::DrawDebugGeometry(DebugRenderer* debug, bool depthTest) { if (debug && physicsWorld_ && body_ && IsEnabledEffective()) { physicsWorld_->SetDebugRenderer(debug); physicsWorld_->SetDebugDepthTest(depthTest); btDiscreteDynamicsWorld* world = physicsWorld_->GetWorld(); world->debugDrawObject(body_->getWorldTransform(), shiftedCompoundShape_.Get(), IsActive() ? btVector3(1.0f, 1.0f, 1.0f) : btVector3(0.0f, 1.0f, 0.0f)); physicsWorld_->SetDebugRenderer(0); } } void RigidBody::SetMass(float mass) { mass = Max(mass, 0.0f); if (mass != mass_) { mass_ = mass; AddBodyToWorld(); MarkNetworkUpdate(); } } void RigidBody::SetPosition(const Vector3& position) { if (body_) { btTransform& worldTrans = body_->getWorldTransform(); worldTrans.setOrigin(ToBtVector3(position + ToQuaternion(worldTrans.getRotation()) * centerOfMass_)); // When forcing the physics position, set also interpolated position so that there is no jitter // When not inside the simulation loop, this may lead to erratic movement of parented rigidbodies // so skip in that case. Exception made before first simulation tick so that interpolation position // of e.g. instantiated prefabs will be correct from the start if (!hasSimulated_ || physicsWorld_->IsSimulating()) { btTransform interpTrans = body_->getInterpolationWorldTransform(); interpTrans.setOrigin(worldTrans.getOrigin()); body_->setInterpolationWorldTransform(interpTrans); } Activate(); MarkNetworkUpdate(); } } void RigidBody::SetRotation(const Quaternion& rotation) { if (body_) { Vector3 oldPosition = GetPosition(); btTransform& worldTrans = body_->getWorldTransform(); worldTrans.setRotation(ToBtQuaternion(rotation)); if (!centerOfMass_.Equals(Vector3::ZERO)) worldTrans.setOrigin(ToBtVector3(oldPosition + rotation * centerOfMass_)); if (!hasSimulated_ || physicsWorld_->IsSimulating()) { btTransform interpTrans = body_->getInterpolationWorldTransform(); interpTrans.setRotation(worldTrans.getRotation()); if (!centerOfMass_.Equals(Vector3::ZERO)) interpTrans.setOrigin(worldTrans.getOrigin()); body_->setInterpolationWorldTransform(interpTrans); } body_->updateInertiaTensor(); Activate(); MarkNetworkUpdate(); } } void RigidBody::SetTransform(const Vector3& position, const Quaternion& rotation) { if (body_) { btTransform& worldTrans = body_->getWorldTransform(); worldTrans.setRotation(ToBtQuaternion(rotation)); worldTrans.setOrigin(ToBtVector3(position + rotation * centerOfMass_)); if (!hasSimulated_ || physicsWorld_->IsSimulating()) { btTransform interpTrans = body_->getInterpolationWorldTransform(); interpTrans.setOrigin(worldTrans.getOrigin()); interpTrans.setRotation(worldTrans.getRotation()); body_->setInterpolationWorldTransform(interpTrans); } body_->updateInertiaTensor(); Activate(); MarkNetworkUpdate(); } } void RigidBody::SetLinearVelocity(const Vector3& velocity) { if (body_) { body_->setLinearVelocity(ToBtVector3(velocity)); if (velocity != Vector3::ZERO) Activate(); MarkNetworkUpdate(); } } void RigidBody::SetLinearFactor(const Vector3& factor) { if (body_) { body_->setLinearFactor(ToBtVector3(factor)); MarkNetworkUpdate(); } } void RigidBody::SetLinearRestThreshold(float threshold) { if (body_) { body_->setSleepingThresholds(threshold, body_->getAngularSleepingThreshold()); MarkNetworkUpdate(); } } void RigidBody::SetLinearDamping(float damping) { if (body_) { body_->setDamping(damping, body_->getAngularDamping()); MarkNetworkUpdate(); } } void RigidBody::SetAngularVelocity(const Vector3& velocity) { if (body_) { body_->setAngularVelocity(ToBtVector3(velocity)); if (velocity != Vector3::ZERO) Activate(); MarkNetworkUpdate(); } } void RigidBody::SetAngularFactor(const Vector3& factor) { if (body_) { body_->setAngularFactor(ToBtVector3(factor)); MarkNetworkUpdate(); } } void RigidBody::SetAngularRestThreshold(float threshold) { if (body_) { body_->setSleepingThresholds(body_->getLinearSleepingThreshold(), threshold); MarkNetworkUpdate(); } } void RigidBody::SetAngularDamping(float damping) { if (body_) { body_->setDamping(body_->getLinearDamping(), damping); MarkNetworkUpdate(); } } void RigidBody::SetFriction(float friction) { if (body_) { body_->setFriction(friction); MarkNetworkUpdate(); } } void RigidBody::SetAnisotropicFriction(const Vector3& friction) { if (body_) { body_->setAnisotropicFriction(ToBtVector3(friction)); MarkNetworkUpdate(); } } void RigidBody::SetRollingFriction(float friction) { if (body_) { body_->setRollingFriction(friction); MarkNetworkUpdate(); } } void RigidBody::SetRestitution(float restitution) { if (body_) { body_->setRestitution(restitution); MarkNetworkUpdate(); } } void RigidBody::SetContactProcessingThreshold(float threshold) { if (body_) { body_->setContactProcessingThreshold(threshold); MarkNetworkUpdate(); } } void RigidBody::SetCcdRadius(float radius) { radius = Max(radius, 0.0f); if (body_) { body_->setCcdSweptSphereRadius(radius); MarkNetworkUpdate(); } } void RigidBody::SetCcdMotionThreshold(float threshold) { threshold = Max(threshold, 0.0f); if (body_) { body_->setCcdMotionThreshold(threshold); MarkNetworkUpdate(); } } void RigidBody::SetUseGravity(bool enable) { if (enable != useGravity_) { useGravity_ = enable; UpdateGravity(); MarkNetworkUpdate(); } } void RigidBody::SetGravityOverride(const Vector3& gravity) { if (gravity != gravityOverride_) { gravityOverride_ = gravity; UpdateGravity(); MarkNetworkUpdate(); } } void RigidBody::SetKinematic(bool enable) { if (enable != kinematic_) { kinematic_ = enable; AddBodyToWorld(); MarkNetworkUpdate(); } } void RigidBody::SetTrigger(bool enable) { if (enable != trigger_) { trigger_ = enable; AddBodyToWorld(); MarkNetworkUpdate(); } } void RigidBody::SetCollisionLayer(unsigned layer) { if (layer != collisionLayer_) { collisionLayer_ = layer; AddBodyToWorld(); MarkNetworkUpdate(); } } void RigidBody::SetCollisionMask(unsigned mask) { if (mask != collisionMask_) { collisionMask_ = mask; AddBodyToWorld(); MarkNetworkUpdate(); } } void RigidBody::SetCollisionLayerAndMask(unsigned layer, unsigned mask) { if (layer != collisionLayer_ || mask != collisionMask_) { collisionLayer_ = layer; collisionMask_ = mask; AddBodyToWorld(); MarkNetworkUpdate(); } } void RigidBody::SetCollisionEventMode(CollisionEventMode mode) { collisionEventMode_ = mode; MarkNetworkUpdate(); } void RigidBody::ApplyForce(const Vector3& force) { if (body_ && force != Vector3::ZERO) { Activate(); body_->applyCentralForce(ToBtVector3(force)); } } void RigidBody::ApplyForce(const Vector3& force, const Vector3& position) { if (body_ && force != Vector3::ZERO) { Activate(); body_->applyForce(ToBtVector3(force), ToBtVector3(position - centerOfMass_)); } } void RigidBody::ApplyTorque(const Vector3& torque) { if (body_ && torque != Vector3::ZERO) { Activate(); body_->applyTorque(ToBtVector3(torque)); } } void RigidBody::ApplyImpulse(const Vector3& impulse) { if (body_ && impulse != Vector3::ZERO) { Activate(); body_->applyCentralImpulse(ToBtVector3(impulse)); } } void RigidBody::ApplyImpulse(const Vector3& impulse, const Vector3& position) { if (body_ && impulse != Vector3::ZERO) { Activate(); body_->applyImpulse(ToBtVector3(impulse), ToBtVector3(position - centerOfMass_)); } } void RigidBody::ApplyTorqueImpulse(const Vector3& torque) { if (body_ && torque != Vector3::ZERO) { Activate(); body_->applyTorqueImpulse(ToBtVector3(torque)); } } void RigidBody::ResetForces() { if (body_) body_->clearForces(); } void RigidBody::Activate() { if (body_ && mass_ > 0.0f) body_->activate(true); } void RigidBody::ReAddBodyToWorld() { if (body_ && inWorld_) AddBodyToWorld(); } void RigidBody::DisableMassUpdate() { enableMassUpdate_ = false; } void RigidBody::EnableMassUpdate() { if (!enableMassUpdate_) { enableMassUpdate_ = true; UpdateMass(); } } Vector3 RigidBody::GetPosition() const { if (body_) { const btTransform& transform = body_->getWorldTransform(); return ToVector3(transform.getOrigin()) - ToQuaternion(transform.getRotation()) * centerOfMass_; } else return Vector3::ZERO; } Quaternion RigidBody::GetRotation() const { return body_ ? ToQuaternion(body_->getWorldTransform().getRotation()) : Quaternion::IDENTITY; } Vector3 RigidBody::GetLinearVelocity() const { return body_ ? ToVector3(body_->getLinearVelocity()) : Vector3::ZERO; } Vector3 RigidBody::GetLinearFactor() const { return body_ ? ToVector3(body_->getLinearFactor()) : Vector3::ZERO; } Vector3 RigidBody::GetVelocityAtPoint(const Vector3& position) const { return body_ ? ToVector3(body_->getVelocityInLocalPoint(ToBtVector3(position - centerOfMass_))) : Vector3::ZERO; } float RigidBody::GetLinearRestThreshold() const { return body_ ? body_->getLinearSleepingThreshold() : 0.0f; } float RigidBody::GetLinearDamping() const { return body_ ? body_->getLinearDamping() : 0.0f; } Vector3 RigidBody::GetAngularVelocity() const { return body_ ? ToVector3(body_->getAngularVelocity()) : Vector3::ZERO; } Vector3 RigidBody::GetAngularFactor() const { return body_ ? ToVector3(body_->getAngularFactor()) : Vector3::ZERO; } float RigidBody::GetAngularRestThreshold() const { return body_ ? body_->getAngularSleepingThreshold() : 0.0f; } float RigidBody::GetAngularDamping() const { return body_ ? body_->getAngularDamping() : 0.0f; } float RigidBody::GetFriction() const { return body_ ? body_->getFriction() : 0.0f; } Vector3 RigidBody::GetAnisotropicFriction() const { return body_ ? ToVector3(body_->getAnisotropicFriction()) : Vector3::ZERO; } float RigidBody::GetRollingFriction() const { return body_ ? body_->getRollingFriction() : 0.0f; } float RigidBody::GetRestitution() const { return body_ ? body_->getRestitution() : 0.0f; } float RigidBody::GetContactProcessingThreshold() const { return body_ ? body_->getContactProcessingThreshold() : 0.0f; } float RigidBody::GetCcdRadius() const { return body_ ? body_->getCcdSweptSphereRadius() : 0.0f; } float RigidBody::GetCcdMotionThreshold() const { return body_ ? body_->getCcdMotionThreshold() : 0.0f; } bool RigidBody::IsActive() const { return body_ ? body_->isActive() : false; } void RigidBody::GetCollidingBodies(PODVector& result) const { if (physicsWorld_) physicsWorld_->GetCollidingBodies(result, this); else result.Clear(); } void RigidBody::ApplyWorldTransform(const Vector3& newWorldPosition, const Quaternion& newWorldRotation) { // In case of holding an extra reference to the RigidBody, this could be called in a situation // where node is already null if (!node_ || !physicsWorld_) return; physicsWorld_->SetApplyingTransforms(true); // Apply transform to the SmoothedTransform component instead of node transform if available if (smoothedTransform_) { smoothedTransform_->SetTargetWorldPosition(newWorldPosition); smoothedTransform_->SetTargetWorldRotation(newWorldRotation); lastPosition_ = newWorldPosition; lastRotation_ = newWorldRotation; } else { node_->SetWorldPosition(newWorldPosition); node_->SetWorldRotation(newWorldRotation); lastPosition_ = node_->GetWorldPosition(); lastRotation_ = node_->GetWorldRotation(); } physicsWorld_->SetApplyingTransforms(false); } void RigidBody::UpdateMass() { if (!body_ || !enableMassUpdate_) return; btTransform principal; principal.setRotation(btQuaternion::getIdentity()); principal.setOrigin(btVector3(0.0f, 0.0f, 0.0f)); // Calculate center of mass shift from all the collision shapes unsigned numShapes = (unsigned)compoundShape_->getNumChildShapes(); if (numShapes) { PODVector masses(numShapes); for (unsigned i = 0; i < numShapes; ++i) { // The actual mass does not matter, divide evenly between child shapes masses[i] = 1.0f; } btVector3 inertia(0.0f, 0.0f, 0.0f); compoundShape_->calculatePrincipalAxisTransform(&masses[0], principal, inertia); } // Add child shapes to shifted compound shape with adjusted offset while (shiftedCompoundShape_->getNumChildShapes()) shiftedCompoundShape_->removeChildShapeByIndex(shiftedCompoundShape_->getNumChildShapes() - 1); for (unsigned i = 0; i < numShapes; ++i) { btTransform adjusted = compoundShape_->getChildTransform(i); adjusted.setOrigin(adjusted.getOrigin() - principal.getOrigin()); shiftedCompoundShape_->addChildShape(adjusted, compoundShape_->getChildShape(i)); } // If shifted compound shape has only one child with no offset/rotation, use the child shape // directly as the rigid body collision shape for better collision detection performance bool useCompound = !numShapes || numShapes > 1; if (!useCompound) { const btTransform& childTransform = shiftedCompoundShape_->getChildTransform(0); if (!ToVector3(childTransform.getOrigin()).Equals(Vector3::ZERO) || !ToQuaternion(childTransform.getRotation()).Equals(Quaternion::IDENTITY)) useCompound = true; } body_->setCollisionShape(useCompound ? shiftedCompoundShape_.Get() : shiftedCompoundShape_->getChildShape(0)); // If we have one shape and this is a triangle mesh, we use a custom material callback in order to adjust internal edges if (!useCompound && body_->getCollisionShape()->getShapeType() == SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE && physicsWorld_->GetInternalEdge()) body_->setCollisionFlags(body_->getCollisionFlags() | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK); else body_->setCollisionFlags(body_->getCollisionFlags() & ~btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK); // Reapply rigid body position with new center of mass shift Vector3 oldPosition = GetPosition(); centerOfMass_ = ToVector3(principal.getOrigin()); SetPosition(oldPosition); // Calculate final inertia btVector3 localInertia(0.0f, 0.0f, 0.0f); if (mass_ > 0.0f) shiftedCompoundShape_->calculateLocalInertia(mass_, localInertia); body_->setMassProps(mass_, localInertia); body_->updateInertiaTensor(); // Reapply constraint positions for new center of mass shift if (node_) { for (PODVector::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i) (*i)->ApplyFrames(); } } void RigidBody::UpdateGravity() { if (physicsWorld_ && body_) { btDiscreteDynamicsWorld* world = physicsWorld_->GetWorld(); int flags = body_->getFlags(); if (useGravity_ && gravityOverride_ == Vector3::ZERO) flags &= ~BT_DISABLE_WORLD_GRAVITY; else flags |= BT_DISABLE_WORLD_GRAVITY; body_->setFlags(flags); if (useGravity_) { // If override vector is zero, use world's gravity if (gravityOverride_ == Vector3::ZERO) body_->setGravity(world->getGravity()); else body_->setGravity(ToBtVector3(gravityOverride_)); } else body_->setGravity(btVector3(0.0f, 0.0f, 0.0f)); } } void RigidBody::SetNetAngularVelocityAttr(const PODVector& value) { float maxVelocity = physicsWorld_ ? physicsWorld_->GetMaxNetworkAngularVelocity() : DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY; MemoryBuffer buf(value); SetAngularVelocity(buf.ReadPackedVector3(maxVelocity)); } const PODVector& RigidBody::GetNetAngularVelocityAttr() const { float maxVelocity = physicsWorld_ ? physicsWorld_->GetMaxNetworkAngularVelocity() : DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY; attrBuffer_.Clear(); attrBuffer_.WritePackedVector3(GetAngularVelocity(), maxVelocity); return attrBuffer_.GetBuffer(); } void RigidBody::AddConstraint(Constraint* constraint) { constraints_.Push(constraint); } void RigidBody::RemoveConstraint(Constraint* constraint) { constraints_.Remove(constraint); // A constraint being removed should possibly cause the object to eg. start falling, so activate Activate(); } void RigidBody::ReleaseBody() { if (body_) { // Release all constraints which refer to this body // Make a copy for iteration PODVector constraints = constraints_; for (PODVector::Iterator i = constraints.Begin(); i != constraints.End(); ++i) (*i)->ReleaseConstraint(); RemoveBodyFromWorld(); body_.Reset(); } } void RigidBody::OnMarkedDirty(Node* node) { // If node transform changes, apply it back to the physics transform. However, do not do this when a SmoothedTransform // is in use, because in that case the node transform will be constantly updated into smoothed, possibly non-physical // states; rather follow the SmoothedTransform target transform directly // Also, for kinematic objects Bullet asks the position from us, so we do not need to apply ourselves // (exception: initial setting of transform) if ((!kinematic_ || !hasSimulated_) && (!physicsWorld_ || !physicsWorld_->IsApplyingTransforms()) && !smoothedTransform_) { // Physics operations are not safe from worker threads Scene* scene = GetScene(); if (scene && scene->IsThreadedUpdate()) { scene->DelayedMarkedDirty(this); return; } // Check if transform has changed from the last one set in ApplyWorldTransform() Vector3 newPosition = node_->GetWorldPosition(); Quaternion newRotation = node_->GetWorldRotation(); if (!newRotation.Equals(lastRotation_)) { lastRotation_ = newRotation; SetRotation(newRotation); } if (!newPosition.Equals(lastPosition_)) { lastPosition_ = newPosition; SetPosition(newPosition); } } } void RigidBody::OnNodeSet(Node* node) { if (node) node->AddListener(this); } void RigidBody::OnSceneSet(Scene* scene) { if (scene) { if (scene == node_) ATOMIC_LOGWARNING(GetTypeName() + " should not be created to the root scene node"); physicsWorld_ = scene->GetOrCreateComponent(); physicsWorld_->AddRigidBody(this); AddBodyToWorld(); } else { ReleaseBody(); if (physicsWorld_) physicsWorld_->RemoveRigidBody(this); } } void RigidBody::AddBodyToWorld() { if (!physicsWorld_) return; ATOMIC_PROFILE(AddBodyToWorld); if (mass_ < 0.0f) mass_ = 0.0f; if (body_) RemoveBodyFromWorld(); else { // Correct inertia will be calculated below btVector3 localInertia(0.0f, 0.0f, 0.0f); body_ = new btRigidBody(mass_, this, shiftedCompoundShape_.Get(), localInertia); body_->setUserPointer(this); // Check for existence of the SmoothedTransform component, which should be created by now in network client mode. // If it exists, subscribe to its change events smoothedTransform_ = GetComponent(); if (smoothedTransform_) { SubscribeToEvent(smoothedTransform_, E_TARGETPOSITION, ATOMIC_HANDLER(RigidBody, HandleTargetPosition)); SubscribeToEvent(smoothedTransform_, E_TARGETROTATION, ATOMIC_HANDLER(RigidBody, HandleTargetRotation)); } // Check if CollisionShapes already exist in the node and add them to the compound shape. // Do not update mass yet, but do it once all shapes have been added PODVector shapes; node_->GetComponents(shapes); for (PODVector::Iterator i = shapes.Begin(); i != shapes.End(); ++i) (*i)->NotifyRigidBody(false); // Check if this node contains Constraint components that were waiting for the rigid body to be created, and signal them // to create themselves now PODVector constraints; node_->GetComponents(constraints); for (PODVector::Iterator i = constraints.Begin(); i != constraints.End(); ++i) (*i)->CreateConstraint(); } UpdateMass(); UpdateGravity(); int flags = body_->getCollisionFlags(); if (trigger_) flags |= btCollisionObject::CF_NO_CONTACT_RESPONSE; else flags &= ~btCollisionObject::CF_NO_CONTACT_RESPONSE; if (kinematic_) flags |= btCollisionObject::CF_KINEMATIC_OBJECT; else flags &= ~btCollisionObject::CF_KINEMATIC_OBJECT; body_->setCollisionFlags(flags); body_->forceActivationState(kinematic_ ? DISABLE_DEACTIVATION : ISLAND_SLEEPING); if (!IsEnabledEffective()) return; btDiscreteDynamicsWorld* world = physicsWorld_->GetWorld(); world->addRigidBody(body_.Get(), (short)collisionLayer_, (short)collisionMask_); inWorld_ = true; readdBody_ = false; hasSimulated_ = false; if (mass_ > 0.0f) Activate(); else { SetLinearVelocity(Vector3::ZERO); SetAngularVelocity(Vector3::ZERO); } } void RigidBody::RemoveBodyFromWorld() { if (physicsWorld_ && body_ && inWorld_) { btDiscreteDynamicsWorld* world = physicsWorld_->GetWorld(); world->removeRigidBody(body_.Get()); inWorld_ = false; } } void RigidBody::HandleTargetPosition(StringHash eventType, VariantMap& eventData) { // Copy the smoothing target position to the rigid body if (!physicsWorld_ || !physicsWorld_->IsApplyingTransforms()) SetPosition(static_cast(GetEventSender())->GetTargetWorldPosition()); } void RigidBody::HandleTargetRotation(StringHash eventType, VariantMap& eventData) { // Copy the smoothing target rotation to the rigid body if (!physicsWorld_ || !physicsWorld_->IsApplyingTransforms()) SetRotation(static_cast(GetEventSender())->GetTargetWorldRotation()); } }