// ======================================================================== // // Copyright 2009-2017 Intel Corporation // // // // Licensed under the Apache License, Version 2.0 (the "License"); // // you may not use this file except in compliance with the License. // // You may obtain a copy of the License at // // // // http://www.apache.org/licenses/LICENSE-2.0 // // // // Unless required by applicable law or agreed to in writing, software // // distributed under the License is distributed on an "AS IS" BASIS, // // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // // See the License for the specific language governing permissions and // // limitations under the License. // // ======================================================================== // #pragma once #include "../common/default.h" namespace embree { class BezierBasis { public: template static __forceinline Vec4 eval(const T& u) { const T t1 = u; const T t0 = 1.0f-t1; const T B0 = t0 * t0 * t0; const T B1 = 3.0f * t1 * (t0 * t0); const T B2 = 3.0f * (t1 * t1) * t0; const T B3 = t1 * t1 * t1; return Vec4(B0,B1,B2,B3); } template static __forceinline Vec4 derivative(const T& u) { const T t1 = u; const T t0 = 1.0f-t1; const T B0 = -(t0*t0); const T B1 = madd(-2.0f,t0*t1,t0*t0); const T B2 = msub(+2.0f,t0*t1,t1*t1); const T B3 = +(t1*t1); return T(3.0f)*Vec4(B0,B1,B2,B3); } template static __forceinline Vec4 derivative2(const T& u) { const T t1 = u; const T t0 = 1.0f-t1; const T B0 = t0; const T B1 = madd(-2.0f,t0,t1); const T B2 = madd(-2.0f,t1,t0); const T B3 = t1; return T(6.0f)*Vec4(B0,B1,B2,B3); } }; struct PrecomputedBezierBasis { enum { N = 16 }; public: PrecomputedBezierBasis() {} PrecomputedBezierBasis(int shift); template __forceinline Vec4 eval(const int u, const int size) { assert(size <= N); assert(u <= size); return Vec4(T::loadu(&c0[size][u]), T::loadu(&c1[size][u]), T::loadu(&c2[size][u]), T::loadu(&c3[size][u])); } template __forceinline Vec4 derivative(const int u, const int size) { assert(size <= N); assert(u <= size); return Vec4(T::loadu(&d0[size][u]), T::loadu(&d1[size][u]), T::loadu(&d2[size][u]), T::loadu(&d3[size][u])); } /* basis for bezier evaluation */ public: float c0[N+1][N+1]; float c1[N+1][N+1]; float c2[N+1][N+1]; float c3[N+1][N+1]; /* basis for bezier derivative evaluation */ public: float d0[N+1][N+1]; float d1[N+1][N+1]; float d2[N+1][N+1]; float d3[N+1][N+1]; }; extern PrecomputedBezierBasis bezier_basis0; extern PrecomputedBezierBasis bezier_basis1; template struct BezierCurveT { Vertex v0,v1,v2,v3; __forceinline BezierCurveT() {} __forceinline BezierCurveT(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3) : v0(v0), v1(v1), v2(v2), v3(v3) {} __forceinline Vertex begin() const { return v0; } __forceinline Vertex end() const { return v3; } __forceinline Vertex eval(const float t) const { const Vec4 b = BezierBasis::eval(t); return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); } __forceinline Vertex eval_du(const float t) const { const Vec4 b = BezierBasis::derivative(t); return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); } __forceinline Vertex eval_dudu(const float t) const { const Vec4 b = BezierBasis::derivative2(t); return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); } __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const { const Vertex p00 = v0; const Vertex p01 = v1; const Vertex p02 = v2; const Vertex p03 = v3; const Vertex p10 = lerp(p00,p01,t); const Vertex p11 = lerp(p01,p02,t); const Vertex p12 = lerp(p02,p03,t); const Vertex p20 = lerp(p10,p11,t); const Vertex p21 = lerp(p11,p12,t); const Vertex p30 = lerp(p20,p21,t); p = p30; dp = 3.0f*(p21-p20); ddp = eval_dudu(t); } friend inline std::ostream& operator<<(std::ostream& cout, const BezierCurveT& curve) { return cout << "BezierCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }"; } }; struct BezierCurve3fa : public BezierCurveT { //using BezierCurveT::BezierCurveT; // FIXME: not supported by VS2010 __forceinline BezierCurve3fa() {} __forceinline BezierCurve3fa(const Vec3fa& v0, const Vec3fa& v1, const Vec3fa& v2, const Vec3fa& v3) : BezierCurveT(v0,v1,v2,v3) {} __forceinline void evalN(const vfloatx& t, Vec4vfx& p, Vec4vfx& dp) const { const Vec4vfx p00 = v0; const Vec4vfx p01 = v1; const Vec4vfx p02 = v2; const Vec4vfx p03 = v3; const Vec4vfx p10 = lerp(p00,p01,t); const Vec4vfx p11 = lerp(p01,p02,t); const Vec4vfx p12 = lerp(p02,p03,t); const Vec4vfx p20 = lerp(p10,p11,t); const Vec4vfx p21 = lerp(p11,p12,t); const Vec4vfx p30 = lerp(p20,p21,t); p = p30; dp = vfloatx(3.0f)*(p21-p20); } #if 0 template __forceinline Vec4> eval0(const int ofs, const int size) const { const Vec4> b = bezier_basis0.eval>(ofs,size); return madd(b.x, Vec4>(v0), madd(b.y, Vec4>(v1), madd(b.z, Vec4>(v2), b.w * Vec4>(v3)))); } template __forceinline Vec4> eval1(const int ofs, const int size) const { const Vec4> b = bezier_basis1.eval>(ofs,size); return madd(b.x, Vec4>(v0), madd(b.y, Vec4>(v1), madd(b.z, Vec4>(v2), b.w * Vec4>(v3)))); } template __forceinline Vec4> derivative0(const int ofs, const int size) const { const Vec4> b = bezier_basis0.derivative>(ofs,size); return madd(b.x, Vec4>(v0), madd(b.y, Vec4>(v1), madd(b.z, Vec4>(v2), b.w * Vec4>(v3)))); } template __forceinline Vec4> derivative1(const int ofs, const int size) const { const Vec4> b = bezier_basis1.derivative>(ofs,size); return madd(b.x, Vec4>(v0), madd(b.y, Vec4>(v1), madd(b.z, Vec4>(v2), b.w * Vec4>(v3)))); } #else template __forceinline Vec4> eval0(const int ofs, const int size) const { assert(size <= PrecomputedBezierBasis::N); assert(ofs <= size); return madd(vfloat::loadu(&bezier_basis0.c0[size][ofs]), Vec4>(v0), madd(vfloat::loadu(&bezier_basis0.c1[size][ofs]), Vec4>(v1), madd(vfloat::loadu(&bezier_basis0.c2[size][ofs]), Vec4>(v2), vfloat::loadu(&bezier_basis0.c3[size][ofs]) * Vec4>(v3)))); } template __forceinline Vec4> eval1(const int ofs, const int size) const { assert(size <= PrecomputedBezierBasis::N); assert(ofs <= size); return madd(vfloat::loadu(&bezier_basis1.c0[size][ofs]), Vec4>(v0), madd(vfloat::loadu(&bezier_basis1.c1[size][ofs]), Vec4>(v1), madd(vfloat::loadu(&bezier_basis1.c2[size][ofs]), Vec4>(v2), vfloat::loadu(&bezier_basis1.c3[size][ofs]) * Vec4>(v3)))); } template __forceinline Vec4> derivative0(const int ofs, const int size) const { assert(size <= PrecomputedBezierBasis::N); assert(ofs <= size); return madd(vfloat::loadu(&bezier_basis0.d0[size][ofs]), Vec4>(v0), madd(vfloat::loadu(&bezier_basis0.d1[size][ofs]), Vec4>(v1), madd(vfloat::loadu(&bezier_basis0.d2[size][ofs]), Vec4>(v2), vfloat::loadu(&bezier_basis0.d3[size][ofs]) * Vec4>(v3)))); } template __forceinline Vec4> derivative1(const int ofs, const int size) const { assert(size <= PrecomputedBezierBasis::N); assert(ofs <= size); return madd(vfloat::loadu(&bezier_basis1.d0[size][ofs]), Vec4>(v0), madd(vfloat::loadu(&bezier_basis1.d1[size][ofs]), Vec4>(v1), madd(vfloat::loadu(&bezier_basis1.d2[size][ofs]), Vec4>(v2), vfloat::loadu(&bezier_basis1.d3[size][ofs]) * Vec4>(v3)))); } #endif /* calculates bounds of bezier curve geometry */ __forceinline BBox3fa accurateBounds() const { const int N = 7; const float scale = 1.0f/(3.0f*(N-1)); Vec4vfx pl(pos_inf), pu(neg_inf); for (int i=0; i<=N; i+=VSIZEX) { vintx vi = vintx(i)+vintx(step); vboolx valid = vi <= vintx(N); const Vec4vfx p = eval0(i,N); const Vec4vfx dp = derivative0(i,N); const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero)); const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero)); pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min } const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); const Vec3fa upper_r = Vec3fa(reduce_max(max(abs(pl.w),abs(pu.w)))); return enlarge(BBox3fa(lower,upper),upper_r); } /* calculates bounds when tessellated into N line segments */ __forceinline BBox3fa tessellatedBounds(int N) const { if (likely(N == 4)) { const Vec4vf4 pi = eval0<4>(0,4); const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z)); const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z)); const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w))); return enlarge(BBox3fa(min(lower,v3),max(upper,v3)),max(upper_r,Vec3fa(abs(v3.w)))); } else { Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f); for (int i=0; i(i,N); pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min pl.y = select(valid,min(pl.y,pi.y),pl.y); pl.z = select(valid,min(pl.z,pi.z),pl.z); pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min pu.y = select(valid,max(pu.y,pi.y),pu.y); pu.z = select(valid,max(pu.z,pi.z),pu.z); ru = select(valid,max(ru,abs(pi.w)),ru); } const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); const Vec3fa upper_r(reduce_max(ru)); return enlarge(BBox3fa(min(lower,v3),max(upper,v3)),max(upper_r,Vec3fa(abs(v3.w)))); } } }; #if !defined(EMBREE_NATIVE_CURVE_BSPLINE) #define CurveT BezierCurveT typedef BezierCurve3fa Curve3fa; #endif }