// ======================================================================== // // Copyright 2009-2017 Intel Corporation // // // // Licensed under the Apache License, Version 2.0 (the "License"); // // you may not use this file except in compliance with the License. // // You may obtain a copy of the License at // // // // http://www.apache.org/licenses/LICENSE-2.0 // // // // Unless required by applicable law or agreed to in writing, software // // distributed under the License is distributed on an "AS IS" BASIS, // // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // // See the License for the specific language governing permissions and // // limitations under the License. // // ======================================================================== // #pragma once #include "../common/default.h" #include "bezier_curve.h" namespace embree { class BSplineBasis2 // FIXME: make compatible with basis from bspline_patch.h { public: template static __forceinline Vec4 eval(const T& u) { const T t = u; const T s = T(1.0f) - u; const T n0 = s*s*s; const T n1 = (4.0f*(s*s*s)+(t*t*t)) + (12.0f*((s*t)*s) + 6.0f*((t*s)*t)); const T n2 = (4.0f*(t*t*t)+(s*s*s)) + (12.0f*((t*s)*t) + 6.0f*((s*t)*s)); const T n3 = t*t*t; return T(1.0f/6.0f)*Vec4(n0,n1,n2,n3); } template static __forceinline Vec4 derivative(const T& u) { const T t = u; const T s = 1.0f - u; const T n0 = -s*s; const T n1 = -t*t - 4.0f*(t*s); const T n2 = s*s + 4.0f*(s*t); const T n3 = t*t; return T(0.5f)*Vec4(n0,n1,n2,n3); } template static __forceinline Vec4 derivative2(const T& u) { const T t = u; const T s = 1.0f - u; const T n0 = s; const T n1 = t - 2.0f*s; const T n2 = s - 2.0f*t; const T n3 = t; return Vec4(n0,n1,n2,n3); } }; struct PrecomputedBSplineBasis { enum { N = 16 }; public: PrecomputedBSplineBasis() {} PrecomputedBSplineBasis(int shift); template __forceinline Vec4 eval(const int u, const int size) { assert(size <= N); assert(u <= size); return Vec4(T::loadu(&c0[size][u]), T::loadu(&c1[size][u]), T::loadu(&c2[size][u]), T::loadu(&c3[size][u])); } template __forceinline Vec4 derivative(const int u, const int size) { assert(size <= N); assert(u <= size); return Vec4(T::loadu(&d0[size][u]), T::loadu(&d1[size][u]), T::loadu(&d2[size][u]), T::loadu(&d3[size][u])); } /* basis for bspline evaluation */ public: float c0[N+1][N+1]; float c1[N+1][N+1]; float c2[N+1][N+1]; float c3[N+1][N+1]; /* basis for bspline derivative evaluation */ public: float d0[N+1][N+1]; float d1[N+1][N+1]; float d2[N+1][N+1]; float d3[N+1][N+1]; }; extern PrecomputedBSplineBasis bspline_basis0; extern PrecomputedBSplineBasis bspline_basis1; template struct BSplineCurveT { Vertex v0,v1,v2,v3; __forceinline BSplineCurveT() {} __forceinline BSplineCurveT(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3) : v0(v0), v1(v1), v2(v2), v3(v3) {} __forceinline Vertex begin() const { return madd(1.0f/6.0f,v0,madd(2.0f/3.0f,v1,1.0f/6.0f*v2)); } __forceinline Vertex end() const { return madd(1.0f/6.0f,v1,madd(2.0f/3.0f,v2,1.0f/6.0f*v3)); } __forceinline Vertex eval(const float t) const { const Vec4 b = BSplineBasis2::eval(t); return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); } __forceinline Vertex eval_du(const float t) const { const Vec4 b = BSplineBasis2::derivative(t); return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); } __forceinline Vertex eval_dudu(const float t) const { const Vec4 b = BSplineBasis2::derivative2(t); return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); } __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const { p = eval(t); dp = eval_du(t); ddp = eval_dudu(t); } friend inline std::ostream& operator<<(std::ostream& cout, const BSplineCurveT& curve) { return cout << "BSplineCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }"; } }; template __forceinline void convert(const BezierCurveT& icurve, BezierCurveT& ocurve) { ocurve = icurve; } template __forceinline void convert(const BSplineCurveT& icurve, BSplineCurveT& ocurve) { ocurve = icurve; } template __forceinline void convert(const BezierCurveT& icurve, BSplineCurveT& ocurve) { const Vertex v0 = madd(6.0f,icurve.v0,madd(-7.0f,icurve.v1,2.0f*icurve.v2)); const Vertex v1 = msub(2.0f,icurve.v1,icurve.v2); const Vertex v2 = msub(2.0f,icurve.v2,icurve.v1); const Vertex v3 = madd(2.0f,icurve.v1,madd(-7.0f,icurve.v2,6.0f*icurve.v3)); ocurve = BSplineCurveT(v0,v1,v2,v3); } template __forceinline void convert(const BSplineCurveT& icurve, BezierCurveT& ocurve) { const Vertex v0 = madd(1.0f/6.0f,icurve.v0,madd(2.0f/3.0f,icurve.v1,1.0f/6.0f*icurve.v2)); const Vertex v1 = madd(2.0f/3.0f,icurve.v1,1.0f/3.0f*icurve.v2); const Vertex v2 = madd(1.0f/3.0f,icurve.v1,2.0f/3.0f*icurve.v2); const Vertex v3 = madd(1.0f/6.0f,icurve.v1,madd(2.0f/3.0f,icurve.v2,1.0f/6.0f*icurve.v3)); ocurve = BezierCurveT(v0,v1,v2,v3); } struct BSplineCurve3fa : public BSplineCurveT { //using BSplineCurveT::BSplineCurveT; // FIXME: not supported by VS2010 __forceinline BSplineCurve3fa() {} __forceinline BSplineCurve3fa(const Vec3fa& v0, const Vec3fa& v1, const Vec3fa& v2, const Vec3fa& v3) : BSplineCurveT(v0,v1,v2,v3) {} __forceinline Vec4vfx eval_(const vfloatx& t) const { const Vec4vfx b = BSplineBasis2::eval(t); return madd(b.x, Vec4vfx(v0), madd(b.y, Vec4vfx(v1), madd(b.z, Vec4vfx(v2), b.w * Vec4vfx(v3)))); } __forceinline Vec4vfx derivative(const vfloatx& t) const { const Vec4vfx b = BSplineBasis2::derivative(t); return madd(b.x, Vec4vfx(v0), madd(b.y, Vec4vfx(v1), madd(b.z, Vec4vfx(v2), b.w * Vec4vfx(v3)))); } __forceinline void evalN(const vfloatx& t, Vec4vfx& p, Vec4vfx& dp) const { p = eval_(t); dp = derivative(t); } #if 0 template __forceinline Vec4> eval0(const int ofs, const int size) const { const Vec4> b = bspline_basis0.eval>(ofs,size); return madd(b.x, Vec4>(v0), madd(b.y, Vec4>(v1), madd(b.z, Vec4>(v2), b.w * Vec4>(v3)))); } template __forceinline Vec4> eval1(const int ofs, const int size) const { const Vec4> b = bspline_basis1.eval>(ofs,size); return madd(b.x, Vec4>(v0), madd(b.y, Vec4>(v1), madd(b.z, Vec4>(v2), b.w * Vec4>(v3)))); } template __forceinline Vec4> derivative0(const int ofs, const int size) const { const Vec4> b = bspline_basis0.derivative>(ofs,size); return madd(b.x, Vec4>(v0), madd(b.y, Vec4>(v1), madd(b.z, Vec4>(v2), b.w * Vec4>(v3)))); } template __forceinline Vec4> derivative1(const int ofs, const int size) const { const Vec4> b = bspline_basis1.derivative>(ofs,size); return madd(b.x, Vec4>(v0), madd(b.y, Vec4>(v1), madd(b.z, Vec4>(v2), b.w * Vec4>(v3)))); } #else template __forceinline Vec4> eval0(const int ofs, const int size) const { assert(size <= PrecomputedBSplineBasis::N); assert(ofs <= size); return madd(vfloat::loadu(&bspline_basis0.c0[size][ofs]), Vec4>(v0), madd(vfloat::loadu(&bspline_basis0.c1[size][ofs]), Vec4>(v1), madd(vfloat::loadu(&bspline_basis0.c2[size][ofs]), Vec4>(v2), vfloat::loadu(&bspline_basis0.c3[size][ofs]) * Vec4>(v3)))); } template __forceinline Vec4> eval1(const int ofs, const int size) const { assert(size <= PrecomputedBSplineBasis::N); assert(ofs <= size); return madd(vfloat::loadu(&bspline_basis1.c0[size][ofs]), Vec4>(v0), madd(vfloat::loadu(&bspline_basis1.c1[size][ofs]), Vec4>(v1), madd(vfloat::loadu(&bspline_basis1.c2[size][ofs]), Vec4>(v2), vfloat::loadu(&bspline_basis1.c3[size][ofs]) * Vec4>(v3)))); } template __forceinline Vec4> derivative0(const int ofs, const int size) const { assert(size <= PrecomputedBSplineBasis::N); assert(ofs <= size); return madd(vfloat::loadu(&bspline_basis0.d0[size][ofs]), Vec4>(v0), madd(vfloat::loadu(&bspline_basis0.d1[size][ofs]), Vec4>(v1), madd(vfloat::loadu(&bspline_basis0.d2[size][ofs]), Vec4>(v2), vfloat::loadu(&bspline_basis0.d3[size][ofs]) * Vec4>(v3)))); } template __forceinline Vec4> derivative1(const int ofs, const int size) const { assert(size <= PrecomputedBSplineBasis::N); assert(ofs <= size); return madd(vfloat::loadu(&bspline_basis1.d0[size][ofs]), Vec4>(v0), madd(vfloat::loadu(&bspline_basis1.d1[size][ofs]), Vec4>(v1), madd(vfloat::loadu(&bspline_basis1.d2[size][ofs]), Vec4>(v2), vfloat::loadu(&bspline_basis1.d3[size][ofs]) * Vec4>(v3)))); } #endif /* calculates bounds of bspline curve geometry */ __forceinline BBox3fa accurateBounds() const { const int N = 7; const float scale = 1.0f/(3.0f*(N-1)); Vec4vfx pl(pos_inf), pu(neg_inf); for (int i=0; i<=N; i+=VSIZEX) { vintx vi = vintx(i)+vintx(step); vboolx valid = vi <= vintx(N); const Vec4vfx p = eval0(i,N); const Vec4vfx dp = derivative0(i,N); const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero)); const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero)); pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min } const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); const Vec3fa upper_r = Vec3fa(reduce_max(max(abs(pl.w),abs(pu.w)))); return enlarge(BBox3fa(lower,upper),upper_r); } /* calculates bounds when tessellated into N line segments */ __forceinline BBox3fa tessellatedBounds(int N) const { if (likely(N == 4)) { const Vec4vf4 pi = eval0<4>(0,4); const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z)); const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z)); const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w))); const Vec3fa pe = end(); return enlarge(BBox3fa(min(lower,pe),max(upper,pe)),max(upper_r,Vec3fa(abs(pe.w)))); } else { Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f); for (int i=0; i<=N; i+=VSIZEX) { vboolx valid = vintx(i)+vintx(step) <= vintx(N); const Vec4vfx pi = eval0(i,N); pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min pl.y = select(valid,min(pl.y,pi.y),pl.y); pl.z = select(valid,min(pl.z,pi.z),pl.z); pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min pu.y = select(valid,max(pu.y,pi.y),pu.y); pu.z = select(valid,max(pu.z,pi.z),pu.z); ru = select(valid,max(ru,abs(pi.w)),ru); } const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); const Vec3fa upper_r(reduce_max(ru)); return enlarge(BBox3fa(lower,upper),upper_r); } } }; #if defined(EMBREE_NATIVE_CURVE_BSPLINE) #define CurveT BSplineCurveT typedef BSplineCurve3fa Curve3fa; #endif }