// // Copyright (c) 2008-2015 the Urho3D project. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #pragma once #include "../Container/Str.h" #include "../Math/MathDefs.h" namespace Atomic { /// Two-dimensional vector. class ATOMIC_API Vector2 { public: /// Construct a zero vector. Vector2() : x_(0.0f), y_(0.0f) { } /// Copy-construct from another vector. Vector2(const Vector2& vector) : x_(vector.x_), y_(vector.y_) { } /// Construct from coordinates. Vector2(float x, float y) : x_(x), y_(y) { } /// Construct from a float array. Vector2(const float* data) : x_(data[0]), y_(data[1]) { } /// Assign from another vector. Vector2& operator =(const Vector2& rhs) { x_ = rhs.x_; y_ = rhs.y_; return *this; } /// Test for equality with another vector without epsilon. bool operator ==(const Vector2& rhs) const { return x_ == rhs.x_ && y_ == rhs.y_; } /// Test for inequality with another vector without epsilon. bool operator !=(const Vector2& rhs) const { return x_ != rhs.x_ || y_ != rhs.y_; } /// Add a vector. Vector2 operator +(const Vector2& rhs) const { return Vector2(x_ + rhs.x_, y_ + rhs.y_); } /// Return negation. Vector2 operator -() const { return Vector2(-x_, -y_); } /// Subtract a vector. Vector2 operator -(const Vector2& rhs) const { return Vector2(x_ - rhs.x_, y_ - rhs.y_); } /// Multiply with a scalar. Vector2 operator *(float rhs) const { return Vector2(x_ * rhs, y_ * rhs); } /// Multiply with a vector. Vector2 operator *(const Vector2& rhs) const { return Vector2(x_ * rhs.x_, y_ * rhs.y_); } /// Divide by a scalar. Vector2 operator /(float rhs) const { return Vector2(x_ / rhs, y_ / rhs); } /// Divide by a vector. Vector2 operator /(const Vector2& rhs) const { return Vector2(x_ / rhs.x_, y_ / rhs.y_); } /// Add-assign a vector. Vector2& operator +=(const Vector2& rhs) { x_ += rhs.x_; y_ += rhs.y_; return *this; } /// Subtract-assign a vector. Vector2& operator -=(const Vector2& rhs) { x_ -= rhs.x_; y_ -= rhs.y_; return *this; } /// Multiply-assign a scalar. Vector2& operator *=(float rhs) { x_ *= rhs; y_ *= rhs; return *this; } /// Multiply-assign a vector. Vector2& operator *=(const Vector2& rhs) { x_ *= rhs.x_; y_ *= rhs.y_; return *this; } /// Divide-assign a scalar. Vector2& operator /=(float rhs) { float invRhs = 1.0f / rhs; x_ *= invRhs; y_ *= invRhs; return *this; } /// Divide-assign a vector. Vector2& operator /=(const Vector2& rhs) { x_ /= rhs.x_; y_ /= rhs.y_; return *this; } /// Normalize to unit length. void Normalize() { float lenSquared = LengthSquared(); if (!Atomic::Equals(lenSquared, 1.0f) && lenSquared > 0.0f) { float invLen = 1.0f / sqrtf(lenSquared); x_ *= invLen; y_ *= invLen; } } /// Return length. float Length() const { return sqrtf(x_ * x_ + y_ * y_); } /// Return squared length. float LengthSquared() const { return x_ * x_ + y_ * y_; } /// Calculate dot product. float DotProduct(const Vector2& rhs) const { return x_ * rhs.x_ + y_ * rhs.y_; } /// Calculate absolute dot product. float AbsDotProduct(const Vector2& rhs) const { return Atomic::Abs(x_ * rhs.x_) + Atomic::Abs(y_ * rhs.y_); } /// Return absolute vector. Vector2 Abs() const { return Vector2(Atomic::Abs(x_), Atomic::Abs(y_)); } /// Linear interpolation with another vector. Vector2 Lerp(const Vector2& rhs, float t) const { return *this * (1.0f - t) + rhs * t; } /// Test for equality with another vector with epsilon. bool Equals(const Vector2& rhs) const { return Atomic::Equals(x_, rhs.x_) && Atomic::Equals(y_, rhs.y_); } /// Return whether is NaN. bool IsNaN() const { return Atomic::IsNaN(x_) || Atomic::IsNaN(y_); } /// Return normalized to unit length. Vector2 Normalized() const { float lenSquared = LengthSquared(); if (!Atomic::Equals(lenSquared, 1.0f) && lenSquared > 0.0f) { float invLen = 1.0f / sqrtf(lenSquared); return *this * invLen; } else return *this; } /// Return float data. const float* Data() const { return &x_; } /// Return as string. String ToString() const; /// X coordinate. float x_; /// Y coordinate. float y_; /// Zero vector. static const Vector2 ZERO; /// (-1,0) vector. static const Vector2 LEFT; /// (1,0) vector. static const Vector2 RIGHT; /// (0,1) vector. static const Vector2 UP; /// (0,-1) vector. static const Vector2 DOWN; /// (1,1) vector. static const Vector2 ONE; }; /// Multiply Vector2 with a scalar inline Vector2 operator *(float lhs, const Vector2& rhs) { return rhs * lhs; } /// Two-dimensional vector with integer values. class ATOMIC_API IntVector2 { public: /// Construct a zero vector. IntVector2() : x_(0), y_(0) { } /// Construct from coordinates. IntVector2(int x, int y) : x_(x), y_(y) { } /// Construct from an int array. IntVector2(const int* data) : x_(data[0]), y_(data[1]) { } /// Copy-construct from another vector. IntVector2(const IntVector2& rhs) : x_(rhs.x_), y_(rhs.y_) { } /// Test for equality with another vector. bool operator ==(const IntVector2& rhs) const { return x_ == rhs.x_ && y_ == rhs.y_; } /// Test for inequality with another vector. bool operator !=(const IntVector2& rhs) const { return x_ != rhs.x_ || y_ != rhs.y_; } /// Add a vector. IntVector2 operator +(const IntVector2& rhs) const { return IntVector2(x_ + rhs.x_, y_ + rhs.y_); } /// Return negation. IntVector2 operator -() const { return IntVector2(-x_, -y_); } /// Subtract a vector. IntVector2 operator -(const IntVector2& rhs) const { return IntVector2(x_ - rhs.x_, y_ - rhs.y_); } /// Multiply with a scalar. IntVector2 operator *(int rhs) const { return IntVector2(x_ * rhs, y_ * rhs); } /// Divide by a scalar. IntVector2 operator /(int rhs) const { return IntVector2(x_ / rhs, y_ / rhs); } /// Add-assign a vector. IntVector2& operator +=(const IntVector2& rhs) { x_ += rhs.x_; y_ += rhs.y_; return *this; } /// Subtract-assign a vector. IntVector2& operator -=(const IntVector2& rhs) { x_ -= rhs.x_; y_ -= rhs.y_; return *this; } /// Multiply-assign a scalar. IntVector2& operator *=(int rhs) { x_ *= rhs; y_ *= rhs; return *this; } /// Divide-assign a scalar. IntVector2& operator /=(int rhs) { x_ /= rhs; y_ /= rhs; return *this; } /// Return integer data. const int* Data() const { return &x_; } /// Return as string. String ToString() const; /// X coordinate. int x_; /// Y coordinate. int y_; /// Zero vector. static const IntVector2 ZERO; }; /// Multiply IntVector2 with a scalar. inline IntVector2 operator *(int lhs, const IntVector2& rhs) { return rhs * lhs; } }