// // Copyright (c) 2008-2017 the Urho3D project. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #include "../Precompiled.h" #include "../Core/Context.h" #include "../Graphics/Camera.h" #include "../Graphics/Material.h" #include "../Resource/ResourceCache.h" #include "../Scene/Scene.h" #include "../Scene/SceneEvents.h" #include "../Atomic2D/ParticleEffect2D.h" #include "../Atomic2D/ParticleEmitter2D.h" #include "../Atomic2D/Renderer2D.h" #include "../Atomic2D/Sprite2D.h" #include "../Atomic2D/Atomic2DEvents.h" #include "../DebugNew.h" namespace Atomic { extern const char* ATOMIC2D_CATEGORY; extern const char* blendModeNames[]; ParticleEmitter2D::ParticleEmitter2D(Context* context) : Drawable2D(context), blendMode_(BLEND_ADDALPHA), numParticles_(0), emissionTime_(0.0f), emitParticleTime_(0.0f), boundingBoxMinPoint_(Vector3::ZERO), boundingBoxMaxPoint_(Vector3::ZERO), // ATOMIC BEGIN emitting_(true) // ATOMIC END { sourceBatches_.Resize(1); sourceBatches_[0].owner_ = this; } ParticleEmitter2D::~ParticleEmitter2D() { } void ParticleEmitter2D::RegisterObject(Context* context) { context->RegisterFactory(ATOMIC2D_CATEGORY); ATOMIC_ACCESSOR_ATTRIBUTE("Is Enabled", IsEnabled, SetEnabled, bool, true, AM_DEFAULT); ATOMIC_COPY_BASE_ATTRIBUTES(Drawable2D); ATOMIC_MIXED_ACCESSOR_ATTRIBUTE("Particle Effect", GetParticleEffectAttr, SetParticleEffectAttr, ResourceRef, ResourceRef(ParticleEffect2D::GetTypeStatic()), AM_DEFAULT); ATOMIC_MIXED_ACCESSOR_ATTRIBUTE("Sprite ", GetSpriteAttr, SetSpriteAttr, ResourceRef, ResourceRef(Sprite2D::GetTypeStatic()), AM_DEFAULT); ATOMIC_ENUM_ACCESSOR_ATTRIBUTE("Blend Mode", GetBlendMode, SetBlendMode, BlendMode, blendModeNames, BLEND_ALPHA, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Is Emitting", IsEmitting, SetEmitting, bool, true, AM_DEFAULT); } void ParticleEmitter2D::OnSetEnabled() { Drawable2D::OnSetEnabled(); Scene* scene = GetScene(); if (scene) { if (IsEnabledEffective()) SubscribeToEvent(scene, E_SCENEPOSTUPDATE, ATOMIC_HANDLER(ParticleEmitter2D, HandleScenePostUpdate)); else UnsubscribeFromEvent(scene, E_SCENEPOSTUPDATE); } } void ParticleEmitter2D::SetEffect(ParticleEffect2D* model) { if (model == effect_) return; effect_ = model; MarkNetworkUpdate(); if (!effect_) return; SetSprite(effect_->GetSprite()); SetBlendMode(effect_->GetBlendMode()); SetMaxParticles((unsigned)effect_->GetMaxParticles()); emitParticleTime_ = 0.0f; emissionTime_ = effect_->GetDuration(); } void ParticleEmitter2D::SetSprite(Sprite2D* sprite) { if (sprite == sprite_) return; sprite_ = sprite; UpdateMaterial(); MarkNetworkUpdate(); } void ParticleEmitter2D::SetBlendMode(BlendMode blendMode) { if (blendMode == blendMode_) return; blendMode_ = blendMode; UpdateMaterial(); MarkNetworkUpdate(); } void ParticleEmitter2D::SetMaxParticles(unsigned maxParticles) { maxParticles = Max(maxParticles, 1U); particles_.Resize(maxParticles); sourceBatches_[0].vertices_.Reserve(maxParticles * 4); numParticles_ = Min(maxParticles, numParticles_); } ParticleEffect2D* ParticleEmitter2D::GetEffect() const { return effect_; } Sprite2D* ParticleEmitter2D::GetSprite() const { return sprite_; } void ParticleEmitter2D::SetParticleEffectAttr(const ResourceRef& value) { ResourceCache* cache = GetSubsystem(); SetEffect(cache->GetResource(value.name_)); } ResourceRef ParticleEmitter2D::GetParticleEffectAttr() const { return GetResourceRef(effect_, ParticleEffect2D::GetTypeStatic()); } void ParticleEmitter2D::SetSpriteAttr(const ResourceRef& value) { Sprite2D* sprite = Sprite2D::LoadFromResourceRef(this, value); if (sprite) SetSprite(sprite); } void ParticleEmitter2D::SetEmitting(bool enable) { if (enable != emitting_) { emitting_ = enable; emitParticleTime_ = 0.0f; } } ResourceRef ParticleEmitter2D::GetSpriteAttr() const { return Sprite2D::SaveToResourceRef(sprite_); } void ParticleEmitter2D::OnSceneSet(Scene* scene) { Drawable2D::OnSceneSet(scene); if (scene && IsEnabledEffective()) SubscribeToEvent(scene, E_SCENEPOSTUPDATE, ATOMIC_HANDLER(ParticleEmitter2D, HandleScenePostUpdate)); else if (!scene) UnsubscribeFromEvent(E_SCENEPOSTUPDATE); } void ParticleEmitter2D::OnWorldBoundingBoxUpdate() { boundingBox_.Clear(); boundingBox_.Merge(boundingBoxMinPoint_); boundingBox_.Merge(boundingBoxMaxPoint_); worldBoundingBox_ = boundingBox_; } void ParticleEmitter2D::OnDrawOrderChanged() { sourceBatches_[0].drawOrder_ = GetDrawOrder(); } void ParticleEmitter2D::UpdateSourceBatches() { if (!sourceBatchesDirty_) return; Vector& vertices = sourceBatches_[0].vertices_; vertices.Clear(); if (!sprite_) return; Rect textureRect; if (!sprite_->GetTextureRectangle(textureRect)) return; /* V1---------V2 | / | | / | | / | | / | | / | V0---------V3 */ Vertex2D vertex0; Vertex2D vertex1; Vertex2D vertex2; Vertex2D vertex3; vertex0.uv_ = textureRect.min_; vertex1.uv_ = Vector2(textureRect.min_.x_, textureRect.max_.y_); vertex2.uv_ = textureRect.max_; vertex3.uv_ = Vector2(textureRect.max_.x_, textureRect.min_.y_); for (unsigned i = 0; i < numParticles_; ++i) { Particle2D& p = particles_[i]; float rotation = -p.rotation_; float c = Cos(rotation); float s = Sin(rotation); float add = (c + s) * p.size_ * 0.5f; float sub = (c - s) * p.size_ * 0.5f; vertex0.position_ = Vector3(p.position_.x_ - sub, p.position_.y_ - add, p.position_.z_); vertex1.position_ = Vector3(p.position_.x_ - add, p.position_.y_ + sub, p.position_.z_); vertex2.position_ = Vector3(p.position_.x_ + sub, p.position_.y_ + add, p.position_.z_); vertex3.position_ = Vector3(p.position_.x_ + add, p.position_.y_ - sub, p.position_.z_); vertex0.color_ = vertex1.color_ = vertex2.color_ = vertex3.color_ = p.color_.ToUInt(); vertices.Push(vertex0); vertices.Push(vertex1); vertices.Push(vertex2); vertices.Push(vertex3); } sourceBatchesDirty_ = false; } void ParticleEmitter2D::UpdateMaterial() { if (sprite_ && renderer_) sourceBatches_[0].material_ = renderer_->GetMaterial(sprite_->GetTexture(), blendMode_); else sourceBatches_[0].material_ = 0; } void ParticleEmitter2D::HandleScenePostUpdate(StringHash eventType, VariantMap& eventData) { using namespace ScenePostUpdate; bool hasParticles = numParticles_ > 0; bool emitting = emissionTime_ > 0.0f; float timeStep = eventData[P_TIMESTEP].GetFloat(); Update(timeStep); if (emitting && emissionTime_ == 0.0f) { // Make a weak pointer to self to check for destruction during event handling WeakPtr self(this); using namespace ParticlesDuration; VariantMap& eventData = GetEventDataMap(); eventData[P_NODE] = node_; eventData[P_EFFECT] = effect_; SendEvent(E_PARTICLESDURATION, eventData); // Emitting particles stopped if (self.Expired()) return; } if (hasParticles && numParticles_ == 0) { using namespace ParticlesEnd; VariantMap& eventData = GetEventDataMap(); eventData[P_NODE] = node_; eventData[P_EFFECT] = effect_; SendEvent(E_PARTICLESEND, eventData); // All particles over } } void ParticleEmitter2D::Update(float timeStep) { if (!effect_) return; Vector3 worldPosition = GetNode()->GetWorldPosition(); float worldScale = GetNode()->GetWorldScale().x_ * PIXEL_SIZE; boundingBoxMinPoint_ = Vector3(M_INFINITY, M_INFINITY, M_INFINITY); boundingBoxMaxPoint_ = Vector3(-M_INFINITY, -M_INFINITY, -M_INFINITY); unsigned particleIndex = 0; while (particleIndex < numParticles_) { Particle2D& particle = particles_[particleIndex]; if (particle.timeToLive_ > 0.0f) { UpdateParticle(particle, timeStep, worldPosition, worldScale); ++particleIndex; } else { if (particleIndex != numParticles_ - 1) particles_[particleIndex] = particles_[numParticles_ - 1]; --numParticles_; } } if (emitting_ && emissionTime_ > 0.0f) { float worldAngle = GetNode()->GetWorldRotation().RollAngle(); float timeBetweenParticles = effect_->GetParticleLifeSpan() / particles_.Size(); emitParticleTime_ += timeStep; while (emitParticleTime_ > 0.0f) { if (EmitParticle(worldPosition, worldAngle, worldScale)) UpdateParticle(particles_[numParticles_ - 1], emitParticleTime_, worldPosition, worldScale); emitParticleTime_ -= timeBetweenParticles; } if (emissionTime_ > 0.0f) emissionTime_ = Max(0.0f, emissionTime_ - timeStep); } sourceBatchesDirty_ = true; OnMarkedDirty(node_); } bool ParticleEmitter2D::EmitParticle(const Vector3& worldPosition, float worldAngle, float worldScale) { // ATOMIC BEGIN if (!emitting_ || numParticles_ >= (unsigned)effect_->GetMaxParticles() || numParticles_ >= particles_.Size()) // ATOMIC END return false; float lifespan = effect_->GetParticleLifeSpan() + effect_->GetParticleLifespanVariance() * Random(-1.0f, 1.0f); if (lifespan <= 0.0f) return false; float invLifespan = 1.0f / lifespan; Particle2D& particle = particles_[numParticles_++]; particle.timeToLive_ = lifespan; particle.position_.x_ = worldPosition.x_ + worldScale * effect_->GetSourcePositionVariance().x_ * Random(-1.0f, 1.0f); particle.position_.y_ = worldPosition.y_ + worldScale * effect_->GetSourcePositionVariance().y_ * Random(-1.0f, 1.0f); particle.position_.z_ = worldPosition.z_; particle.startPos_.x_ = worldPosition.x_; particle.startPos_.y_ = worldPosition.y_; float angle = worldAngle + effect_->GetAngle() + effect_->GetAngleVariance() * Random(-1.0f, 1.0f); float speed = worldScale * (effect_->GetSpeed() + effect_->GetSpeedVariance() * Random(-1.0f, 1.0f)); particle.velocity_.x_ = speed * Cos(angle); particle.velocity_.y_ = speed * Sin(angle); float maxRadius = Max(0.0f, worldScale * (effect_->GetMaxRadius() + effect_->GetMaxRadiusVariance() * Random(-1.0f, 1.0f))); float minRadius = Max(0.0f, worldScale * (effect_->GetMinRadius() + effect_->GetMinRadiusVariance() * Random(-1.0f, 1.0f))); particle.emitRadius_ = maxRadius; particle.emitRadiusDelta_ = (minRadius - maxRadius) * invLifespan; particle.emitRotation_ = worldAngle + effect_->GetAngle() + effect_->GetAngleVariance() * Random(-1.0f, 1.0f); particle.emitRotationDelta_ = effect_->GetRotatePerSecond() + effect_->GetRotatePerSecondVariance() * Random(-1.0f, 1.0f); particle.radialAcceleration_ = worldScale * (effect_->GetRadialAcceleration() + effect_->GetRadialAccelVariance() * Random(-1.0f, 1.0f)); particle.tangentialAcceleration_ = worldScale * (effect_->GetTangentialAcceleration() + effect_->GetTangentialAccelVariance() * Random(-1.0f, 1.0f)); float startSize = worldScale * Max(0.1f, effect_->GetStartParticleSize() + effect_->GetStartParticleSizeVariance() * Random(-1.0f, 1.0f)); float finishSize = worldScale * Max(0.1f, effect_->GetFinishParticleSize() + effect_->GetFinishParticleSizeVariance() * Random(-1.0f, 1.0f)); particle.size_ = startSize; particle.sizeDelta_ = (finishSize - startSize) * invLifespan; particle.color_ = effect_->GetStartColor() + effect_->GetStartColorVariance() * Random(-1.0f, 1.0f); Color endColor = effect_->GetFinishColor() + effect_->GetFinishColorVariance() * Random(-1.0f, 1.0f); particle.colorDelta_ = (endColor - particle.color_) * invLifespan; particle.rotation_ = worldAngle + effect_->GetRotationStart() + effect_->GetRotationStartVariance() * Random(-1.0f, 1.0f); float endRotation = worldAngle + effect_->GetRotationEnd() + effect_->GetRotationEndVariance() * Random(-1.0f, 1.0f); particle.rotationDelta_ = (endRotation - particle.rotation_) * invLifespan; return true; } void ParticleEmitter2D::UpdateParticle(Particle2D& particle, float timeStep, const Vector3& worldPosition, float worldScale) { if (timeStep > particle.timeToLive_) timeStep = particle.timeToLive_; particle.timeToLive_ -= timeStep; if (effect_->GetEmitterType() == EMITTER_TYPE_RADIAL) { particle.emitRotation_ += particle.emitRotationDelta_ * timeStep; particle.emitRadius_ += particle.emitRadiusDelta_ * timeStep; particle.position_.x_ = particle.startPos_.x_ - Cos(particle.emitRotation_) * particle.emitRadius_; particle.position_.y_ = particle.startPos_.y_ + Sin(particle.emitRotation_) * particle.emitRadius_; } else { float distanceX = particle.position_.x_ - particle.startPos_.x_; float distanceY = particle.position_.y_ - particle.startPos_.y_; float distanceScalar = Vector2(distanceX, distanceY).Length(); if (distanceScalar < 0.0001f) distanceScalar = 0.0001f; float radialX = distanceX / distanceScalar; float radialY = distanceY / distanceScalar; float tangentialX = radialX; float tangentialY = radialY; radialX *= particle.radialAcceleration_; radialY *= particle.radialAcceleration_; float newY = tangentialX; tangentialX = -tangentialY * particle.tangentialAcceleration_; tangentialY = newY * particle.tangentialAcceleration_; particle.velocity_.x_ += (effect_->GetGravity().x_ * worldScale + radialX - tangentialX) * timeStep; particle.velocity_.y_ -= (effect_->GetGravity().y_ * worldScale - radialY + tangentialY) * timeStep; particle.position_.x_ += particle.velocity_.x_ * timeStep; particle.position_.y_ += particle.velocity_.y_ * timeStep; } particle.size_ += particle.sizeDelta_ * timeStep; particle.rotation_ += particle.rotationDelta_ * timeStep; particle.color_ += particle.colorDelta_ * timeStep; float halfSize = particle.size_ * 0.5f; boundingBoxMinPoint_.x_ = Min(boundingBoxMinPoint_.x_, particle.position_.x_ - halfSize); boundingBoxMinPoint_.y_ = Min(boundingBoxMinPoint_.y_, particle.position_.y_ - halfSize); boundingBoxMinPoint_.z_ = Min(boundingBoxMinPoint_.z_, particle.position_.z_); boundingBoxMaxPoint_.x_ = Max(boundingBoxMaxPoint_.x_, particle.position_.x_ + halfSize); boundingBoxMaxPoint_.y_ = Max(boundingBoxMaxPoint_.y_, particle.position_.y_ + halfSize); boundingBoxMaxPoint_.z_ = Max(boundingBoxMaxPoint_.z_, particle.position_.z_); } }