// // Copyright (c) 2008-2017 the Urho3D project. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // #include "../Precompiled.h" #include "../Core/Context.h" #include "../Core/Profiler.h" #include "../Graphics/DebugRenderer.h" #include "../Graphics/Graphics.h" #include "../Graphics/Renderer.h" #include "../IO/Log.h" #include "../Scene/Scene.h" #include "../Scene/SceneEvents.h" #include "../Atomic2D/CollisionShape2D.h" #include "../Atomic2D/PhysicsEvents2D.h" #include "../Atomic2D/PhysicsUtils2D.h" #include "../Atomic2D/PhysicsWorld2D.h" #include "../Atomic2D/RigidBody2D.h" // ATOMIC BEGIN #include "../Atomic2D/Drawable2D.h" // ATOMIC END #include "../DebugNew.h" namespace Atomic { extern const char* SUBSYSTEM_CATEGORY; static const Vector2 DEFAULT_GRAVITY(0.0f, -9.81f); static const int DEFAULT_VELOCITY_ITERATIONS = 8; static const int DEFAULT_POSITION_ITERATIONS = 3; PhysicsWorld2D::PhysicsWorld2D(Context* context) : Component(context), gravity_(DEFAULT_GRAVITY), velocityIterations_(DEFAULT_VELOCITY_ITERATIONS), positionIterations_(DEFAULT_POSITION_ITERATIONS), debugRenderer_(0), physicsStepping_(false), applyingTransforms_(false), updateEnabled_(true) { // Set default debug draw flags m_drawFlags = e_shapeBit; // Create Box2D world world_ = new b2World(ToB2Vec2(gravity_)); // Set contact listener world_->SetContactListener(this); // Set debug draw world_->SetDebugDraw(this); // BEGIN ATOMIC // These should be false, as per the attribute defaults world_->SetContinuousPhysics(false); world_->SetSubStepping(false); // END ATOMIC } PhysicsWorld2D::~PhysicsWorld2D() { for (unsigned i = 0; i < rigidBodies_.Size(); ++i) if (rigidBodies_[i]) rigidBodies_[i]->ReleaseBody(); } void PhysicsWorld2D::RegisterObject(Context* context) { context->RegisterFactory(SUBSYSTEM_CATEGORY); ATOMIC_ACCESSOR_ATTRIBUTE("Draw Shape", GetDrawShape, SetDrawShape, bool, false, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Draw Joint", GetDrawJoint, SetDrawJoint, bool, false, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Draw Aabb", GetDrawAabb, SetDrawAabb, bool, false, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Draw Pair", GetDrawPair, SetDrawPair, bool, false, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Draw CenterOfMass", GetDrawCenterOfMass, SetDrawCenterOfMass, bool, false, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Allow Sleeping", GetAllowSleeping, SetAllowSleeping, bool, false, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Warm Starting", GetWarmStarting, SetWarmStarting, bool, false, AM_DEFAULT); // ATOMIC BEGIN // default false ATOMIC_ACCESSOR_ATTRIBUTE("Continuous Physics", GetContinuousPhysics, SetContinuousPhysics, bool, false, AM_DEFAULT); // ATOMIC END ATOMIC_ACCESSOR_ATTRIBUTE("Sub Stepping", GetSubStepping, SetSubStepping, bool, false, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Gravity", GetGravity, SetGravity, Vector2, DEFAULT_GRAVITY, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Auto Clear Forces", GetAutoClearForces, SetAutoClearForces, bool, false, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Velocity Iterations", GetVelocityIterations, SetVelocityIterations, int, DEFAULT_VELOCITY_ITERATIONS, AM_DEFAULT); ATOMIC_ACCESSOR_ATTRIBUTE("Position Iterations", GetPositionIterations, SetPositionIterations, int, DEFAULT_POSITION_ITERATIONS, AM_DEFAULT); } void PhysicsWorld2D::DrawDebugGeometry(DebugRenderer* debug, bool depthTest) { if (debug) { ATOMIC_PROFILE(Physics2DDrawDebug); debugRenderer_ = debug; debugDepthTest_ = depthTest; world_->DrawDebugData(); debugRenderer_ = 0; } } void PhysicsWorld2D::BeginContact(b2Contact* contact) { // Only handle contact event while stepping the physics simulation if (!physicsStepping_) return; b2Fixture* fixtureA = contact->GetFixtureA(); b2Fixture* fixtureB = contact->GetFixtureB(); if (!fixtureA || !fixtureB) return; beginContactInfos_.Push(ContactInfo(contact)); } void PhysicsWorld2D::EndContact(b2Contact* contact) { if (!physicsStepping_) return; b2Fixture* fixtureA = contact->GetFixtureA(); b2Fixture* fixtureB = contact->GetFixtureB(); if (!fixtureA || !fixtureB) return; endContactInfos_.Push(ContactInfo(contact)); } void PhysicsWorld2D::PreSolve(b2Contact* contact, const b2Manifold* oldManifold) { b2Fixture* fixtureA = contact->GetFixtureA(); b2Fixture* fixtureB = contact->GetFixtureB(); if (!fixtureA || !fixtureB) return; ContactInfo contactInfo(contact); // Send global event VariantMap& eventData = GetEventDataMap(); eventData[PhysicsUpdateContact2D::P_WORLD] = this; eventData[PhysicsUpdateContact2D::P_ENABLED] = contact->IsEnabled(); eventData[PhysicsUpdateContact2D::P_BODYA] = contactInfo.bodyA_.Get(); eventData[PhysicsUpdateContact2D::P_BODYB] = contactInfo.bodyB_.Get(); eventData[PhysicsUpdateContact2D::P_NODEA] = contactInfo.nodeA_.Get(); eventData[PhysicsUpdateContact2D::P_NODEB] = contactInfo.nodeB_.Get(); eventData[PhysicsUpdateContact2D::P_CONTACTS] = contactInfo.Serialize(contacts_); eventData[PhysicsUpdateContact2D::P_SHAPEA] = contactInfo.shapeA_.Get(); eventData[PhysicsUpdateContact2D::P_SHAPEB] = contactInfo.shapeB_.Get(); SendEvent(E_PHYSICSUPDATECONTACT2D, eventData); contact->SetEnabled(eventData[PhysicsUpdateContact2D::P_ENABLED].GetBool()); eventData.Clear(); // Send node event eventData[NodeUpdateContact2D::P_ENABLED] = contact->IsEnabled(); eventData[NodeUpdateContact2D::P_CONTACTS] = contactInfo.Serialize(contacts_); if (contactInfo.nodeA_) { eventData[NodeUpdateContact2D::P_BODY] = contactInfo.bodyA_.Get(); eventData[NodeUpdateContact2D::P_OTHERNODE] = contactInfo.nodeB_.Get(); eventData[NodeUpdateContact2D::P_OTHERBODY] = contactInfo.bodyB_.Get(); eventData[NodeUpdateContact2D::P_SHAPE] = contactInfo.shapeA_.Get(); eventData[NodeUpdateContact2D::P_OTHERSHAPE] = contactInfo.shapeB_.Get(); contactInfo.nodeA_->SendEvent(E_NODEUPDATECONTACT2D, eventData); } if (contactInfo.nodeB_) { eventData[NodeUpdateContact2D::P_BODY] = contactInfo.bodyB_.Get(); eventData[NodeUpdateContact2D::P_OTHERNODE] = contactInfo.nodeA_.Get(); eventData[NodeUpdateContact2D::P_OTHERBODY] = contactInfo.bodyA_.Get(); eventData[NodeUpdateContact2D::P_SHAPE] = contactInfo.shapeB_.Get(); eventData[NodeUpdateContact2D::P_OTHERSHAPE] = contactInfo.shapeA_.Get(); contactInfo.nodeB_->SendEvent(E_NODEUPDATECONTACT2D, eventData); } contact->SetEnabled(eventData[NodeUpdateContact2D::P_ENABLED].GetBool()); } void PhysicsWorld2D::DrawPolygon(const b2Vec2* vertices, int32 vertexCount, const b2Color& color) { if (!debugRenderer_) return; Color c = ToColor(color); for (int i = 0; i < vertexCount - 1; ++i) debugRenderer_->AddLine(ToVector3(vertices[i]), ToVector3(vertices[i + 1]), c, debugDepthTest_); debugRenderer_->AddLine(ToVector3(vertices[vertexCount - 1]), ToVector3(vertices[0]), c, debugDepthTest_); } void PhysicsWorld2D::DrawSolidPolygon(const b2Vec2* vertices, int32 vertexCount, const b2Color& color) { if (!debugRenderer_) return; Vector3 v = ToVector3(vertices[0]); Color c(color.r, color.g, color.b, 0.5f); for (int i = 1; i < vertexCount - 1; ++i) debugRenderer_->AddTriangle(v, ToVector3(vertices[i]), ToVector3(vertices[i + 1]), c, debugDepthTest_); } void PhysicsWorld2D::DrawCircle(const b2Vec2& center, float32 radius, const b2Color& color) { if (!debugRenderer_) return; Vector3 p = ToVector3(center); Color c = ToColor(color); for (unsigned i = 0; i < 360; i += 30) { unsigned j = i + 30; float x1 = radius * Cos((float)i); float y1 = radius * Sin((float)i); float x2 = radius * Cos((float)j); float y2 = radius * Sin((float)j); debugRenderer_->AddLine(p + Vector3(x1, y1, 0.0f), p + Vector3(x2, y2, 0.0f), c, debugDepthTest_); } } // ATOMIC BEGIN //extern ATOMIC_API const float PIXEL_SIZE; // ATOMIC END void PhysicsWorld2D::DrawPoint(const b2Vec2& p, float32 size, const b2Color& color) { DrawSolidCircle(p, size * 0.5f * PIXEL_SIZE, b2Vec2(), color); } void PhysicsWorld2D::DrawSolidCircle(const b2Vec2& center, float32 radius, const b2Vec2& axis, const b2Color& color) { if (!debugRenderer_) return; Vector3 p = ToVector3(center); Color c(color.r, color.g, color.b, 0.5f); for (unsigned i = 0; i < 360; i += 30) { unsigned j = i + 30; float x1 = radius * Cos((float)i); float y1 = radius * Sin((float)i); float x2 = radius * Cos((float)j); float y2 = radius * Sin((float)j); debugRenderer_->AddTriangle(p, p + Vector3(x1, y1, 0.0f), p + Vector3(x2, y2, 0.0f), c, debugDepthTest_); } } void PhysicsWorld2D::DrawSegment(const b2Vec2& p1, const b2Vec2& p2, const b2Color& color) { if (debugRenderer_) debugRenderer_->AddLine(ToVector3(p1), ToVector3(p2), ToColor(color), debugDepthTest_); } void PhysicsWorld2D::DrawTransform(const b2Transform& xf) { if (!debugRenderer_) return; const float32 axisScale = 0.4f; b2Vec2 p1 = xf.p, p2; p2 = p1 + axisScale * xf.q.GetXAxis(); debugRenderer_->AddLine(Vector3(p1.x, p1.y, 0.0f), Vector3(p2.x, p2.y, 0.0f), Color::RED, debugDepthTest_); p2 = p1 + axisScale * xf.q.GetYAxis(); debugRenderer_->AddLine(Vector3(p1.x, p1.y, 0.0f), Vector3(p2.x, p2.y, 0.0f), Color::GREEN, debugDepthTest_); } void PhysicsWorld2D::Update(float timeStep) { ATOMIC_PROFILE(UpdatePhysics2D); using namespace PhysicsPreStep; VariantMap& eventData = GetEventDataMap(); eventData[P_WORLD] = this; eventData[P_TIMESTEP] = timeStep; SendEvent(E_PHYSICSPRESTEP, eventData); physicsStepping_ = true; world_->Step(timeStep, velocityIterations_, positionIterations_); physicsStepping_ = false; // Apply world transforms. Unparented transforms first for (unsigned i = 0; i < rigidBodies_.Size();) { if (rigidBodies_[i]) { rigidBodies_[i]->ApplyWorldTransform(); ++i; } else { // Erase possible stale weak pointer rigidBodies_.Erase(i); } } // Apply delayed (parented) world transforms now, if any while (!delayedWorldTransforms_.Empty()) { for (HashMap::Iterator i = delayedWorldTransforms_.Begin(); i != delayedWorldTransforms_.End();) { const DelayedWorldTransform2D& transform = i->second_; // If parent's transform has already been assigned, can proceed if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_)) { transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_); i = delayedWorldTransforms_.Erase(i); } else ++i; } } SendBeginContactEvents(); SendEndContactEvents(); using namespace PhysicsPostStep; SendEvent(E_PHYSICSPOSTSTEP, eventData); } void PhysicsWorld2D::DrawDebugGeometry() { DebugRenderer* debug = GetComponent(); if (debug) DrawDebugGeometry(debug, false); } void PhysicsWorld2D::SetUpdateEnabled(bool enable) { updateEnabled_ = enable; } void PhysicsWorld2D::SetDrawShape(bool drawShape) { if (drawShape) m_drawFlags |= e_shapeBit; else m_drawFlags &= ~e_shapeBit; } void PhysicsWorld2D::SetDrawJoint(bool drawJoint) { if (drawJoint) m_drawFlags |= e_jointBit; else m_drawFlags &= ~e_jointBit; } void PhysicsWorld2D::SetDrawAabb(bool drawAabb) { if (drawAabb) m_drawFlags |= e_aabbBit; else m_drawFlags &= ~e_aabbBit; } void PhysicsWorld2D::SetDrawPair(bool drawPair) { if (drawPair) m_drawFlags |= e_pairBit; else m_drawFlags &= ~e_pairBit; } void PhysicsWorld2D::SetDrawCenterOfMass(bool drawCenterOfMass) { if (drawCenterOfMass) m_drawFlags |= e_centerOfMassBit; else m_drawFlags &= ~e_centerOfMassBit; } void PhysicsWorld2D::SetAllowSleeping(bool enable) { world_->SetAllowSleeping(enable); } void PhysicsWorld2D::SetWarmStarting(bool enable) { world_->SetWarmStarting(enable); } void PhysicsWorld2D::SetContinuousPhysics(bool enable) { world_->SetContinuousPhysics(enable); } void PhysicsWorld2D::SetSubStepping(bool enable) { world_->SetSubStepping(enable); } void PhysicsWorld2D::SetGravity(const Vector2& gravity) { gravity_ = gravity; world_->SetGravity(ToB2Vec2(gravity_)); } void PhysicsWorld2D::SetAutoClearForces(bool enable) { world_->SetAutoClearForces(enable); } void PhysicsWorld2D::SetVelocityIterations(int velocityIterations) { velocityIterations_ = velocityIterations; } void PhysicsWorld2D::SetPositionIterations(int positionIterations) { positionIterations_ = positionIterations; } void PhysicsWorld2D::AddRigidBody(RigidBody2D* rigidBody) { if (!rigidBody) return; WeakPtr rigidBodyPtr(rigidBody); if (rigidBodies_.Contains(rigidBodyPtr)) return; rigidBodies_.Push(rigidBodyPtr); } void PhysicsWorld2D::RemoveRigidBody(RigidBody2D* rigidBody) { if (!rigidBody) return; WeakPtr rigidBodyPtr(rigidBody); rigidBodies_.Remove(rigidBodyPtr); } void PhysicsWorld2D::AddDelayedWorldTransform(const DelayedWorldTransform2D& transform) { delayedWorldTransforms_[transform.rigidBody_] = transform; } // Ray cast call back class. class RayCastCallback : public b2RayCastCallback { public: // Construct. RayCastCallback(PODVector& results, const Vector2& startPoint, unsigned collisionMask) : results_(results), startPoint_(startPoint), collisionMask_(collisionMask) { } // Called for each fixture found in the query. virtual float32 ReportFixture(b2Fixture* fixture, const b2Vec2& point, const b2Vec2& normal, float32 fraction) { // Ignore sensor if (fixture->IsSensor()) return true; if ((fixture->GetFilterData().maskBits & collisionMask_) == 0) return true; PhysicsRaycastResult2D result; result.position_ = ToVector2(point); result.normal_ = ToVector2(normal); result.distance_ = (result.position_ - startPoint_).Length(); result.body_ = (RigidBody2D*)(fixture->GetBody()->GetUserData()); results_.Push(result); return true; } protected: // Physics raycast results. PODVector& results_; // Start point. Vector2 startPoint_; // Collision mask. unsigned collisionMask_; }; void PhysicsWorld2D::Raycast(PODVector& results, const Vector2& startPoint, const Vector2& endPoint, unsigned collisionMask) { results.Clear(); RayCastCallback callback(results, startPoint, collisionMask); world_->RayCast(&callback, ToB2Vec2(startPoint), ToB2Vec2(endPoint)); } // Single ray cast call back class. class SingleRayCastCallback : public b2RayCastCallback { public: // Construct. SingleRayCastCallback(PhysicsRaycastResult2D& result, const Vector2& startPoint, unsigned collisionMask) : result_(result), startPoint_(startPoint), collisionMask_(collisionMask), minDistance_(M_INFINITY) { } // Called for each fixture found in the query. virtual float32 ReportFixture(b2Fixture* fixture, const b2Vec2& point, const b2Vec2& normal, float32 fraction) { // Ignore sensor if (fixture->IsSensor()) return true; if ((fixture->GetFilterData().maskBits & collisionMask_) == 0) return true; float distance = (ToVector2(point) - startPoint_).Length(); if (distance < minDistance_) { minDistance_ = distance; result_.position_ = ToVector2(point); result_.normal_ = ToVector2(normal); result_.distance_ = distance; result_.body_ = (RigidBody2D*)(fixture->GetBody()->GetUserData()); } return true; } private: // Physics raycast result. PhysicsRaycastResult2D& result_; // Start point. Vector2 startPoint_; // Collision mask. unsigned collisionMask_; // Minimum distance. float minDistance_; }; void PhysicsWorld2D::RaycastSingle(PhysicsRaycastResult2D& result, const Vector2& startPoint, const Vector2& endPoint, unsigned collisionMask) { result.body_ = 0; SingleRayCastCallback callback(result, startPoint, collisionMask); world_->RayCast(&callback, ToB2Vec2(startPoint), ToB2Vec2(endPoint)); } // Point query callback class. class PointQueryCallback : public b2QueryCallback { public: // Construct. PointQueryCallback(const b2Vec2& point, unsigned collisionMask) : point_(point), collisionMask_(collisionMask), rigidBody_(0) { } // Called for each fixture found in the query AABB. virtual bool ReportFixture(b2Fixture* fixture) { // Ignore sensor if (fixture->IsSensor()) return true; if ((fixture->GetFilterData().maskBits & collisionMask_) == 0) return true; if (fixture->TestPoint(point_)) { rigidBody_ = (RigidBody2D*)(fixture->GetBody()->GetUserData()); return false; } return true; } // Return rigid body. RigidBody2D* GetRigidBody() const { return rigidBody_; } private: // Point. b2Vec2 point_; // Collision mask. unsigned collisionMask_; // Rigid body. RigidBody2D* rigidBody_; }; RigidBody2D* PhysicsWorld2D::GetRigidBody(const Vector2& point, unsigned collisionMask) { PointQueryCallback callback(ToB2Vec2(point), collisionMask); b2AABB b2Aabb; Vector2 delta(M_EPSILON, M_EPSILON); b2Aabb.lowerBound = ToB2Vec2(point - delta); b2Aabb.upperBound = ToB2Vec2(point + delta); world_->QueryAABB(&callback, b2Aabb); return callback.GetRigidBody(); } RigidBody2D* PhysicsWorld2D::GetRigidBody(int screenX, int screenY, unsigned collisionMask) { Renderer* renderer = GetSubsystem(); for (unsigned i = 0; i < renderer->GetNumViewports(); ++i) { Viewport* viewport = renderer->GetViewport(i); // Find a viewport with same scene if (viewport && viewport->GetScene() == GetScene()) { Vector3 worldPoint = viewport->ScreenToWorldPoint(screenX, screenY, 0.0f); return GetRigidBody(Vector2(worldPoint.x_, worldPoint.y_), collisionMask); } } return 0; } // Aabb query callback class. class AabbQueryCallback : public b2QueryCallback { public: // Construct. AabbQueryCallback(PODVector& results, unsigned collisionMask) : results_(results), collisionMask_(collisionMask) { } // Called for each fixture found in the query AABB. virtual bool ReportFixture(b2Fixture* fixture) { // Ignore sensor if (fixture->IsSensor()) return true; if ((fixture->GetFilterData().maskBits & collisionMask_) == 0) return true; results_.Push((RigidBody2D*)(fixture->GetBody()->GetUserData())); return true; } private: // Results. PODVector& results_; // Collision mask. unsigned collisionMask_; }; void PhysicsWorld2D::GetRigidBodies(PODVector& results, const Rect& aabb, unsigned collisionMask) { AabbQueryCallback callback(results, collisionMask); b2AABB b2Aabb; Vector2 delta(M_EPSILON, M_EPSILON); b2Aabb.lowerBound = ToB2Vec2(aabb.min_ - delta); b2Aabb.upperBound = ToB2Vec2(aabb.max_ + delta); world_->QueryAABB(&callback, b2Aabb); } bool PhysicsWorld2D::GetAllowSleeping() const { return world_->GetAllowSleeping(); } bool PhysicsWorld2D::GetWarmStarting() const { return world_->GetWarmStarting(); } bool PhysicsWorld2D::GetContinuousPhysics() const { return world_->GetContinuousPhysics(); } bool PhysicsWorld2D::GetSubStepping() const { return world_->GetSubStepping(); } bool PhysicsWorld2D::GetAutoClearForces() const { return world_->GetAutoClearForces(); } void PhysicsWorld2D::OnSceneSet(Scene* scene) { // Subscribe to the scene subsystem update, which will trigger the physics simulation step if (scene) SubscribeToEvent(scene, E_SCENESUBSYSTEMUPDATE, ATOMIC_HANDLER(PhysicsWorld2D, HandleSceneSubsystemUpdate)); else UnsubscribeFromEvent(E_SCENESUBSYSTEMUPDATE); } void PhysicsWorld2D::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData) { if (!updateEnabled_) return; using namespace SceneSubsystemUpdate; Update(eventData[P_TIMESTEP].GetFloat()); } void PhysicsWorld2D::SendBeginContactEvents() { if (beginContactInfos_.Empty()) return; using namespace PhysicsBeginContact2D; VariantMap& eventData = GetEventDataMap(); VariantMap nodeEventData; eventData[P_WORLD] = this; for (unsigned i = 0; i < beginContactInfos_.Size(); ++i) { ContactInfo& contactInfo = beginContactInfos_[i]; eventData[P_BODYA] = contactInfo.bodyA_.Get(); eventData[P_BODYB] = contactInfo.bodyB_.Get(); eventData[P_NODEA] = contactInfo.nodeA_.Get(); eventData[P_NODEB] = contactInfo.nodeB_.Get(); eventData[P_CONTACTS] = contactInfo.Serialize(contacts_); eventData[P_SHAPEA] = contactInfo.shapeA_.Get(); eventData[P_SHAPEB] = contactInfo.shapeB_.Get(); SendEvent(E_PHYSICSBEGINCONTACT2D, eventData); nodeEventData[NodeBeginContact2D::P_CONTACTS] = contactInfo.Serialize(contacts_); if (contactInfo.nodeA_) { nodeEventData[NodeBeginContact2D::P_BODY] = contactInfo.bodyA_.Get(); nodeEventData[NodeBeginContact2D::P_OTHERNODE] = contactInfo.nodeB_.Get(); nodeEventData[NodeBeginContact2D::P_OTHERBODY] = contactInfo.bodyB_.Get(); nodeEventData[NodeBeginContact2D::P_SHAPE] = contactInfo.shapeA_.Get(); nodeEventData[NodeBeginContact2D::P_OTHERSHAPE] = contactInfo.shapeB_.Get(); contactInfo.nodeA_->SendEvent(E_NODEBEGINCONTACT2D, nodeEventData); } if (contactInfo.nodeB_) { nodeEventData[NodeBeginContact2D::P_BODY] = contactInfo.bodyB_.Get(); nodeEventData[NodeBeginContact2D::P_OTHERNODE] = contactInfo.nodeA_.Get(); nodeEventData[NodeBeginContact2D::P_OTHERBODY] = contactInfo.bodyA_.Get(); nodeEventData[NodeBeginContact2D::P_SHAPE] = contactInfo.shapeB_.Get(); nodeEventData[NodeBeginContact2D::P_OTHERSHAPE] = contactInfo.shapeA_.Get(); contactInfo.nodeB_->SendEvent(E_NODEBEGINCONTACT2D, nodeEventData); } } beginContactInfos_.Clear(); } void PhysicsWorld2D::SendEndContactEvents() { if (endContactInfos_.Empty()) return; using namespace PhysicsEndContact2D; VariantMap& eventData = GetEventDataMap(); VariantMap nodeEventData; eventData[P_WORLD] = this; for (unsigned i = 0; i < endContactInfos_.Size(); ++i) { ContactInfo& contactInfo = endContactInfos_[i]; eventData[P_BODYA] = contactInfo.bodyA_.Get(); eventData[P_BODYB] = contactInfo.bodyB_.Get(); eventData[P_NODEA] = contactInfo.nodeA_.Get(); eventData[P_NODEB] = contactInfo.nodeB_.Get(); eventData[P_CONTACTS] = contactInfo.Serialize(contacts_); eventData[P_SHAPEA] = contactInfo.shapeA_.Get(); eventData[P_SHAPEB] = contactInfo.shapeB_.Get(); SendEvent(E_PHYSICSENDCONTACT2D, eventData); nodeEventData[NodeEndContact2D::P_CONTACTS] = contactInfo.Serialize(contacts_); if (contactInfo.nodeA_) { nodeEventData[NodeEndContact2D::P_BODY] = contactInfo.bodyA_.Get(); nodeEventData[NodeEndContact2D::P_OTHERNODE] = contactInfo.nodeB_.Get(); nodeEventData[NodeEndContact2D::P_OTHERBODY] = contactInfo.bodyB_.Get(); nodeEventData[NodeEndContact2D::P_SHAPE] = contactInfo.shapeA_.Get(); nodeEventData[NodeEndContact2D::P_OTHERSHAPE] = contactInfo.shapeB_.Get(); contactInfo.nodeA_->SendEvent(E_NODEENDCONTACT2D, nodeEventData); } if (contactInfo.nodeB_) { nodeEventData[NodeEndContact2D::P_BODY] = contactInfo.bodyB_.Get(); nodeEventData[NodeEndContact2D::P_OTHERNODE] = contactInfo.nodeA_.Get(); nodeEventData[NodeEndContact2D::P_OTHERBODY] = contactInfo.bodyA_.Get(); nodeEventData[NodeEndContact2D::P_SHAPE] = contactInfo.shapeB_.Get(); nodeEventData[NodeEndContact2D::P_OTHERSHAPE] = contactInfo.shapeA_.Get(); contactInfo.nodeB_->SendEvent(E_NODEENDCONTACT2D, nodeEventData); } } endContactInfos_.Clear(); } PhysicsWorld2D::ContactInfo::ContactInfo() { } PhysicsWorld2D::ContactInfo::ContactInfo(b2Contact* contact) { b2Fixture* fixtureA = contact->GetFixtureA(); b2Fixture* fixtureB = contact->GetFixtureB(); bodyA_ = (RigidBody2D*)(fixtureA->GetBody()->GetUserData()); bodyB_ = (RigidBody2D*)(fixtureB->GetBody()->GetUserData()); nodeA_ = bodyA_->GetNode(); nodeB_ = bodyB_->GetNode(); shapeA_ = (CollisionShape2D*)fixtureA->GetUserData(); shapeB_ = (CollisionShape2D*)fixtureB->GetUserData(); b2WorldManifold worldManifold; contact->GetWorldManifold(&worldManifold); numPoints_ = contact->GetManifold()->pointCount; worldNormal_ = Vector2(worldManifold.normal.x, worldManifold.normal.y); for (int i = 0; i < numPoints_; ++i) { worldPositions_[i] = Vector2(worldManifold.points[i].x, worldManifold.points[i].y); separations_[i] = worldManifold.separations[i]; } } const PODVector& PhysicsWorld2D::ContactInfo::Serialize(VectorBuffer& buffer) const { buffer.Clear(); for (int i = 0; i < numPoints_; ++i) { buffer.WriteVector2(worldPositions_[i]); buffer.WriteVector2(worldNormal_); buffer.WriteFloat(separations_[i]); } return buffer.GetBuffer(); } }