PhysicsWorld.cpp 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086
  1. //
  2. // Copyright (c) 2008-2017 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Core/Context.h"
  24. #include "../Core/Mutex.h"
  25. #include "../Core/Profiler.h"
  26. #include "../Graphics/DebugRenderer.h"
  27. #include "../Graphics/Model.h"
  28. #include "../IO/Log.h"
  29. #include "../Math/Ray.h"
  30. #include "../Physics/CollisionShape.h"
  31. #include "../Physics/Constraint.h"
  32. #include "../Physics/PhysicsEvents.h"
  33. #include "../Physics/PhysicsUtils.h"
  34. #include "../Physics/PhysicsWorld.h"
  35. #include "../Physics/RigidBody.h"
  36. #include "../Scene/Scene.h"
  37. #include "../Scene/SceneEvents.h"
  38. // ATOMIC BEGIN
  39. #include <Bullet/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <Bullet/src/BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  41. #include <Bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  42. #include <Bullet/src/BulletCollision/CollisionShapes/btBoxShape.h>
  43. #include <Bullet/src/BulletCollision/CollisionShapes/btSphereShape.h>
  44. #include <Bullet/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  45. #include <Bullet/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  46. // ATOMIC END
  47. extern ContactAddedCallback gContactAddedCallback;
  48. namespace Atomic
  49. {
  50. const char* PHYSICS_CATEGORY = "Physics";
  51. extern const char* SUBSYSTEM_CATEGORY;
  52. static const int MAX_SOLVER_ITERATIONS = 256;
  53. static const int DEFAULT_FPS = 60;
  54. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  55. PhysicsWorldConfig PhysicsWorld::config;
  56. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  57. {
  58. return lhs.distance_ < rhs.distance_;
  59. }
  60. void InternalPreTickCallback(btDynamicsWorld* world, btScalar timeStep)
  61. {
  62. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  63. }
  64. void InternalTickCallback(btDynamicsWorld* world, btScalar timeStep)
  65. {
  66. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  67. }
  68. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0,
  69. int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  70. {
  71. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  72. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  73. cp.m_combinedRestitution =
  74. colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  75. return true;
  76. }
  77. /// Callback for physics world queries.
  78. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  79. {
  80. /// Construct.
  81. PhysicsQueryCallback(PODVector<RigidBody*>& result, unsigned collisionMask) :
  82. result_(result),
  83. collisionMask_(collisionMask)
  84. {
  85. }
  86. /// Add a contact result.
  87. virtual btScalar addSingleResult(btManifoldPoint&, const btCollisionObjectWrapper* colObj0Wrap, int, int,
  88. const btCollisionObjectWrapper* colObj1Wrap, int, int)
  89. {
  90. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  91. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  92. result_.Push(body);
  93. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  94. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  95. result_.Push(body);
  96. return 0.0f;
  97. }
  98. /// Found rigid bodies.
  99. PODVector<RigidBody*>& result_;
  100. /// Collision mask for the query.
  101. unsigned collisionMask_;
  102. };
  103. PhysicsWorld::PhysicsWorld(Context* context) :
  104. Component(context),
  105. collisionConfiguration_(0),
  106. fps_(DEFAULT_FPS),
  107. maxSubSteps_(0),
  108. timeAcc_(0.0f),
  109. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  110. updateEnabled_(true),
  111. interpolation_(true),
  112. internalEdge_(true),
  113. applyingTransforms_(false),
  114. simulating_(false),
  115. debugRenderer_(0),
  116. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  117. {
  118. gContactAddedCallback = CustomMaterialCombinerCallback;
  119. if (PhysicsWorld::config.collisionConfig_)
  120. collisionConfiguration_ = PhysicsWorld::config.collisionConfig_;
  121. else
  122. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  123. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  124. broadphase_ = new btDbvtBroadphase();
  125. solver_ = new btSequentialImpulseConstraintSolver();
  126. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_.Get(), broadphase_.Get(), solver_.Get(), collisionConfiguration_);
  127. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  128. world_->getDispatchInfo().m_useContinuous = true;
  129. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  130. world_->setDebugDrawer(this);
  131. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  132. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  133. }
  134. PhysicsWorld::~PhysicsWorld()
  135. {
  136. if (scene_)
  137. {
  138. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  139. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  140. (*i)->ReleaseConstraint();
  141. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  142. (*i)->ReleaseBody();
  143. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  144. (*i)->ReleaseShape();
  145. }
  146. world_.Reset();
  147. solver_.Reset();
  148. broadphase_.Reset();
  149. collisionDispatcher_.Reset();
  150. // Delete configuration only if it was the default created by PhysicsWorld
  151. if (!PhysicsWorld::config.collisionConfig_)
  152. delete collisionConfiguration_;
  153. collisionConfiguration_ = 0;
  154. }
  155. void PhysicsWorld::RegisterObject(Context* context)
  156. {
  157. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  158. ATOMIC_MIXED_ACCESSOR_ATTRIBUTE("Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  159. ATOMIC_ATTRIBUTE("Physics FPS", int, fps_, DEFAULT_FPS, AM_DEFAULT);
  160. ATOMIC_ATTRIBUTE("Max Substeps", int, maxSubSteps_, 0, AM_DEFAULT);
  161. ATOMIC_ACCESSOR_ATTRIBUTE("Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  162. ATOMIC_ATTRIBUTE("Net Max Angular Vel.", float, maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  163. ATOMIC_ATTRIBUTE("Interpolation", bool, interpolation_, true, AM_FILE);
  164. ATOMIC_ATTRIBUTE("Internal Edge Utility", bool, internalEdge_, true, AM_DEFAULT);
  165. ATOMIC_ACCESSOR_ATTRIBUTE("Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  166. }
  167. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  168. {
  169. if (debugRenderer_)
  170. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  171. else
  172. return false;
  173. }
  174. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  175. {
  176. if (debugRenderer_)
  177. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  178. }
  179. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  180. {
  181. if (debug)
  182. {
  183. ATOMIC_PROFILE(PhysicsDrawDebug);
  184. debugRenderer_ = debug;
  185. debugDepthTest_ = depthTest;
  186. world_->debugDrawWorld();
  187. debugRenderer_ = 0;
  188. }
  189. }
  190. void PhysicsWorld::reportErrorWarning(const char* warningString)
  191. {
  192. ATOMIC_LOGWARNING("Physics: " + String(warningString));
  193. }
  194. void PhysicsWorld::drawContactPoint(const btVector3& pointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime,
  195. const btVector3& color)
  196. {
  197. }
  198. void PhysicsWorld::draw3dText(const btVector3& location, const char* textString)
  199. {
  200. }
  201. void PhysicsWorld::Update(float timeStep)
  202. {
  203. ATOMIC_PROFILE(UpdatePhysics);
  204. float internalTimeStep = 1.0f / fps_;
  205. int maxSubSteps = (int)(timeStep * fps_) + 1;
  206. if (maxSubSteps_ < 0)
  207. {
  208. internalTimeStep = timeStep;
  209. maxSubSteps = 1;
  210. }
  211. else if (maxSubSteps_ > 0)
  212. maxSubSteps = Min(maxSubSteps, maxSubSteps_);
  213. delayedWorldTransforms_.Clear();
  214. simulating_ = true;
  215. if (interpolation_)
  216. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  217. else
  218. {
  219. timeAcc_ += timeStep;
  220. while (timeAcc_ >= internalTimeStep && maxSubSteps > 0)
  221. {
  222. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  223. timeAcc_ -= internalTimeStep;
  224. --maxSubSteps;
  225. }
  226. }
  227. simulating_ = false;
  228. // Apply delayed (parented) world transforms now
  229. while (!delayedWorldTransforms_.Empty())
  230. {
  231. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  232. i != delayedWorldTransforms_.End();)
  233. {
  234. const DelayedWorldTransform& transform = i->second_;
  235. // If parent's transform has already been assigned, can proceed
  236. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  237. {
  238. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  239. i = delayedWorldTransforms_.Erase(i);
  240. }
  241. else
  242. ++i;
  243. }
  244. }
  245. }
  246. void PhysicsWorld::UpdateCollisions()
  247. {
  248. world_->performDiscreteCollisionDetection();
  249. }
  250. void PhysicsWorld::SetFps(int fps)
  251. {
  252. fps_ = (unsigned)Clamp(fps, 1, 1000);
  253. MarkNetworkUpdate();
  254. }
  255. void PhysicsWorld::SetGravity(const Vector3& gravity)
  256. {
  257. world_->setGravity(ToBtVector3(gravity));
  258. MarkNetworkUpdate();
  259. }
  260. void PhysicsWorld::SetMaxSubSteps(int num)
  261. {
  262. maxSubSteps_ = num;
  263. MarkNetworkUpdate();
  264. }
  265. void PhysicsWorld::SetNumIterations(int num)
  266. {
  267. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  268. world_->getSolverInfo().m_numIterations = num;
  269. MarkNetworkUpdate();
  270. }
  271. void PhysicsWorld::SetUpdateEnabled(bool enable)
  272. {
  273. updateEnabled_ = enable;
  274. }
  275. void PhysicsWorld::SetInterpolation(bool enable)
  276. {
  277. interpolation_ = enable;
  278. }
  279. void PhysicsWorld::SetInternalEdge(bool enable)
  280. {
  281. internalEdge_ = enable;
  282. MarkNetworkUpdate();
  283. }
  284. void PhysicsWorld::SetSplitImpulse(bool enable)
  285. {
  286. world_->getSolverInfo().m_splitImpulse = enable;
  287. MarkNetworkUpdate();
  288. }
  289. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  290. {
  291. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  292. MarkNetworkUpdate();
  293. }
  294. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  295. {
  296. ATOMIC_PROFILE(PhysicsRaycast);
  297. if (maxDistance >= M_INFINITY)
  298. ATOMIC_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  299. btCollisionWorld::AllHitsRayResultCallback
  300. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  301. rayCallback.m_collisionFilterGroup = (short)0xffff;
  302. rayCallback.m_collisionFilterMask = (short)collisionMask;
  303. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  304. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  305. {
  306. PhysicsRaycastResult newResult;
  307. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  308. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  309. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  310. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  311. newResult.hitFraction_ = rayCallback.m_closestHitFraction;
  312. result.Push(newResult);
  313. }
  314. Sort(result.Begin(), result.End(), CompareRaycastResults);
  315. }
  316. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  317. {
  318. ATOMIC_PROFILE(PhysicsRaycastSingle);
  319. if (maxDistance >= M_INFINITY)
  320. ATOMIC_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  321. btCollisionWorld::ClosestRayResultCallback
  322. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  323. rayCallback.m_collisionFilterGroup = (short)0xffff;
  324. rayCallback.m_collisionFilterMask = (short)collisionMask;
  325. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  326. if (rayCallback.hasHit())
  327. {
  328. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  329. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  330. result.distance_ = (result.position_ - ray.origin_).Length();
  331. result.hitFraction_ = rayCallback.m_closestHitFraction;
  332. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  333. }
  334. else
  335. {
  336. result.position_ = Vector3::ZERO;
  337. result.normal_ = Vector3::ZERO;
  338. result.distance_ = M_INFINITY;
  339. result.hitFraction_ = 0.0f;
  340. result.body_ = 0;
  341. }
  342. }
  343. void PhysicsWorld::RaycastSingleSegmented(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, float segmentDistance, unsigned collisionMask)
  344. {
  345. ATOMIC_PROFILE(PhysicsRaycastSingleSegmented);
  346. if (maxDistance >= M_INFINITY)
  347. ATOMIC_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  348. btVector3 start = ToBtVector3(ray.origin_);
  349. btVector3 end;
  350. btVector3 direction = ToBtVector3(ray.direction_);
  351. float distance;
  352. for (float remainingDistance = maxDistance; remainingDistance > 0; remainingDistance -= segmentDistance)
  353. {
  354. distance = Min(remainingDistance, segmentDistance);
  355. end = start + distance * direction;
  356. btCollisionWorld::ClosestRayResultCallback rayCallback(start, end);
  357. rayCallback.m_collisionFilterGroup = (short)0xffff;
  358. rayCallback.m_collisionFilterMask = (short)collisionMask;
  359. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  360. if (rayCallback.hasHit())
  361. {
  362. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  363. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  364. result.distance_ = (result.position_ - ray.origin_).Length();
  365. result.hitFraction_ = rayCallback.m_closestHitFraction;
  366. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  367. // No need to cast the rest of the segments
  368. return;
  369. }
  370. // Use the end position as the new start position
  371. start = end;
  372. }
  373. // Didn't hit anything
  374. result.position_ = Vector3::ZERO;
  375. result.normal_ = Vector3::ZERO;
  376. result.distance_ = M_INFINITY;
  377. result.hitFraction_ = 0.0f;
  378. result.body_ = 0;
  379. }
  380. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  381. {
  382. ATOMIC_PROFILE(PhysicsSphereCast);
  383. if (maxDistance >= M_INFINITY)
  384. ATOMIC_LOGWARNING("Infinite maxDistance in physics sphere cast is not supported");
  385. btSphereShape shape(radius);
  386. Vector3 endPos = ray.origin_ + maxDistance * ray.direction_;
  387. btCollisionWorld::ClosestConvexResultCallback
  388. convexCallback(ToBtVector3(ray.origin_), ToBtVector3(endPos));
  389. convexCallback.m_collisionFilterGroup = (short)0xffff;
  390. convexCallback.m_collisionFilterMask = (short)collisionMask;
  391. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  392. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  393. if (convexCallback.hasHit())
  394. {
  395. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  396. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  397. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  398. result.distance_ = convexCallback.m_closestHitFraction * (endPos - ray.origin_).Length();
  399. result.hitFraction_ = convexCallback.m_closestHitFraction;
  400. }
  401. else
  402. {
  403. result.body_ = 0;
  404. result.position_ = Vector3::ZERO;
  405. result.normal_ = Vector3::ZERO;
  406. result.distance_ = M_INFINITY;
  407. result.hitFraction_ = 0.0f;
  408. }
  409. }
  410. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, CollisionShape* shape, const Vector3& startPos,
  411. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  412. {
  413. if (!shape || !shape->GetCollisionShape())
  414. {
  415. ATOMIC_LOGERROR("Null collision shape for convex cast");
  416. result.body_ = 0;
  417. result.position_ = Vector3::ZERO;
  418. result.normal_ = Vector3::ZERO;
  419. result.distance_ = M_INFINITY;
  420. result.hitFraction_ = 0.0f;
  421. return;
  422. }
  423. // If shape is attached in a rigidbody, set its collision group temporarily to 0 to make sure it is not returned in the sweep result
  424. RigidBody* bodyComp = shape->GetComponent<RigidBody>();
  425. btRigidBody* body = bodyComp ? bodyComp->GetBody() : (btRigidBody*)0;
  426. btBroadphaseProxy* proxy = body ? body->getBroadphaseProxy() : (btBroadphaseProxy*)0;
  427. short group = 0;
  428. if (proxy)
  429. {
  430. group = proxy->m_collisionFilterGroup;
  431. proxy->m_collisionFilterGroup = 0;
  432. }
  433. // Take the shape's offset position & rotation into account
  434. Node* shapeNode = shape->GetNode();
  435. Matrix3x4 startTransform(startPos, startRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  436. Matrix3x4 endTransform(endPos, endRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  437. Vector3 effectiveStartPos = startTransform * shape->GetPosition();
  438. Vector3 effectiveEndPos = endTransform * shape->GetPosition();
  439. Quaternion effectiveStartRot = startRot * shape->GetRotation();
  440. Quaternion effectiveEndRot = endRot * shape->GetRotation();
  441. ConvexCast(result, shape->GetCollisionShape(), effectiveStartPos, effectiveStartRot, effectiveEndPos, effectiveEndRot, collisionMask);
  442. // Restore the collision group
  443. if (proxy)
  444. proxy->m_collisionFilterGroup = group;
  445. }
  446. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, btCollisionShape* shape, const Vector3& startPos,
  447. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  448. {
  449. if (!shape)
  450. {
  451. ATOMIC_LOGERROR("Null collision shape for convex cast");
  452. result.body_ = 0;
  453. result.position_ = Vector3::ZERO;
  454. result.normal_ = Vector3::ZERO;
  455. result.distance_ = M_INFINITY;
  456. result.hitFraction_ = 0.0f;
  457. return;
  458. }
  459. if (!shape->isConvex())
  460. {
  461. ATOMIC_LOGERROR("Can not use non-convex collision shape for convex cast");
  462. result.body_ = 0;
  463. result.position_ = Vector3::ZERO;
  464. result.normal_ = Vector3::ZERO;
  465. result.distance_ = M_INFINITY;
  466. result.hitFraction_ = 0.0f;
  467. return;
  468. }
  469. ATOMIC_PROFILE(PhysicsConvexCast);
  470. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(startPos), ToBtVector3(endPos));
  471. convexCallback.m_collisionFilterGroup = (short)0xffff;
  472. convexCallback.m_collisionFilterMask = (short)collisionMask;
  473. world_->convexSweepTest(static_cast<btConvexShape*>(shape), btTransform(ToBtQuaternion(startRot),
  474. convexCallback.m_convexFromWorld), btTransform(ToBtQuaternion(endRot), convexCallback.m_convexToWorld),
  475. convexCallback);
  476. if (convexCallback.hasHit())
  477. {
  478. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  479. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  480. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  481. result.distance_ = convexCallback.m_closestHitFraction * (endPos - startPos).Length();
  482. result.hitFraction_ = convexCallback.m_closestHitFraction;
  483. }
  484. else
  485. {
  486. result.body_ = 0;
  487. result.position_ = Vector3::ZERO;
  488. result.normal_ = Vector3::ZERO;
  489. result.distance_ = M_INFINITY;
  490. result.hitFraction_ = 0.0f;
  491. }
  492. }
  493. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  494. {
  495. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  496. i != triMeshCache_.End();)
  497. {
  498. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  499. if (current->first_.first_ == model)
  500. triMeshCache_.Erase(current);
  501. }
  502. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  503. i != convexCache_.End();)
  504. {
  505. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  506. if (current->first_.first_ == model)
  507. convexCache_.Erase(current);
  508. }
  509. }
  510. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  511. {
  512. ATOMIC_PROFILE(PhysicsSphereQuery);
  513. result.Clear();
  514. btSphereShape sphereShape(sphere.radius_);
  515. UniquePtr<btRigidBody> tempRigidBody(new btRigidBody(1.0f, 0, &sphereShape));
  516. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  517. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  518. tempRigidBody->activate();
  519. world_->addRigidBody(tempRigidBody.Get());
  520. PhysicsQueryCallback callback(result, collisionMask);
  521. world_->contactTest(tempRigidBody.Get(), callback);
  522. world_->removeRigidBody(tempRigidBody.Get());
  523. }
  524. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  525. {
  526. ATOMIC_PROFILE(PhysicsBoxQuery);
  527. result.Clear();
  528. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  529. UniquePtr<btRigidBody> tempRigidBody(new btRigidBody(1.0f, 0, &boxShape));
  530. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  531. tempRigidBody->activate();
  532. world_->addRigidBody(tempRigidBody.Get());
  533. PhysicsQueryCallback callback(result, collisionMask);
  534. world_->contactTest(tempRigidBody.Get(), callback);
  535. world_->removeRigidBody(tempRigidBody.Get());
  536. }
  537. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  538. {
  539. ATOMIC_PROFILE(PhysicsBodyQuery);
  540. result.Clear();
  541. if (!body || !body->GetBody())
  542. return;
  543. PhysicsQueryCallback callback(result, body->GetCollisionMask());
  544. world_->contactTest(body->GetBody(), callback);
  545. // Remove the body itself from the returned list
  546. for (unsigned i = 0; i < result.Size(); i++)
  547. {
  548. if (result[i] == body)
  549. {
  550. result.Erase(i);
  551. break;
  552. }
  553. }
  554. }
  555. void PhysicsWorld::GetCollidingBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  556. {
  557. ATOMIC_PROFILE(GetCollidingBodies);
  558. result.Clear();
  559. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator i = currentCollisions_.Begin();
  560. i != currentCollisions_.End(); ++i)
  561. {
  562. if (i->first_.first_ == body)
  563. {
  564. if (i->first_.second_)
  565. result.Push(i->first_.second_);
  566. }
  567. else if (i->first_.second_ == body)
  568. {
  569. if (i->first_.first_)
  570. result.Push(i->first_.first_);
  571. }
  572. }
  573. }
  574. Vector3 PhysicsWorld::GetGravity() const
  575. {
  576. return ToVector3(world_->getGravity());
  577. }
  578. int PhysicsWorld::GetNumIterations() const
  579. {
  580. return world_->getSolverInfo().m_numIterations;
  581. }
  582. bool PhysicsWorld::GetSplitImpulse() const
  583. {
  584. return world_->getSolverInfo().m_splitImpulse != 0;
  585. }
  586. void PhysicsWorld::AddRigidBody(RigidBody* body)
  587. {
  588. rigidBodies_.Push(body);
  589. }
  590. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  591. {
  592. rigidBodies_.Remove(body);
  593. // Remove possible dangling pointer from the delayedWorldTransforms structure
  594. delayedWorldTransforms_.Erase(body);
  595. }
  596. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  597. {
  598. collisionShapes_.Push(shape);
  599. }
  600. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  601. {
  602. collisionShapes_.Remove(shape);
  603. }
  604. void PhysicsWorld::AddConstraint(Constraint* constraint)
  605. {
  606. constraints_.Push(constraint);
  607. }
  608. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  609. {
  610. constraints_.Remove(constraint);
  611. }
  612. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  613. {
  614. delayedWorldTransforms_[transform.rigidBody_] = transform;
  615. }
  616. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  617. {
  618. DebugRenderer* debug = GetComponent<DebugRenderer>();
  619. DrawDebugGeometry(debug, depthTest);
  620. }
  621. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  622. {
  623. debugRenderer_ = debug;
  624. }
  625. void PhysicsWorld::SetDebugDepthTest(bool enable)
  626. {
  627. debugDepthTest_ = enable;
  628. }
  629. void PhysicsWorld::CleanupGeometryCache()
  630. {
  631. // Remove cached shapes whose only reference is the cache itself
  632. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  633. i != triMeshCache_.End();)
  634. {
  635. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  636. if (current->second_.Refs() == 1)
  637. triMeshCache_.Erase(current);
  638. }
  639. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  640. i != convexCache_.End();)
  641. {
  642. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  643. if (current->second_.Refs() == 1)
  644. convexCache_.Erase(current);
  645. }
  646. }
  647. void PhysicsWorld::OnSceneSet(Scene* scene)
  648. {
  649. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  650. if (scene)
  651. {
  652. scene_ = GetScene();
  653. SubscribeToEvent(scene_, E_SCENESUBSYSTEMUPDATE, ATOMIC_HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  654. }
  655. else
  656. UnsubscribeFromEvent(E_SCENESUBSYSTEMUPDATE);
  657. }
  658. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  659. {
  660. if (!updateEnabled_)
  661. return;
  662. using namespace SceneSubsystemUpdate;
  663. Update(eventData[P_TIMESTEP].GetFloat());
  664. }
  665. void PhysicsWorld::PreStep(float timeStep)
  666. {
  667. // Send pre-step event
  668. using namespace PhysicsPreStep;
  669. VariantMap& eventData = GetEventDataMap();
  670. eventData[P_WORLD] = this;
  671. eventData[P_TIMESTEP] = timeStep;
  672. SendEvent(E_PHYSICSPRESTEP, eventData);
  673. // ATOMIC BEGIN
  674. // Start profiling block for the actual simulation step
  675. ATOMIC_PROFILE_NONSCOPED("PhysicsStepSimulation");
  676. // ATOMIC END
  677. }
  678. void PhysicsWorld::PostStep(float timeStep)
  679. {
  680. // ATOMIC BEGIN
  681. ATOMIC_PROFILE_END();
  682. // ATOMIC END
  683. SendCollisionEvents();
  684. // Send post-step event
  685. using namespace PhysicsPostStep;
  686. VariantMap& eventData = GetEventDataMap();
  687. eventData[P_WORLD] = this;
  688. eventData[P_TIMESTEP] = timeStep;
  689. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  690. }
  691. void PhysicsWorld::SendCollisionEvents()
  692. {
  693. ATOMIC_PROFILE(SendCollisionEvents);
  694. currentCollisions_.Clear();
  695. physicsCollisionData_.Clear();
  696. nodeCollisionData_.Clear();
  697. int numManifolds = collisionDispatcher_->getNumManifolds();
  698. if (numManifolds)
  699. {
  700. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  701. for (int i = 0; i < numManifolds; ++i)
  702. {
  703. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  704. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  705. if (!contactManifold->getNumContacts())
  706. continue;
  707. const btCollisionObject* objectA = contactManifold->getBody0();
  708. const btCollisionObject* objectB = contactManifold->getBody1();
  709. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  710. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  711. // If it's not a rigidbody, maybe a ghost object
  712. if (!bodyA || !bodyB)
  713. continue;
  714. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  715. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  716. continue;
  717. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  718. continue;
  719. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  720. !bodyA->IsActive() && !bodyB->IsActive())
  721. continue;
  722. WeakPtr<RigidBody> bodyWeakA(bodyA);
  723. WeakPtr<RigidBody> bodyWeakB(bodyB);
  724. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  725. // objects during collision event handling
  726. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  727. if (bodyA < bodyB)
  728. {
  729. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  730. currentCollisions_[bodyPair].manifold_ = contactManifold;
  731. }
  732. else
  733. {
  734. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  735. currentCollisions_[bodyPair].flippedManifold_ = contactManifold;
  736. }
  737. }
  738. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator i = currentCollisions_.Begin();
  739. i != currentCollisions_.End(); ++i)
  740. {
  741. RigidBody* bodyA = i->first_.first_;
  742. RigidBody* bodyB = i->first_.second_;
  743. if (!bodyA || !bodyB)
  744. continue;
  745. Node* nodeA = bodyA->GetNode();
  746. Node* nodeB = bodyB->GetNode();
  747. WeakPtr<Node> nodeWeakA(nodeA);
  748. WeakPtr<Node> nodeWeakB(nodeB);
  749. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  750. bool newCollision = !previousCollisions_.Contains(i->first_);
  751. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  752. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  753. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  754. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  755. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  756. contacts_.Clear();
  757. // "Pointers not flipped"-manifold, send unmodified normals
  758. btPersistentManifold* contactManifold = i->second_.manifold_;
  759. if (contactManifold)
  760. {
  761. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  762. {
  763. btManifoldPoint& point = contactManifold->getContactPoint(j);
  764. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  765. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  766. contacts_.WriteFloat(point.m_distance1);
  767. contacts_.WriteFloat(point.m_appliedImpulse);
  768. }
  769. }
  770. // "Pointers flipped"-manifold, flip normals also
  771. contactManifold = i->second_.flippedManifold_;
  772. if (contactManifold)
  773. {
  774. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  775. {
  776. btManifoldPoint& point = contactManifold->getContactPoint(j);
  777. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  778. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  779. contacts_.WriteFloat(point.m_distance1);
  780. contacts_.WriteFloat(point.m_appliedImpulse);
  781. }
  782. }
  783. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  784. // Send separate collision start event if collision is new
  785. if (newCollision)
  786. {
  787. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  788. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  789. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  790. continue;
  791. }
  792. // Then send the ongoing collision event
  793. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  794. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  795. continue;
  796. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  797. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  798. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  799. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  800. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  801. if (newCollision)
  802. {
  803. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  804. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  805. continue;
  806. }
  807. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  808. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  809. continue;
  810. // Flip perspective to body B
  811. contacts_.Clear();
  812. contactManifold = i->second_.manifold_;
  813. if (contactManifold)
  814. {
  815. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  816. {
  817. btManifoldPoint& point = contactManifold->getContactPoint(j);
  818. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  819. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  820. contacts_.WriteFloat(point.m_distance1);
  821. contacts_.WriteFloat(point.m_appliedImpulse);
  822. }
  823. }
  824. contactManifold = i->second_.flippedManifold_;
  825. if (contactManifold)
  826. {
  827. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  828. {
  829. btManifoldPoint& point = contactManifold->getContactPoint(j);
  830. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  831. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  832. contacts_.WriteFloat(point.m_distance1);
  833. contacts_.WriteFloat(point.m_appliedImpulse);
  834. }
  835. }
  836. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  837. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  838. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  839. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  840. if (newCollision)
  841. {
  842. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  843. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  844. continue;
  845. }
  846. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  847. }
  848. }
  849. // Send collision end events as applicable
  850. {
  851. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  852. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator
  853. i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  854. {
  855. if (!currentCollisions_.Contains(i->first_))
  856. {
  857. RigidBody* bodyA = i->first_.first_;
  858. RigidBody* bodyB = i->first_.second_;
  859. if (!bodyA || !bodyB)
  860. continue;
  861. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  862. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  863. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  864. continue;
  865. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  866. continue;
  867. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  868. !bodyA->IsActive() && !bodyB->IsActive())
  869. continue;
  870. Node* nodeA = bodyA->GetNode();
  871. Node* nodeB = bodyB->GetNode();
  872. WeakPtr<Node> nodeWeakA(nodeA);
  873. WeakPtr<Node> nodeWeakB(nodeB);
  874. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  875. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  876. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  877. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  878. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  879. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  880. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  881. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  882. continue;
  883. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  884. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  885. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  886. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  887. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  888. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  889. continue;
  890. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  891. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  892. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  893. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  894. }
  895. }
  896. }
  897. previousCollisions_ = currentCollisions_;
  898. }
  899. void RegisterPhysicsLibrary(Context* context)
  900. {
  901. CollisionShape::RegisterObject(context);
  902. RigidBody::RegisterObject(context);
  903. Constraint::RegisterObject(context);
  904. PhysicsWorld::RegisterObject(context);
  905. }
  906. }