Batch.cpp 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900
  1. //
  2. // Copyright (c) 2008-2015 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "../Graphics/Camera.h"
  24. #include "../Graphics/Geometry.h"
  25. #include "../Graphics/Graphics.h"
  26. #include "../Graphics/GraphicsImpl.h"
  27. #include "../Graphics/Material.h"
  28. #include "../Scene/Node.h"
  29. #include "../Graphics/Renderer.h"
  30. #include "../Core/Profiler.h"
  31. #include "../Scene/Scene.h"
  32. #include "../Graphics/ShaderVariation.h"
  33. #include "../Container/Sort.h"
  34. #include "../Graphics/Technique.h"
  35. #include "../Graphics/Texture2D.h"
  36. #include "../Graphics/VertexBuffer.h"
  37. #include "../Graphics/View.h"
  38. #include "../Graphics/Zone.h"
  39. #include "../DebugNew.h"
  40. namespace Atomic
  41. {
  42. inline bool CompareBatchesState(Batch* lhs, Batch* rhs)
  43. {
  44. if (lhs->sortKey_ != rhs->sortKey_)
  45. return lhs->sortKey_ < rhs->sortKey_;
  46. else
  47. return lhs->distance_ < rhs->distance_;
  48. }
  49. inline bool CompareBatchesFrontToBack(Batch* lhs, Batch* rhs)
  50. {
  51. if (lhs->distance_ != rhs->distance_)
  52. return lhs->distance_ < rhs->distance_;
  53. else
  54. return lhs->sortKey_ < rhs->sortKey_;
  55. }
  56. inline bool CompareBatchesBackToFront(Batch* lhs, Batch* rhs)
  57. {
  58. if (lhs->distance_ != rhs->distance_)
  59. return lhs->distance_ > rhs->distance_;
  60. else
  61. return lhs->sortKey_ < rhs->sortKey_;
  62. }
  63. inline bool CompareInstancesFrontToBack(const InstanceData& lhs, const InstanceData& rhs)
  64. {
  65. return lhs.distance_ < rhs.distance_;
  66. }
  67. void CalculateShadowMatrix(Matrix4& dest, LightBatchQueue* queue, unsigned split, Renderer* renderer, const Vector3& translation)
  68. {
  69. Camera* shadowCamera = queue->shadowSplits_[split].shadowCamera_;
  70. const IntRect& viewport = queue->shadowSplits_[split].shadowViewport_;
  71. Matrix3x4 posAdjust(translation, Quaternion::IDENTITY, 1.0f);
  72. Matrix3x4 shadowView(shadowCamera->GetView());
  73. Matrix4 shadowProj(shadowCamera->GetProjection());
  74. Matrix4 texAdjust(Matrix4::IDENTITY);
  75. Texture2D* shadowMap = queue->shadowMap_;
  76. if (!shadowMap)
  77. return;
  78. float width = (float)shadowMap->GetWidth();
  79. float height = (float)shadowMap->GetHeight();
  80. Vector2 offset(
  81. (float)viewport.left_ / width,
  82. (float)viewport.top_ / height
  83. );
  84. Vector2 scale(
  85. 0.5f * (float)viewport.Width() / width,
  86. 0.5f * (float)viewport.Height() / height
  87. );
  88. #ifdef ATOMIC_OPENGL
  89. offset.x_ += scale.x_;
  90. offset.y_ += scale.y_;
  91. offset.y_ = 1.0f - offset.y_;
  92. // If using 4 shadow samples, offset the position diagonally by half pixel
  93. if (renderer->GetShadowQuality() & SHADOWQUALITY_HIGH_16BIT)
  94. {
  95. offset.x_ -= 0.5f / width;
  96. offset.y_ -= 0.5f / height;
  97. }
  98. texAdjust.SetTranslation(Vector3(offset.x_, offset.y_, 0.5f));
  99. texAdjust.SetScale(Vector3(scale.x_, scale.y_, 0.5f));
  100. #else
  101. offset.x_ += scale.x_ + 0.5f / width;
  102. offset.y_ += scale.y_ + 0.5f / height;
  103. if (renderer->GetShadowQuality() & SHADOWQUALITY_HIGH_16BIT)
  104. {
  105. offset.x_ -= 0.5f / width;
  106. offset.y_ -= 0.5f / height;
  107. }
  108. scale.y_ = -scale.y_;
  109. texAdjust.SetTranslation(Vector3(offset.x_, offset.y_, 0.0f));
  110. texAdjust.SetScale(Vector3(scale.x_, scale.y_, 1.0f));
  111. #endif
  112. dest = texAdjust * shadowProj * shadowView * posAdjust;
  113. }
  114. void CalculateSpotMatrix(Matrix4& dest, Light* light, const Vector3& translation)
  115. {
  116. Node* lightNode = light->GetNode();
  117. Matrix3x4 posAdjust(translation, Quaternion::IDENTITY, 1.0f);
  118. Matrix3x4 spotView = Matrix3x4(lightNode->GetWorldPosition(), lightNode->GetWorldRotation(), 1.0f).Inverse();
  119. Matrix4 spotProj(Matrix4::ZERO);
  120. Matrix4 texAdjust(Matrix4::IDENTITY);
  121. // Make the projected light slightly smaller than the shadow map to prevent light spill
  122. float h = 1.005f / tanf(light->GetFov() * M_DEGTORAD * 0.5f);
  123. float w = h / light->GetAspectRatio();
  124. spotProj.m00_ = w;
  125. spotProj.m11_ = h;
  126. spotProj.m22_ = 1.0f / Max(light->GetRange(), M_EPSILON);
  127. spotProj.m32_ = 1.0f;
  128. #ifdef ATOMIC_OPENGL
  129. texAdjust.SetTranslation(Vector3(0.5f, 0.5f, 0.5f));
  130. texAdjust.SetScale(Vector3(0.5f, -0.5f, 0.5f));
  131. #else
  132. texAdjust.SetTranslation(Vector3(0.5f, 0.5f, 0.0f));
  133. texAdjust.SetScale(Vector3(0.5f, -0.5f, 1.0f));
  134. #endif
  135. dest = texAdjust * spotProj * spotView * posAdjust;
  136. }
  137. void Batch::CalculateSortKey()
  138. {
  139. unsigned shaderID = ((*((unsigned*)&vertexShader_) / sizeof(ShaderVariation)) + (*((unsigned*)&pixelShader_) / sizeof(ShaderVariation))) & 0x3fff;
  140. if (!isBase_)
  141. shaderID |= 0x8000;
  142. if (pass_ && pass_->GetAlphaMask())
  143. shaderID |= 0x4000;
  144. unsigned lightQueueID = (*((unsigned*)&lightQueue_) / sizeof(LightBatchQueue)) & 0xffff;
  145. unsigned materialID = (*((unsigned*)&material_) / sizeof(Material)) & 0xffff;
  146. unsigned geometryID = (*((unsigned*)&geometry_) / sizeof(Geometry)) & 0xffff;
  147. sortKey_ = (((unsigned long long)shaderID) << 48) | (((unsigned long long)lightQueueID) << 32) |
  148. (((unsigned long long)materialID) << 16) | geometryID;
  149. }
  150. void Batch::Prepare(View* view, bool setModelTransform, bool allowDepthWrite) const
  151. {
  152. if (!vertexShader_ || !pixelShader_)
  153. return;
  154. Graphics* graphics = view->GetGraphics();
  155. Renderer* renderer = view->GetRenderer();
  156. Node* cameraNode = camera_ ? camera_->GetNode() : 0;
  157. Light* light = lightQueue_ ? lightQueue_->light_ : 0;
  158. Texture2D* shadowMap = lightQueue_ ? lightQueue_->shadowMap_ : 0;
  159. // Set pass / material-specific renderstates
  160. if (pass_ && material_)
  161. {
  162. bool isShadowPass = pass_->GetType() == PASS_SHADOW;
  163. BlendMode blend = pass_->GetBlendMode();
  164. // Turn additive blending into subtract if the light is negative
  165. if (light && light->IsNegative())
  166. {
  167. if (blend == BLEND_ADD)
  168. blend = BLEND_SUBTRACT;
  169. else if (blend == BLEND_ADDALPHA)
  170. blend = BLEND_SUBTRACTALPHA;
  171. }
  172. graphics->SetBlendMode(blend);
  173. renderer->SetCullMode(isShadowPass ? material_->GetShadowCullMode() : material_->GetCullMode(), camera_);
  174. if (!isShadowPass)
  175. {
  176. const BiasParameters& depthBias = material_->GetDepthBias();
  177. graphics->SetDepthBias(depthBias.constantBias_, depthBias.slopeScaledBias_);
  178. }
  179. graphics->SetDepthTest(pass_->GetDepthTestMode());
  180. graphics->SetDepthWrite(pass_->GetDepthWrite() && allowDepthWrite);
  181. }
  182. // Set shaders first. The available shader parameters and their register/uniform positions depend on the currently set shaders
  183. graphics->SetShaders(vertexShader_, pixelShader_);
  184. // Set global (per-frame) shader parameters
  185. if (graphics->NeedParameterUpdate(SP_FRAME, (void*)0))
  186. view->SetGlobalShaderParameters();
  187. // Set camera shader parameters
  188. unsigned cameraHash = (unsigned)(size_t)camera_;
  189. if (graphics->NeedParameterUpdate(SP_CAMERA, reinterpret_cast<void*>(cameraHash)))
  190. view->SetCameraShaderParameters(camera_, true);
  191. // Set viewport shader parameters
  192. IntRect viewport = graphics->GetViewport();
  193. IntVector2 viewSize = IntVector2(viewport.Width(), viewport.Height());
  194. unsigned viewportHash = viewSize.x_ | (viewSize.y_ << 16);
  195. if (graphics->NeedParameterUpdate(SP_VIEWPORT, reinterpret_cast<void*>(viewportHash)))
  196. {
  197. // During renderpath commands the G-Buffer or viewport texture is assumed to always be viewport-sized
  198. view->SetGBufferShaderParameters(viewSize, IntRect(0, 0, viewSize.x_, viewSize.y_));
  199. }
  200. // Set model or skinning transforms
  201. if (setModelTransform && graphics->NeedParameterUpdate(SP_OBJECTTRANSFORM, worldTransform_))
  202. {
  203. if (geometryType_ == GEOM_SKINNED)
  204. {
  205. graphics->SetShaderParameter(VSP_SKINMATRICES, reinterpret_cast<const float*>(worldTransform_),
  206. 12 * numWorldTransforms_);
  207. }
  208. else
  209. graphics->SetShaderParameter(VSP_MODEL, *worldTransform_);
  210. // Set the orientation for billboards, either from the object itself or from the camera
  211. if (geometryType_ == GEOM_BILLBOARD)
  212. {
  213. if (numWorldTransforms_ > 1)
  214. graphics->SetShaderParameter(VSP_BILLBOARDROT, worldTransform_[1].RotationMatrix());
  215. else
  216. graphics->SetShaderParameter(VSP_BILLBOARDROT, cameraNode->GetWorldRotation().RotationMatrix());
  217. }
  218. }
  219. if (lightmapTilingOffset_)
  220. {
  221. graphics->SetShaderParameter(VSP_LMOFFSET, *lightmapTilingOffset_);
  222. }
  223. // Set zone-related shader parameters
  224. BlendMode blend = graphics->GetBlendMode();
  225. // If the pass is additive, override fog color to black so that shaders do not need a separate additive path
  226. bool overrideFogColorToBlack = blend == BLEND_ADD || blend == BLEND_ADDALPHA;
  227. unsigned zoneHash = (unsigned)(size_t)zone_;
  228. if (overrideFogColorToBlack)
  229. zoneHash += 0x80000000;
  230. if (zone_ && graphics->NeedParameterUpdate(SP_ZONE, reinterpret_cast<void*>(zoneHash)))
  231. {
  232. graphics->SetShaderParameter(VSP_AMBIENTSTARTCOLOR, zone_->GetAmbientStartColor());
  233. graphics->SetShaderParameter(VSP_AMBIENTENDCOLOR, zone_->GetAmbientEndColor().ToVector4() - zone_->GetAmbientStartColor().ToVector4());
  234. const BoundingBox& box = zone_->GetBoundingBox();
  235. Vector3 boxSize = box.Size();
  236. Matrix3x4 adjust(Matrix3x4::IDENTITY);
  237. adjust.SetScale(Vector3(1.0f / boxSize.x_, 1.0f / boxSize.y_, 1.0f / boxSize.z_));
  238. adjust.SetTranslation(Vector3(0.5f, 0.5f, 0.5f));
  239. Matrix3x4 zoneTransform = adjust * zone_->GetInverseWorldTransform();
  240. graphics->SetShaderParameter(VSP_ZONE, zoneTransform);
  241. graphics->SetShaderParameter(PSP_AMBIENTCOLOR, zone_->GetAmbientColor());
  242. graphics->SetShaderParameter(PSP_FOGCOLOR, overrideFogColorToBlack ? Color::BLACK : zone_->GetFogColor());
  243. float farClip = camera_->GetFarClip();
  244. float fogStart = Min(zone_->GetFogStart(), farClip);
  245. float fogEnd = Min(zone_->GetFogEnd(), farClip);
  246. if (fogStart >= fogEnd * (1.0f - M_LARGE_EPSILON))
  247. fogStart = fogEnd * (1.0f - M_LARGE_EPSILON);
  248. float fogRange = Max(fogEnd - fogStart, M_EPSILON);
  249. Vector4 fogParams(fogEnd / farClip, farClip / fogRange, 0.0f, 0.0f);
  250. Node* zoneNode = zone_->GetNode();
  251. if (zone_->GetHeightFog() && zoneNode)
  252. {
  253. Vector3 worldFogHeightVec = zoneNode->GetWorldTransform() * Vector3(0.0f, zone_->GetFogHeight(), 0.0f);
  254. fogParams.z_ = worldFogHeightVec.y_;
  255. fogParams.w_ = zone_->GetFogHeightScale() / Max(zoneNode->GetWorldScale().y_, M_EPSILON);
  256. }
  257. graphics->SetShaderParameter(PSP_FOGPARAMS, fogParams);
  258. }
  259. // Set light-related shader parameters
  260. if (lightQueue_)
  261. {
  262. if (graphics->NeedParameterUpdate(SP_VERTEXLIGHTS, lightQueue_) && graphics->HasShaderParameter(VSP_VERTEXLIGHTS))
  263. {
  264. Vector4 vertexLights[MAX_VERTEX_LIGHTS * 3];
  265. const PODVector<Light*>& lights = lightQueue_->vertexLights_;
  266. for (unsigned i = 0; i < lights.Size(); ++i)
  267. {
  268. Light* vertexLight = lights[i];
  269. Node* vertexLightNode = vertexLight->GetNode();
  270. LightType type = vertexLight->GetLightType();
  271. // Attenuation
  272. float invRange, cutoff, invCutoff;
  273. if (type == LIGHT_DIRECTIONAL)
  274. invRange = 0.0f;
  275. else
  276. invRange = 1.0f / Max(vertexLight->GetRange(), M_EPSILON);
  277. if (type == LIGHT_SPOT)
  278. {
  279. cutoff = Cos(vertexLight->GetFov() * 0.5f);
  280. invCutoff = 1.0f / (1.0f - cutoff);
  281. }
  282. else
  283. {
  284. cutoff = -1.0f;
  285. invCutoff = 1.0f;
  286. }
  287. // Color
  288. float fade = 1.0f;
  289. float fadeEnd = vertexLight->GetDrawDistance();
  290. float fadeStart = vertexLight->GetFadeDistance();
  291. // Do fade calculation for light if both fade & draw distance defined
  292. if (vertexLight->GetLightType() != LIGHT_DIRECTIONAL && fadeEnd > 0.0f && fadeStart > 0.0f && fadeStart < fadeEnd)
  293. fade = Min(1.0f - (vertexLight->GetDistance() - fadeStart) / (fadeEnd - fadeStart), 1.0f);
  294. Color color = vertexLight->GetEffectiveColor() * fade;
  295. vertexLights[i * 3] = Vector4(color.r_, color.g_, color.b_, invRange);
  296. // Direction
  297. vertexLights[i * 3 + 1] = Vector4(-(vertexLightNode->GetWorldDirection()), cutoff);
  298. // Position
  299. vertexLights[i * 3 + 2] = Vector4(vertexLightNode->GetWorldPosition(), invCutoff);
  300. }
  301. if (lights.Size())
  302. graphics->SetShaderParameter(VSP_VERTEXLIGHTS, vertexLights[0].Data(), lights.Size() * 3 * 4);
  303. }
  304. }
  305. if (light && graphics->NeedParameterUpdate(SP_LIGHT, light))
  306. {
  307. // Deferred light volume batches operate in a camera-centered space. Detect from material, zone & pass all being null
  308. bool isLightVolume = !material_ && !pass_ && !zone_;
  309. Matrix3x4 cameraEffectiveTransform = camera_->GetEffectiveWorldTransform();
  310. Vector3 cameraEffectivePos = cameraEffectiveTransform.Translation();
  311. Node* lightNode = light->GetNode();
  312. Matrix3 lightWorldRotation = lightNode->GetWorldRotation().RotationMatrix();
  313. graphics->SetShaderParameter(VSP_LIGHTDIR, lightWorldRotation * Vector3::BACK);
  314. float atten = 1.0f / Max(light->GetRange(), M_EPSILON);
  315. graphics->SetShaderParameter(VSP_LIGHTPOS, Vector4(lightNode->GetWorldPosition(), atten));
  316. if (graphics->HasShaderParameter(VSP_LIGHTMATRICES))
  317. {
  318. switch (light->GetLightType())
  319. {
  320. case LIGHT_DIRECTIONAL:
  321. {
  322. Matrix4 shadowMatrices[MAX_CASCADE_SPLITS];
  323. unsigned numSplits = Min(MAX_CASCADE_SPLITS, (int)lightQueue_->shadowSplits_.Size());
  324. for (unsigned i = 0; i < numSplits; ++i)
  325. CalculateShadowMatrix(shadowMatrices[i], lightQueue_, i, renderer, Vector3::ZERO);
  326. graphics->SetShaderParameter(VSP_LIGHTMATRICES, shadowMatrices[0].Data(), 16 * numSplits);
  327. }
  328. break;
  329. case LIGHT_SPOT:
  330. {
  331. Matrix4 shadowMatrices[2];
  332. CalculateSpotMatrix(shadowMatrices[0], light, Vector3::ZERO);
  333. bool isShadowed = shadowMap && graphics->HasTextureUnit(TU_SHADOWMAP);
  334. if (isShadowed)
  335. CalculateShadowMatrix(shadowMatrices[1], lightQueue_, 0, renderer, Vector3::ZERO);
  336. graphics->SetShaderParameter(VSP_LIGHTMATRICES, shadowMatrices[0].Data(), isShadowed ? 32 : 16);
  337. }
  338. break;
  339. case LIGHT_POINT:
  340. {
  341. Matrix4 lightVecRot(lightNode->GetWorldRotation().RotationMatrix());
  342. // HLSL compiler will pack the parameters as if the matrix is only 3x4, so must be careful to not overwrite
  343. // the next parameter
  344. #ifdef ATOMIC_OPENGL
  345. graphics->SetShaderParameter(VSP_LIGHTMATRICES, lightVecRot.Data(), 16);
  346. #else
  347. graphics->SetShaderParameter(VSP_LIGHTMATRICES, lightVecRot.Data(), 12);
  348. #endif
  349. }
  350. break;
  351. }
  352. }
  353. float fade = 1.0f;
  354. float fadeEnd = light->GetDrawDistance();
  355. float fadeStart = light->GetFadeDistance();
  356. // Do fade calculation for light if both fade & draw distance defined
  357. if (light->GetLightType() != LIGHT_DIRECTIONAL && fadeEnd > 0.0f && fadeStart > 0.0f && fadeStart < fadeEnd)
  358. fade = Min(1.0f - (light->GetDistance() - fadeStart) / (fadeEnd - fadeStart), 1.0f);
  359. // Negative lights will use subtract blending, so write absolute RGB values to the shader parameter
  360. graphics->SetShaderParameter(PSP_LIGHTCOLOR, Color(light->GetEffectiveColor().Abs(),
  361. light->GetEffectiveSpecularIntensity()) * fade);
  362. graphics->SetShaderParameter(PSP_LIGHTDIR, lightWorldRotation * Vector3::BACK);
  363. graphics->SetShaderParameter(PSP_LIGHTPOS, Vector4((isLightVolume ? (lightNode->GetWorldPosition() -
  364. cameraEffectivePos) : lightNode->GetWorldPosition()), atten));
  365. if (graphics->HasShaderParameter(PSP_LIGHTMATRICES))
  366. {
  367. switch (light->GetLightType())
  368. {
  369. case LIGHT_DIRECTIONAL:
  370. {
  371. Matrix4 shadowMatrices[MAX_CASCADE_SPLITS];
  372. unsigned numSplits = Min(MAX_CASCADE_SPLITS, (int)lightQueue_->shadowSplits_.Size());
  373. for (unsigned i = 0; i < numSplits; ++i)
  374. {
  375. CalculateShadowMatrix(shadowMatrices[i], lightQueue_, i, renderer, isLightVolume ? cameraEffectivePos :
  376. Vector3::ZERO);
  377. }
  378. graphics->SetShaderParameter(PSP_LIGHTMATRICES, shadowMatrices[0].Data(), 16 * numSplits);
  379. }
  380. break;
  381. case LIGHT_SPOT:
  382. {
  383. Matrix4 shadowMatrices[2];
  384. CalculateSpotMatrix(shadowMatrices[0], light, cameraEffectivePos);
  385. bool isShadowed = lightQueue_->shadowMap_ != 0;
  386. if (isShadowed)
  387. {
  388. CalculateShadowMatrix(shadowMatrices[1], lightQueue_, 0, renderer, isLightVolume ? cameraEffectivePos :
  389. Vector3::ZERO);
  390. }
  391. graphics->SetShaderParameter(PSP_LIGHTMATRICES, shadowMatrices[0].Data(), isShadowed ? 32 : 16);
  392. }
  393. break;
  394. case LIGHT_POINT:
  395. {
  396. Matrix4 lightVecRot(lightNode->GetWorldRotation().RotationMatrix());
  397. // HLSL compiler will pack the parameters as if the matrix is only 3x4, so must be careful to not overwrite
  398. // the next parameter
  399. #ifdef ATOMIC_OPENGL
  400. graphics->SetShaderParameter(PSP_LIGHTMATRICES, lightVecRot.Data(), 16);
  401. #else
  402. graphics->SetShaderParameter(PSP_LIGHTMATRICES, lightVecRot.Data(), 12);
  403. #endif
  404. }
  405. break;
  406. }
  407. }
  408. // Set shadow mapping shader parameters
  409. if (shadowMap)
  410. {
  411. {
  412. // Calculate point light shadow sampling offsets (unrolled cube map)
  413. unsigned faceWidth = shadowMap->GetWidth() / 2;
  414. unsigned faceHeight = shadowMap->GetHeight() / 3;
  415. float width = (float)shadowMap->GetWidth();
  416. float height = (float)shadowMap->GetHeight();
  417. #ifdef ATOMIC_OPENGL
  418. float mulX = (float)(faceWidth - 3) / width;
  419. float mulY = (float)(faceHeight - 3) / height;
  420. float addX = 1.5f / width;
  421. float addY = 1.5f / height;
  422. #else
  423. float mulX = (float)(faceWidth - 4) / width;
  424. float mulY = (float)(faceHeight - 4) / height;
  425. float addX = 2.5f / width;
  426. float addY = 2.5f / height;
  427. #endif
  428. // If using 4 shadow samples, offset the position diagonally by half pixel
  429. if (renderer->GetShadowQuality() & SHADOWQUALITY_HIGH_16BIT)
  430. {
  431. addX -= 0.5f / width;
  432. addY -= 0.5f / height;
  433. }
  434. graphics->SetShaderParameter(PSP_SHADOWCUBEADJUST, Vector4(mulX, mulY, addX, addY));
  435. }
  436. {
  437. // Calculate shadow camera depth parameters for point light shadows and shadow fade parameters for
  438. // directional light shadows, stored in the same uniform
  439. Camera* shadowCamera = lightQueue_->shadowSplits_[0].shadowCamera_;
  440. float nearClip = shadowCamera->GetNearClip();
  441. float farClip = shadowCamera->GetFarClip();
  442. float q = farClip / (farClip - nearClip);
  443. float r = -q * nearClip;
  444. const CascadeParameters& parameters = light->GetShadowCascade();
  445. float viewFarClip = camera_->GetFarClip();
  446. float shadowRange = parameters.GetShadowRange();
  447. float fadeStart = parameters.fadeStart_ * shadowRange / viewFarClip;
  448. float fadeEnd = shadowRange / viewFarClip;
  449. float fadeRange = fadeEnd - fadeStart;
  450. graphics->SetShaderParameter(PSP_SHADOWDEPTHFADE, Vector4(q, r, fadeStart, 1.0f / fadeRange));
  451. }
  452. {
  453. float intensity = light->GetShadowIntensity();
  454. float fadeStart = light->GetShadowFadeDistance();
  455. float fadeEnd = light->GetShadowDistance();
  456. if (fadeStart > 0.0f && fadeEnd > 0.0f && fadeEnd > fadeStart)
  457. intensity = Lerp(intensity, 1.0f, Clamp((light->GetDistance() - fadeStart) / (fadeEnd - fadeStart), 0.0f, 1.0f));
  458. float pcfValues = (1.0f - intensity);
  459. float samples = renderer->GetShadowQuality() >= SHADOWQUALITY_HIGH_16BIT ? 4.0f : 1.0f;
  460. graphics->SetShaderParameter(PSP_SHADOWINTENSITY, Vector4(pcfValues / samples, intensity, 0.0f, 0.0f));
  461. }
  462. float sizeX = 1.0f / (float)shadowMap->GetWidth();
  463. float sizeY = 1.0f / (float)shadowMap->GetHeight();
  464. graphics->SetShaderParameter(PSP_SHADOWMAPINVSIZE, Vector4(sizeX, sizeY, 0.0f, 0.0f));
  465. Vector4 lightSplits(M_LARGE_VALUE, M_LARGE_VALUE, M_LARGE_VALUE, M_LARGE_VALUE);
  466. if (lightQueue_->shadowSplits_.Size() > 1)
  467. lightSplits.x_ = lightQueue_->shadowSplits_[0].farSplit_ / camera_->GetFarClip();
  468. if (lightQueue_->shadowSplits_.Size() > 2)
  469. lightSplits.y_ = lightQueue_->shadowSplits_[1].farSplit_ / camera_->GetFarClip();
  470. if (lightQueue_->shadowSplits_.Size() > 3)
  471. lightSplits.z_ = lightQueue_->shadowSplits_[2].farSplit_ / camera_->GetFarClip();
  472. graphics->SetShaderParameter(PSP_SHADOWSPLITS, lightSplits);
  473. }
  474. }
  475. // Set material-specific shader parameters and textures
  476. if (material_)
  477. {
  478. if (graphics->NeedParameterUpdate(SP_MATERIAL, (const void*)material_->GetShaderParameterHash()))
  479. {
  480. const HashMap<StringHash, MaterialShaderParameter>& parameters = material_->GetShaderParameters();
  481. for (HashMap<StringHash, MaterialShaderParameter>::ConstIterator i = parameters.Begin(); i != parameters.End(); ++i)
  482. graphics->SetShaderParameter(i->first_, i->second_.value_);
  483. }
  484. const SharedPtr<Texture>* textures = material_->GetTextures();
  485. unsigned numTextures = material_->GetNumUsedTextureUnits();
  486. for (unsigned i = 0; i < numTextures; ++i)
  487. {
  488. TextureUnit unit = (TextureUnit)i;
  489. if (textures[i] && graphics->HasTextureUnit(unit))
  490. graphics->SetTexture(i, textures[i]);
  491. }
  492. }
  493. // Set light-related textures
  494. if (light)
  495. {
  496. if (shadowMap && graphics->HasTextureUnit(TU_SHADOWMAP))
  497. graphics->SetTexture(TU_SHADOWMAP, shadowMap);
  498. if (graphics->HasTextureUnit(TU_LIGHTRAMP))
  499. {
  500. Texture* rampTexture = light->GetRampTexture();
  501. if (!rampTexture)
  502. rampTexture = renderer->GetDefaultLightRamp();
  503. graphics->SetTexture(TU_LIGHTRAMP, rampTexture);
  504. }
  505. if (graphics->HasTextureUnit(TU_LIGHTSHAPE))
  506. {
  507. Texture* shapeTexture = light->GetShapeTexture();
  508. if (!shapeTexture && light->GetLightType() == LIGHT_SPOT)
  509. shapeTexture = renderer->GetDefaultLightSpot();
  510. graphics->SetTexture(TU_LIGHTSHAPE, shapeTexture);
  511. }
  512. }
  513. // Set zone texture if necessary
  514. if (zone_ && graphics->HasTextureUnit(TU_ZONE))
  515. graphics->SetTexture(TU_ZONE, zone_->GetZoneTexture());
  516. }
  517. void Batch::Draw(View* view, bool allowDepthWrite) const
  518. {
  519. if (!geometry_->IsEmpty())
  520. {
  521. Prepare(view, true, allowDepthWrite);
  522. geometry_->Draw(view->GetGraphics());
  523. }
  524. }
  525. void BatchGroup::SetTransforms(void* lockedData, unsigned& freeIndex)
  526. {
  527. // Do not use up buffer space if not going to draw as instanced
  528. if (geometryType_ != GEOM_INSTANCED)
  529. return;
  530. startIndex_ = freeIndex;
  531. Matrix3x4* dest = (Matrix3x4*)lockedData;
  532. dest += freeIndex;
  533. for (unsigned i = 0; i < instances_.Size(); ++i)
  534. *dest++ = *instances_[i].worldTransform_;
  535. freeIndex += instances_.Size();
  536. }
  537. void BatchGroup::Draw(View* view, bool allowDepthWrite) const
  538. {
  539. Graphics* graphics = view->GetGraphics();
  540. Renderer* renderer = view->GetRenderer();
  541. if (instances_.Size() && !geometry_->IsEmpty())
  542. {
  543. // Draw as individual objects if instancing not supported
  544. VertexBuffer* instanceBuffer = renderer->GetInstancingBuffer();
  545. if (!instanceBuffer || geometryType_ != GEOM_INSTANCED)
  546. {
  547. Batch::Prepare(view, false, allowDepthWrite);
  548. graphics->SetIndexBuffer(geometry_->GetIndexBuffer());
  549. graphics->SetVertexBuffers(geometry_->GetVertexBuffers(), geometry_->GetVertexElementMasks());
  550. for (unsigned i = 0; i < instances_.Size(); ++i)
  551. {
  552. if (graphics->NeedParameterUpdate(SP_OBJECTTRANSFORM, instances_[i].worldTransform_))
  553. graphics->SetShaderParameter(VSP_MODEL, *instances_[i].worldTransform_);
  554. graphics->Draw(geometry_->GetPrimitiveType(), geometry_->GetIndexStart(), geometry_->GetIndexCount(),
  555. geometry_->GetVertexStart(), geometry_->GetVertexCount());
  556. }
  557. }
  558. else
  559. {
  560. Batch::Prepare(view, false, allowDepthWrite);
  561. // Get the geometry vertex buffers, then add the instancing stream buffer
  562. // Hack: use a const_cast to avoid dynamic allocation of new temp vectors
  563. Vector<SharedPtr<VertexBuffer> >& vertexBuffers = const_cast<Vector<SharedPtr<VertexBuffer> >&>
  564. (geometry_->GetVertexBuffers());
  565. PODVector<unsigned>& elementMasks = const_cast<PODVector<unsigned>&>(geometry_->GetVertexElementMasks());
  566. vertexBuffers.Push(SharedPtr<VertexBuffer>(instanceBuffer));
  567. elementMasks.Push(instanceBuffer->GetElementMask());
  568. // No stream offset support, instancing buffer not pre-filled with transforms: have to fill now
  569. if (startIndex_ == M_MAX_UNSIGNED)
  570. {
  571. unsigned startIndex = 0;
  572. while (startIndex < instances_.Size())
  573. {
  574. unsigned instances = instances_.Size() - startIndex;
  575. if (instances > instanceBuffer->GetVertexCount())
  576. instances = instanceBuffer->GetVertexCount();
  577. // Copy the transforms
  578. Matrix3x4* dest = (Matrix3x4*)instanceBuffer->Lock(0, instances, true);
  579. if (dest)
  580. {
  581. for (unsigned i = 0; i < instances; ++i)
  582. dest[i] = *instances_[i + startIndex].worldTransform_;
  583. instanceBuffer->Unlock();
  584. graphics->SetIndexBuffer(geometry_->GetIndexBuffer());
  585. graphics->SetVertexBuffers(vertexBuffers, elementMasks);
  586. graphics->DrawInstanced(geometry_->GetPrimitiveType(), geometry_->GetIndexStart(),
  587. geometry_->GetIndexCount(), geometry_->GetVertexStart(), geometry_->GetVertexCount(), instances);
  588. }
  589. startIndex += instances;
  590. }
  591. }
  592. // Stream offset supported and instancing buffer has been already filled, so just draw
  593. else
  594. {
  595. graphics->SetIndexBuffer(geometry_->GetIndexBuffer());
  596. graphics->SetVertexBuffers(vertexBuffers, elementMasks, startIndex_);
  597. graphics->DrawInstanced(geometry_->GetPrimitiveType(), geometry_->GetIndexStart(), geometry_->GetIndexCount(),
  598. geometry_->GetVertexStart(), geometry_->GetVertexCount(), instances_.Size());
  599. }
  600. // Remove the instancing buffer & element mask now
  601. vertexBuffers.Pop();
  602. elementMasks.Pop();
  603. }
  604. }
  605. }
  606. unsigned BatchGroupKey::ToHash() const
  607. {
  608. return ((unsigned)(size_t)zone_) / sizeof(Zone) +
  609. ((unsigned)(size_t)lightQueue_) / sizeof(LightBatchQueue) +
  610. ((unsigned)(size_t)pass_) / sizeof(Pass) +
  611. ((unsigned)(size_t)material_) / sizeof(Material) +
  612. ((unsigned)(size_t)geometry_) / sizeof(Geometry);
  613. }
  614. void BatchQueue::Clear(int maxSortedInstances)
  615. {
  616. batches_.Clear();
  617. sortedBatches_.Clear();
  618. batchGroups_.Clear();
  619. maxSortedInstances_ = maxSortedInstances;
  620. }
  621. void BatchQueue::SortBackToFront()
  622. {
  623. sortedBatches_.Resize(batches_.Size());
  624. for (unsigned i = 0; i < batches_.Size(); ++i)
  625. sortedBatches_[i] = &batches_[i];
  626. Sort(sortedBatches_.Begin(), sortedBatches_.End(), CompareBatchesBackToFront);
  627. // Do not actually sort batch groups, just list them
  628. sortedBatchGroups_.Resize(batchGroups_.Size());
  629. unsigned index = 0;
  630. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  631. sortedBatchGroups_[index++] = &i->second_;
  632. }
  633. void BatchQueue::SortFrontToBack()
  634. {
  635. sortedBatches_.Clear();
  636. for (unsigned i = 0; i < batches_.Size(); ++i)
  637. sortedBatches_.Push(&batches_[i]);
  638. SortFrontToBack2Pass(sortedBatches_);
  639. // Sort each group front to back
  640. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  641. {
  642. if (i->second_.instances_.Size() <= maxSortedInstances_)
  643. {
  644. Sort(i->second_.instances_.Begin(), i->second_.instances_.End(), CompareInstancesFrontToBack);
  645. if (i->second_.instances_.Size())
  646. i->second_.distance_ = i->second_.instances_[0].distance_;
  647. }
  648. else
  649. {
  650. float minDistance = M_INFINITY;
  651. for (PODVector<InstanceData>::ConstIterator j = i->second_.instances_.Begin(); j != i->second_.instances_.End(); ++j)
  652. minDistance = Min(minDistance, j->distance_);
  653. i->second_.distance_ = minDistance;
  654. }
  655. }
  656. sortedBatchGroups_.Resize(batchGroups_.Size());
  657. unsigned index = 0;
  658. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  659. sortedBatchGroups_[index++] = &i->second_;
  660. SortFrontToBack2Pass(reinterpret_cast<PODVector<Batch*>& >(sortedBatchGroups_));
  661. }
  662. void BatchQueue::SortFrontToBack2Pass(PODVector<Batch*>& batches)
  663. {
  664. // Mobile devices likely use a tiled deferred approach, with which front-to-back sorting is irrelevant. The 2-pass
  665. // method is also time consuming, so just sort with state having priority
  666. #ifdef GL_ES_VERSION_2_0
  667. Sort(batches.Begin(), batches.End(), CompareBatchesState);
  668. #else
  669. // For desktop, first sort by distance and remap shader/material/geometry IDs in the sort key
  670. Sort(batches.Begin(), batches.End(), CompareBatchesFrontToBack);
  671. unsigned freeShaderID = 0;
  672. unsigned short freeMaterialID = 0;
  673. unsigned short freeGeometryID = 0;
  674. for (PODVector<Batch*>::Iterator i = batches.Begin(); i != batches.End(); ++i)
  675. {
  676. Batch* batch = *i;
  677. unsigned shaderID = (batch->sortKey_ >> 32);
  678. HashMap<unsigned, unsigned>::ConstIterator j = shaderRemapping_.Find(shaderID);
  679. if (j != shaderRemapping_.End())
  680. shaderID = j->second_;
  681. else
  682. {
  683. shaderID = shaderRemapping_[shaderID] = freeShaderID | (shaderID & 0xc0000000);
  684. ++freeShaderID;
  685. }
  686. unsigned short materialID = (unsigned short)(batch->sortKey_ & 0xffff0000);
  687. HashMap<unsigned short, unsigned short>::ConstIterator k = materialRemapping_.Find(materialID);
  688. if (k != materialRemapping_.End())
  689. materialID = k->second_;
  690. else
  691. {
  692. materialID = materialRemapping_[materialID] = freeMaterialID;
  693. ++freeMaterialID;
  694. }
  695. unsigned short geometryID = (unsigned short)(batch->sortKey_ & 0xffff);
  696. HashMap<unsigned short, unsigned short>::ConstIterator l = geometryRemapping_.Find(geometryID);
  697. if (l != geometryRemapping_.End())
  698. geometryID = l->second_;
  699. else
  700. {
  701. geometryID = geometryRemapping_[geometryID] = freeGeometryID;
  702. ++freeGeometryID;
  703. }
  704. batch->sortKey_ = (((unsigned long long)shaderID) << 32) || (((unsigned long long)materialID) << 16) | geometryID;
  705. }
  706. shaderRemapping_.Clear();
  707. materialRemapping_.Clear();
  708. geometryRemapping_.Clear();
  709. // Finally sort again with the rewritten ID's
  710. Sort(batches.Begin(), batches.End(), CompareBatchesState);
  711. #endif
  712. }
  713. void BatchQueue::SetTransforms(void* lockedData, unsigned& freeIndex)
  714. {
  715. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  716. i->second_.SetTransforms(lockedData, freeIndex);
  717. }
  718. void BatchQueue::Draw(View* view, bool markToStencil, bool usingLightOptimization, bool allowDepthWrite) const
  719. {
  720. Graphics* graphics = view->GetGraphics();
  721. Renderer* renderer = view->GetRenderer();
  722. // If View has set up its own light optimizations, do not disturb the stencil/scissor test settings
  723. if (!usingLightOptimization)
  724. {
  725. graphics->SetScissorTest(false);
  726. // During G-buffer rendering, mark opaque pixels' lightmask to stencil buffer if requested
  727. if (!markToStencil)
  728. graphics->SetStencilTest(false);
  729. }
  730. // Instanced
  731. for (PODVector<BatchGroup*>::ConstIterator i = sortedBatchGroups_.Begin(); i != sortedBatchGroups_.End(); ++i)
  732. {
  733. BatchGroup* group = *i;
  734. if (markToStencil)
  735. graphics->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, group->lightMask_);
  736. group->Draw(view, allowDepthWrite);
  737. }
  738. // Non-instanced
  739. for (PODVector<Batch*>::ConstIterator i = sortedBatches_.Begin(); i != sortedBatches_.End(); ++i)
  740. {
  741. Batch* batch = *i;
  742. if (markToStencil)
  743. graphics->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, batch->lightMask_);
  744. if (!usingLightOptimization)
  745. {
  746. // If drawing an alpha batch, we can optimize fillrate by scissor test
  747. if (!batch->isBase_ && batch->lightQueue_)
  748. renderer->OptimizeLightByScissor(batch->lightQueue_->light_, batch->camera_);
  749. else
  750. graphics->SetScissorTest(false);
  751. }
  752. batch->Draw(view, allowDepthWrite);
  753. }
  754. }
  755. unsigned BatchQueue::GetNumInstances() const
  756. {
  757. unsigned total = 0;
  758. for (HashMap<BatchGroupKey, BatchGroup>::ConstIterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  759. {
  760. if (i->second_.geometryType_ == GEOM_INSTANCED)
  761. total += i->second_.instances_.Size();
  762. }
  763. return total;
  764. }
  765. }