| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311 |
- // This code is in the public domain -- [email protected]
- #include "Matrix.inl"
- #include "Vector.inl"
- #include <float.h>
- #if !NV_CC_MSVC && !NV_OS_ORBIS
- #include <alloca.h>
- #endif
- using namespace nv;
- // Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a rowwise
- // permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above;
- // indx[1..n] is an output vector that records the row permutation effected by the partial
- // pivoting; d is output as -1 depending on whether the number of row interchanges was even
- // or odd, respectively. This routine is used in combination with lubksb to solve linear equations
- // or invert a matrix.
- static bool ludcmp(float **a, int n, int *indx, float *d)
- {
- const float TINY = 1.0e-20f;
- float * vv = (float*)alloca(sizeof(float) * n); // vv stores the implicit scaling of each row.
- *d = 1.0; // No row interchanges yet.
- for (int i = 0; i < n; i++) { // Loop over rows to get the implicit scaling information.
-
- float big = 0.0;
- for (int j = 0; j < n; j++) {
- big = max(big, fabsf(a[i][j]));
- }
- if (big == 0) {
- return false; // Singular matrix
- }
-
- // No nonzero largest element.
- vv[i] = 1.0f / big; // Save the scaling.
- }
- for (int j = 0; j < n; j++) { // This is the loop over columns of Crout's method.
- for (int i = 0; i < j; i++) { // This is equation (2.3.12) except for i = j.
- float sum = a[i][j];
- for (int k = 0; k < i; k++) sum -= a[i][k]*a[k][j];
- a[i][j] = sum;
- }
- int imax = -1;
- float big = 0.0; // Initialize for the search for largest pivot element.
- for (int i = j; i < n; i++) { // This is i = j of equation (2.3.12) and i = j+ 1 : : : N
- float sum = a[i][j]; // of equation (2.3.13).
- for (int k = 0; k < j; k++) {
- sum -= a[i][k]*a[k][j];
- }
- a[i][j]=sum;
- float dum = vv[i]*fabs(sum);
- if (dum >= big) {
- // Is the figure of merit for the pivot better than the best so far?
- big = dum;
- imax = i;
- }
- }
- nvDebugCheck(imax != -1);
- if (j != imax) { // Do we need to interchange rows?
- for (int k = 0; k < n; k++) { // Yes, do so...
- swap(a[imax][k], a[j][k]);
- }
- *d = -(*d); // ...and change the parity of d.
- vv[imax]=vv[j]; // Also interchange the scale factor.
- }
- indx[j]=imax;
- if (a[j][j] == 0.0) a[j][j] = TINY;
-
- // If the pivot element is zero the matrix is singular (at least to the precision of the
- // algorithm). For some applications on singular matrices, it is desirable to substitute
- // TINY for zero.
- if (j != n-1) { // Now, finally, divide by the pivot element.
- float dum = 1.0f / a[j][j];
- for (int i = j+1; i < n; i++) a[i][j] *= dum;
- }
- } // Go back for the next column in the reduction.
- return true;
- }
- // Solves the set of n linear equations Ax = b. Here a[1..n][1..n] is input, not as the matrix
- // A but rather as its LU decomposition, determined by the routine ludcmp. indx[1..n] is input
- // as the permutation vector returned by ludcmp. b[1..n] is input as the right-hand side vector
- // B, and returns with the solution vector X. a, n, and indx are not modified by this routine
- // and can be left in place for successive calls with different right-hand sides b. This routine takes
- // into account the possibility that b will begin with many zero elements, so it is efficient for use
- // in matrix inversion.
- static void lubksb(float **a, int n, int *indx, float b[])
- {
- int ii = 0;
- for (int i=0; i<n; i++) { // When ii is set to a positive value, it will become
- int ip = indx[i]; // the index of the first nonvanishing element of b. We now
- float sum = b[ip]; // do the forward substitution, equation (2.3.6). The
- b[ip] = b[i]; // only new wrinkle is to unscramble the permutation as we go.
- if (ii != 0) {
- for (int j = ii-1; j < i; j++) sum -= a[i][j]*b[j];
- }
- else if (sum != 0.0f) {
- ii = i+1; // A nonzero element was encountered, so from now on we
- }
- b[i] = sum; // will have to do the sums in the loop above.
- }
- for (int i=n-1; i>=0; i--) { // Now we do the backsubstitution, equation (2.3.7).
- float sum = b[i];
- for (int j = i+1; j < n; j++) {
- sum -= a[i][j]*b[j];
- }
- b[i] = sum/a[i][i]; // Store a component of the solution vector X.
- } // All done!
- }
- bool nv::solveLU(const Matrix & A, const Vector4 & b, Vector4 * x)
- {
- nvDebugCheck(x != NULL);
- float m[4][4];
- float *a[4] = {m[0], m[1], m[2], m[3]};
- int idx[4];
- float d;
- for (int y = 0; y < 4; y++) {
- for (int x = 0; x < 4; x++) {
- a[x][y] = A(x, y);
- }
- }
- // Create LU decomposition.
- if (!ludcmp(a, 4, idx, &d)) {
- // Singular matrix.
- return false;
- }
- // Init solution.
- *x = b;
- // Do back substitution.
- lubksb(a, 4, idx, x->component);
- return true;
- }
- bool nv::solveLU(const Matrix3 & A, const Vector3 & b, Vector3 * x)
- {
- nvDebugCheck(x != NULL);
- float m[3][3];
- float *a[3] = {m[0], m[1], m[2]};
- int idx[3];
- float d;
- for (int y = 0; y < 3; y++) {
- for (int x = 0; x < 3; x++) {
- a[x][y] = A(x, y);
- }
- }
- // Create LU decomposition.
- if (!ludcmp(a, 3, idx, &d)) {
- // Singular matrix.
- return false;
- }
- // Init solution.
- *x = b;
- // Do back substitution.
- lubksb(a, 3, idx, x->component);
- return true;
- }
- bool nv::solveCramer(const Matrix & A, const Vector4 & b, Vector4 * x)
- {
- nvDebugCheck(x != NULL);
- *x = transform(inverse(A), b);
-
- return true; // @@ Return false if determinant(A) == 0 !
- }
- bool nv::solveCramer(const Matrix3 & A, const Vector3 & b, Vector3 * x)
- {
- nvDebugCheck(x != NULL);
- const float det = A.determinant();
- if (equal(det, 0.0f)) { // @@ Use input epsilon.
- return false;
- }
- Matrix3 Ai = inverse(A);
- *x = transform(Ai, b);
-
- return true;
- }
- #if 0
- // Copyright (C) 1999-2004 Michael Garland.
- //
- // Permission is hereby granted, free of charge, to any person obtaining a
- // copy of this software and associated documentation files (the
- // "Software"), to deal in the Software without restriction, including
- // without limitation the rights to use, copy, modify, merge, publish,
- // distribute, and/or sell copies of the Software, and to permit persons
- // to whom the Software is furnished to do so, provided that the above
- // copyright notice(s) and this permission notice appear in all copies of
- // the Software and that both the above copyright notice(s) and this
- // permission notice appear in supporting documentation.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
- // OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
- // HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
- // INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
- // FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
- // NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
- // WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- //
- // Except as contained in this notice, the name of a copyright holder
- // shall not be used in advertising or otherwise to promote the sale, use
- // or other dealings in this Software without prior written authorization
- // of the copyright holder.
- // Matrix inversion code for 4x4 matrices using Gaussian elimination
- // with partial pivoting. This is a specialized version of a
- // procedure originally due to Paul Heckbert <[email protected]>.
- //
- // Returns determinant of A, and B=inverse(A)
- // If matrix A is singular, returns 0 and leaves trash in B.
- //
- #define SWAP(a, b, t) {t = a; a = b; b = t;}
- double invert(Mat4& B, const Mat4& m)
- {
- Mat4 A = m;
- int i, j, k;
- double max, t, det, pivot;
- /*---------- forward elimination ----------*/
- for (i=0; i<4; i++) /* put identity matrix in B */
- for (j=0; j<4; j++)
- B(i, j) = (double)(i==j);
- det = 1.0;
- for (i=0; i<4; i++) { /* eliminate in column i, below diag */
- max = -1.;
- for (k=i; k<4; k++) /* find pivot for column i */
- if (fabs(A(k, i)) > max) {
- max = fabs(A(k, i));
- j = k;
- }
- if (max<=0.) return 0.; /* if no nonzero pivot, PUNT */
- if (j!=i) { /* swap rows i and j */
- for (k=i; k<4; k++)
- SWAP(A(i, k), A(j, k), t);
- for (k=0; k<4; k++)
- SWAP(B(i, k), B(j, k), t);
- det = -det;
- }
- pivot = A(i, i);
- det *= pivot;
- for (k=i+1; k<4; k++) /* only do elems to right of pivot */
- A(i, k) /= pivot;
- for (k=0; k<4; k++)
- B(i, k) /= pivot;
- /* we know that A(i, i) will be set to 1, so don't bother to do it */
- for (j=i+1; j<4; j++) { /* eliminate in rows below i */
- t = A(j, i); /* we're gonna zero this guy */
- for (k=i+1; k<4; k++) /* subtract scaled row i from row j */
- A(j, k) -= A(i, k)*t; /* (ignore k<=i, we know they're 0) */
- for (k=0; k<4; k++)
- B(j, k) -= B(i, k)*t;
- }
- }
- /*---------- backward elimination ----------*/
- for (i=4-1; i>0; i--) { /* eliminate in column i, above diag */
- for (j=0; j<i; j++) { /* eliminate in rows above i */
- t = A(j, i); /* we're gonna zero this guy */
- for (k=0; k<4; k++) /* subtract scaled row i from row j */
- B(j, k) -= B(i, k)*t;
- }
- }
- return det;
- }
- #endif // 0
|