ParticleEmitter2D.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434
  1. //
  2. // Copyright (c) 2008-2016 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Core/Context.h"
  24. #include "../Graphics/Camera.h"
  25. #include "../Graphics/Material.h"
  26. #include "../Resource/ResourceCache.h"
  27. #include "../Scene/Scene.h"
  28. #include "../Scene/SceneEvents.h"
  29. #include "../Urho2D/ParticleEffect2D.h"
  30. #include "../Urho2D/ParticleEmitter2D.h"
  31. #include "../Urho2D/Renderer2D.h"
  32. #include "../Urho2D/Sprite2D.h"
  33. #include "../DebugNew.h"
  34. namespace Urho3D
  35. {
  36. extern const char* URHO2D_CATEGORY;
  37. extern const char* blendModeNames[];
  38. ParticleEmitter2D::ParticleEmitter2D(Context* context) :
  39. Drawable2D(context),
  40. blendMode_(BLEND_ADDALPHA),
  41. numParticles_(0),
  42. emissionTime_(0.0f),
  43. emitParticleTime_(0.0f),
  44. boundingBoxMinPoint_(Vector3::ZERO),
  45. boundingBoxMaxPoint_(Vector3::ZERO)
  46. {
  47. sourceBatches_.Resize(1);
  48. sourceBatches_[0].owner_ = this;
  49. }
  50. ParticleEmitter2D::~ParticleEmitter2D()
  51. {
  52. }
  53. void ParticleEmitter2D::RegisterObject(Context* context)
  54. {
  55. context->RegisterFactory<ParticleEmitter2D>(URHO2D_CATEGORY);
  56. URHO3D_ACCESSOR_ATTRIBUTE("Is Enabled", IsEnabled, SetEnabled, bool, true, AM_DEFAULT);
  57. URHO3D_COPY_BASE_ATTRIBUTES(Drawable2D);
  58. URHO3D_MIXED_ACCESSOR_ATTRIBUTE("Particle Effect", GetParticleEffectAttr, SetParticleEffectAttr, ResourceRef,
  59. ResourceRef(ParticleEffect2D::GetTypeStatic()), AM_DEFAULT);
  60. URHO3D_MIXED_ACCESSOR_ATTRIBUTE("Sprite ", GetSpriteAttr, SetSpriteAttr, ResourceRef, ResourceRef(Sprite2D::GetTypeStatic()),
  61. AM_DEFAULT);
  62. URHO3D_ENUM_ACCESSOR_ATTRIBUTE("Blend Mode", GetBlendMode, SetBlendMode, BlendMode, blendModeNames, BLEND_ALPHA, AM_DEFAULT);
  63. }
  64. void ParticleEmitter2D::OnSetEnabled()
  65. {
  66. Drawable2D::OnSetEnabled();
  67. Scene* scene = GetScene();
  68. if (scene)
  69. {
  70. if (IsEnabledEffective())
  71. SubscribeToEvent(scene, E_SCENEPOSTUPDATE, URHO3D_HANDLER(ParticleEmitter2D, HandleScenePostUpdate));
  72. else
  73. UnsubscribeFromEvent(scene, E_SCENEPOSTUPDATE);
  74. }
  75. }
  76. void ParticleEmitter2D::SetEffect(ParticleEffect2D* model)
  77. {
  78. if (model == effect_)
  79. return;
  80. effect_ = model;
  81. MarkNetworkUpdate();
  82. if (!effect_)
  83. return;
  84. SetSprite(effect_->GetSprite());
  85. SetBlendMode(effect_->GetBlendMode());
  86. SetMaxParticles((unsigned)effect_->GetMaxParticles());
  87. emitParticleTime_ = 0.0f;
  88. emissionTime_ = effect_->GetDuration();
  89. }
  90. void ParticleEmitter2D::SetSprite(Sprite2D* sprite)
  91. {
  92. if (sprite == sprite_)
  93. return;
  94. sprite_ = sprite;
  95. UpdateMaterial();
  96. MarkNetworkUpdate();
  97. }
  98. void ParticleEmitter2D::SetBlendMode(BlendMode blendMode)
  99. {
  100. if (blendMode == blendMode_)
  101. return;
  102. blendMode_ = blendMode;
  103. UpdateMaterial();
  104. MarkNetworkUpdate();
  105. }
  106. void ParticleEmitter2D::SetMaxParticles(unsigned maxParticles)
  107. {
  108. maxParticles = Max(maxParticles, 1U);
  109. particles_.Resize(maxParticles);
  110. sourceBatches_[0].vertices_.Reserve(maxParticles * 4);
  111. numParticles_ = Min(maxParticles, numParticles_);
  112. }
  113. ParticleEffect2D* ParticleEmitter2D::GetEffect() const
  114. {
  115. return effect_;
  116. }
  117. Sprite2D* ParticleEmitter2D::GetSprite() const
  118. {
  119. return sprite_;
  120. }
  121. void ParticleEmitter2D::SetParticleEffectAttr(const ResourceRef& value)
  122. {
  123. ResourceCache* cache = GetSubsystem<ResourceCache>();
  124. SetEffect(cache->GetResource<ParticleEffect2D>(value.name_));
  125. }
  126. ResourceRef ParticleEmitter2D::GetParticleEffectAttr() const
  127. {
  128. return GetResourceRef(effect_, ParticleEffect2D::GetTypeStatic());
  129. }
  130. void ParticleEmitter2D::SetSpriteAttr(const ResourceRef& value)
  131. {
  132. Sprite2D* sprite = Sprite2D::LoadFromResourceRef(this, value);
  133. if (sprite)
  134. SetSprite(sprite);
  135. }
  136. ResourceRef ParticleEmitter2D::GetSpriteAttr() const
  137. {
  138. return Sprite2D::SaveToResourceRef(sprite_);
  139. }
  140. void ParticleEmitter2D::OnSceneSet(Scene* scene)
  141. {
  142. Drawable2D::OnSceneSet(scene);
  143. if (scene && IsEnabledEffective())
  144. SubscribeToEvent(scene, E_SCENEPOSTUPDATE, URHO3D_HANDLER(ParticleEmitter2D, HandleScenePostUpdate));
  145. else if (!scene)
  146. UnsubscribeFromEvent(E_SCENEPOSTUPDATE);
  147. }
  148. void ParticleEmitter2D::OnWorldBoundingBoxUpdate()
  149. {
  150. boundingBox_.Clear();
  151. boundingBox_.Merge(boundingBoxMinPoint_);
  152. boundingBox_.Merge(boundingBoxMaxPoint_);
  153. worldBoundingBox_ = boundingBox_;
  154. }
  155. void ParticleEmitter2D::OnDrawOrderChanged()
  156. {
  157. sourceBatches_[0].drawOrder_ = GetDrawOrder();
  158. }
  159. void ParticleEmitter2D::UpdateSourceBatches()
  160. {
  161. if (!sourceBatchesDirty_)
  162. return;
  163. Vector<Vertex2D>& vertices = sourceBatches_[0].vertices_;
  164. vertices.Clear();
  165. if (!sprite_)
  166. return;
  167. Rect textureRect;
  168. if (!sprite_->GetTextureRectangle(textureRect))
  169. return;
  170. /*
  171. V1---------V2
  172. | / |
  173. | / |
  174. | / |
  175. | / |
  176. | / |
  177. V0---------V3
  178. */
  179. Vertex2D vertex0;
  180. Vertex2D vertex1;
  181. Vertex2D vertex2;
  182. Vertex2D vertex3;
  183. vertex0.uv_ = textureRect.min_;
  184. vertex1.uv_ = Vector2(textureRect.min_.x_, textureRect.max_.y_);
  185. vertex2.uv_ = textureRect.max_;
  186. vertex3.uv_ = Vector2(textureRect.max_.x_, textureRect.min_.y_);
  187. for (unsigned i = 0; i < numParticles_; ++i)
  188. {
  189. Particle2D& p = particles_[i];
  190. float rotation = -p.rotation_;
  191. float c = Cos(rotation);
  192. float s = Sin(rotation);
  193. float add = (c + s) * p.size_ * 0.5f;
  194. float sub = (c - s) * p.size_ * 0.5f;
  195. vertex0.position_ = Vector3(p.position_.x_ - sub, p.position_.y_ - add, p.position_.z_);
  196. vertex1.position_ = Vector3(p.position_.x_ - add, p.position_.y_ + sub, p.position_.z_);
  197. vertex2.position_ = Vector3(p.position_.x_ + sub, p.position_.y_ + add, p.position_.z_);
  198. vertex3.position_ = Vector3(p.position_.x_ + add, p.position_.y_ - sub, p.position_.z_);
  199. vertex0.color_ = vertex1.color_ = vertex2.color_ = vertex3.color_ = p.color_.ToUInt();
  200. vertices.Push(vertex0);
  201. vertices.Push(vertex1);
  202. vertices.Push(vertex2);
  203. vertices.Push(vertex3);
  204. }
  205. sourceBatchesDirty_ = false;
  206. }
  207. void ParticleEmitter2D::UpdateMaterial()
  208. {
  209. if (sprite_ && renderer_)
  210. sourceBatches_[0].material_ = renderer_->GetMaterial(sprite_->GetTexture(), blendMode_);
  211. else
  212. sourceBatches_[0].material_ = 0;
  213. }
  214. void ParticleEmitter2D::HandleScenePostUpdate(StringHash eventType, VariantMap& eventData)
  215. {
  216. using namespace ScenePostUpdate;
  217. float timeStep = eventData[P_TIMESTEP].GetFloat();
  218. Update(timeStep);
  219. }
  220. void ParticleEmitter2D::Update(float timeStep)
  221. {
  222. if (!effect_)
  223. return;
  224. Vector3 worldPosition = GetNode()->GetWorldPosition();
  225. float worldScale = GetNode()->GetWorldScale().x_ * PIXEL_SIZE;
  226. boundingBoxMinPoint_ = Vector3(M_INFINITY, M_INFINITY, M_INFINITY);
  227. boundingBoxMaxPoint_ = Vector3(-M_INFINITY, -M_INFINITY, -M_INFINITY);
  228. unsigned particleIndex = 0;
  229. while (particleIndex < numParticles_)
  230. {
  231. Particle2D& particle = particles_[particleIndex];
  232. if (particle.timeToLive_ > 0.0f)
  233. {
  234. UpdateParticle(particle, timeStep, worldPosition, worldScale);
  235. ++particleIndex;
  236. }
  237. else
  238. {
  239. if (particleIndex != numParticles_ - 1)
  240. particles_[particleIndex] = particles_[numParticles_ - 1];
  241. --numParticles_;
  242. }
  243. }
  244. if (emissionTime_ >= 0.0f)
  245. {
  246. float worldAngle = GetNode()->GetWorldRotation().RollAngle();
  247. float timeBetweenParticles = effect_->GetParticleLifeSpan() / particles_.Size();
  248. emitParticleTime_ += timeStep;
  249. while (emitParticleTime_ > 0.0f)
  250. {
  251. if (EmitParticle(worldPosition, worldAngle, worldScale))
  252. UpdateParticle(particles_[numParticles_ - 1], emitParticleTime_, worldPosition, worldScale);
  253. emitParticleTime_ -= timeBetweenParticles;
  254. }
  255. if (emissionTime_ > 0.0f)
  256. emissionTime_ = Max(0.0f, emissionTime_ - timeStep);
  257. }
  258. sourceBatchesDirty_ = true;
  259. OnMarkedDirty(node_);
  260. }
  261. bool ParticleEmitter2D::EmitParticle(const Vector3& worldPosition, float worldAngle, float worldScale)
  262. {
  263. if (numParticles_ >= (unsigned)effect_->GetMaxParticles() || numParticles_ >= particles_.Size())
  264. return false;
  265. float lifespan = effect_->GetParticleLifeSpan() + effect_->GetParticleLifespanVariance() * Random(-1.0f, 1.0f);
  266. if (lifespan <= 0.0f)
  267. return false;
  268. float invLifespan = 1.0f / lifespan;
  269. Particle2D& particle = particles_[numParticles_++];
  270. particle.timeToLive_ = lifespan;
  271. particle.position_.x_ = worldPosition.x_ + worldScale * effect_->GetSourcePositionVariance().x_ * Random(-1.0f, 1.0f);
  272. particle.position_.y_ = worldPosition.y_ + worldScale * effect_->GetSourcePositionVariance().y_ * Random(-1.0f, 1.0f);
  273. particle.position_.z_ = worldPosition.z_;
  274. particle.startPos_.x_ = worldPosition.x_;
  275. particle.startPos_.y_ = worldPosition.y_;
  276. float angle = worldAngle + effect_->GetAngle() + effect_->GetAngleVariance() * Random(-1.0f, 1.0f);
  277. float speed = worldScale * (effect_->GetSpeed() + effect_->GetSpeedVariance() * Random(-1.0f, 1.0f));
  278. particle.velocity_.x_ = speed * Cos(angle);
  279. particle.velocity_.y_ = speed * Sin(angle);
  280. float maxRadius = Max(0.0f, worldScale * (effect_->GetMaxRadius() + effect_->GetMaxRadiusVariance() * Random(-1.0f, 1.0f)));
  281. float minRadius = Max(0.0f, worldScale * (effect_->GetMinRadius() + effect_->GetMinRadiusVariance() * Random(-1.0f, 1.0f)));
  282. particle.emitRadius_ = maxRadius;
  283. particle.emitRadiusDelta_ = (minRadius - maxRadius) * invLifespan;
  284. particle.emitRotation_ = worldAngle + effect_->GetAngle() + effect_->GetAngleVariance() * Random(-1.0f, 1.0f);
  285. particle.emitRotationDelta_ = effect_->GetRotatePerSecond() + effect_->GetRotatePerSecondVariance() * Random(-1.0f, 1.0f);
  286. particle.radialAcceleration_ =
  287. worldScale * (effect_->GetRadialAcceleration() + effect_->GetRadialAccelVariance() * Random(-1.0f, 1.0f));
  288. particle.tangentialAcceleration_ =
  289. worldScale * (effect_->GetTangentialAcceleration() + effect_->GetTangentialAccelVariance() * Random(-1.0f, 1.0f));
  290. float startSize =
  291. worldScale * Max(0.1f, effect_->GetStartParticleSize() + effect_->GetStartParticleSizeVariance() * Random(-1.0f, 1.0f));
  292. float finishSize =
  293. worldScale * Max(0.1f, effect_->GetFinishParticleSize() + effect_->GetFinishParticleSizeVariance() * Random(-1.0f, 1.0f));
  294. particle.size_ = startSize;
  295. particle.sizeDelta_ = (finishSize - startSize) * invLifespan;
  296. particle.color_ = effect_->GetStartColor() + effect_->GetStartColorVariance() * Random(-1.0f, 1.0f);
  297. Color endColor = effect_->GetFinishColor() + effect_->GetFinishColorVariance() * Random(-1.0f, 1.0f);
  298. particle.colorDelta_ = (endColor - particle.color_) * invLifespan;
  299. particle.rotation_ = worldAngle + effect_->GetRotationStart() + effect_->GetRotationStartVariance() * Random(-1.0f, 1.0f);
  300. float endRotation = worldAngle + effect_->GetRotationEnd() + effect_->GetRotationEndVariance() * Random(-1.0f, 1.0f);
  301. particle.rotationDelta_ = (endRotation - particle.rotation_) * invLifespan;
  302. return true;
  303. }
  304. void ParticleEmitter2D::UpdateParticle(Particle2D& particle, float timeStep, const Vector3& worldPosition, float worldScale)
  305. {
  306. if (timeStep > particle.timeToLive_)
  307. timeStep = particle.timeToLive_;
  308. particle.timeToLive_ -= timeStep;
  309. if (effect_->GetEmitterType() == EMITTER_TYPE_RADIAL)
  310. {
  311. particle.emitRotation_ += particle.emitRotationDelta_ * timeStep;
  312. particle.emitRadius_ += particle.emitRadiusDelta_ * timeStep;
  313. particle.position_.x_ = particle.startPos_.x_ - Cos(particle.emitRotation_) * particle.emitRadius_;
  314. particle.position_.y_ = particle.startPos_.y_ + Sin(particle.emitRotation_) * particle.emitRadius_;
  315. }
  316. else
  317. {
  318. float distanceX = particle.position_.x_ - particle.startPos_.x_;
  319. float distanceY = particle.position_.y_ - particle.startPos_.y_;
  320. float distanceScalar = Vector2(distanceX, distanceY).Length();
  321. if (distanceScalar < 0.0001f)
  322. distanceScalar = 0.0001f;
  323. float radialX = distanceX / distanceScalar;
  324. float radialY = distanceY / distanceScalar;
  325. float tangentialX = radialX;
  326. float tangentialY = radialY;
  327. radialX *= particle.radialAcceleration_;
  328. radialY *= particle.radialAcceleration_;
  329. float newY = tangentialX;
  330. tangentialX = -tangentialY * particle.tangentialAcceleration_;
  331. tangentialY = newY * particle.tangentialAcceleration_;
  332. particle.velocity_.x_ += (effect_->GetGravity().x_ * worldScale + radialX - tangentialX) * timeStep;
  333. particle.velocity_.y_ -= (effect_->GetGravity().y_ * worldScale - radialY + tangentialY) * timeStep;
  334. particle.position_.x_ += particle.velocity_.x_ * timeStep;
  335. particle.position_.y_ += particle.velocity_.y_ * timeStep;
  336. }
  337. particle.size_ += particle.sizeDelta_ * timeStep;
  338. particle.rotation_ += particle.rotationDelta_ * timeStep;
  339. particle.color_ += particle.colorDelta_ * timeStep;
  340. float halfSize = particle.size_ * 0.5f;
  341. boundingBoxMinPoint_.x_ = Min(boundingBoxMinPoint_.x_, particle.position_.x_ - halfSize);
  342. boundingBoxMinPoint_.y_ = Min(boundingBoxMinPoint_.y_, particle.position_.y_ - halfSize);
  343. boundingBoxMinPoint_.z_ = Min(boundingBoxMinPoint_.z_, particle.position_.z_);
  344. boundingBoxMaxPoint_.x_ = Max(boundingBoxMaxPoint_.x_, particle.position_.x_ + halfSize);
  345. boundingBoxMaxPoint_.y_ = Max(boundingBoxMaxPoint_.y_, particle.position_.y_ + halfSize);
  346. boundingBoxMaxPoint_.z_ = Max(boundingBoxMaxPoint_.z_, particle.position_.z_);
  347. }
  348. }