MathDefs.h 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299
  1. //
  2. // Copyright (c) 2008-2017 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #pragma once
  23. #ifdef _MSC_VER
  24. #pragma warning(push)
  25. #pragma warning(disable:4244) // Conversion from 'double' to 'float'
  26. #pragma warning(disable:4702) // unreachable code
  27. #endif
  28. #include "../Math/Random.h"
  29. #include <cstdlib>
  30. #include <cmath>
  31. #include <limits>
  32. namespace Atomic
  33. {
  34. #undef M_PI
  35. static const float M_PI = 3.14159265358979323846264338327950288f;
  36. static const float M_HALF_PI = M_PI * 0.5f;
  37. static const int M_MIN_INT = 0x80000000;
  38. static const int M_MAX_INT = 0x7fffffff;
  39. static const unsigned M_MIN_UNSIGNED = 0x00000000;
  40. static const unsigned M_MAX_UNSIGNED = 0xffffffff;
  41. static const float M_EPSILON = 0.000001f;
  42. static const float M_LARGE_EPSILON = 0.00005f;
  43. static const float M_MIN_NEARCLIP = 0.01f;
  44. static const float M_MAX_FOV = 160.0f;
  45. static const float M_LARGE_VALUE = 100000000.0f;
  46. static const float M_INFINITY = (float)HUGE_VAL;
  47. static const float M_DEGTORAD = M_PI / 180.0f;
  48. static const float M_DEGTORAD_2 = M_PI / 360.0f; // M_DEGTORAD / 2.f
  49. static const float M_RADTODEG = 1.0f / M_DEGTORAD;
  50. /// Intersection test result.
  51. enum Intersection
  52. {
  53. OUTSIDE,
  54. INTERSECTS,
  55. INSIDE
  56. };
  57. /// Check whether two floating point values are equal within accuracy.
  58. template <class T>
  59. inline bool Equals(T lhs, T rhs) { return lhs + std::numeric_limits<T>::epsilon() >= rhs && lhs - std::numeric_limits<T>::epsilon() <= rhs; }
  60. /// Linear interpolation between two values.
  61. template <class T, class U>
  62. inline T Lerp(T lhs, T rhs, U t) { return lhs * (1.0 - t) + rhs * t; }
  63. /// Inverse linear interpolation between two values.
  64. template <class T>
  65. inline T InverseLerp(T lhs, T rhs, T x) { return (x - lhs) / (rhs - lhs); }
  66. /// Return the smaller of two values.
  67. template <class T, class U>
  68. inline T Min(T lhs, U rhs) { return lhs < rhs ? lhs : rhs; }
  69. /// Return the larger of two values.
  70. template <class T, class U>
  71. inline T Max(T lhs, U rhs) { return lhs > rhs ? lhs : rhs; }
  72. /// Return absolute value of a value
  73. template <class T>
  74. inline T Abs(T value) { return value >= 0.0 ? value : -value; }
  75. /// Return the sign of a float (-1, 0 or 1.)
  76. template <class T>
  77. inline T Sign(T value) { return value > 0.0 ? 1.0 : (value < 0.0 ? -1.0 : 0.0); }
  78. /// Return a representation of the specified floating-point value as a single format bit layout.
  79. inline unsigned FloatToRawIntBits(float value)
  80. {
  81. unsigned u = *((unsigned*)&value);
  82. return u;
  83. }
  84. /// Check whether a floating point value is NaN.
  85. /// Use a workaround for GCC, see https://github.com/urho3d/Urho3D/issues/655
  86. #ifndef __GNUC__
  87. inline bool IsNaN(float value) { return value != value; }
  88. #else
  89. inline bool IsNaN(float value)
  90. {
  91. unsigned u = FloatToRawIntBits(value);
  92. return (u & 0x7fffffff) > 0x7f800000;
  93. }
  94. #endif
  95. /// Clamp a number to a range.
  96. template <class T>
  97. inline T Clamp(T value, T min, T max)
  98. {
  99. if (value < min)
  100. return min;
  101. else if (value > max)
  102. return max;
  103. else
  104. return value;
  105. }
  106. /// Smoothly damp between values.
  107. template <class T>
  108. inline T SmoothStep(T lhs, T rhs, T t)
  109. {
  110. t = Clamp((t - lhs) / (rhs - lhs), T(0.0), T(1.0)); // Saturate t
  111. return t * t * (3.0 - 2.0 * t);
  112. }
  113. /// Return sine of an angle in degrees.
  114. template <class T> inline T Sin(T angle) { return sin(angle * M_DEGTORAD); }
  115. /// Return cosine of an angle in degrees.
  116. template <class T> inline T Cos(T angle) { return cos(angle * M_DEGTORAD); }
  117. /// Return tangent of an angle in degrees.
  118. template <class T> inline T Tan(T angle) { return tan(angle * M_DEGTORAD); }
  119. /// Return arc sine in degrees.
  120. template <class T> inline T Asin(T x) { return M_RADTODEG * asin(Clamp(x, T(-1.0), T(1.0))); }
  121. /// Return arc cosine in degrees.
  122. template <class T> inline T Acos(T x) { return M_RADTODEG * acos(Clamp(x, T(-1.0), T(1.0))); }
  123. /// Return arc tangent in degrees.
  124. template <class T> inline T Atan(T x) { return M_RADTODEG * atan(x); }
  125. /// Return arc tangent of y/x in degrees.
  126. template <class T> inline T Atan2(T y, T x) { return M_RADTODEG * atan2(y, x); }
  127. /// Return X in power Y.
  128. template <class T> T Pow(T x, T y) { return pow(x, y); }
  129. /// Return natural logarithm of X.
  130. template <class T> T Ln(T x) { return log(x); }
  131. /// Return square root of X.
  132. template <class T> T Sqrt(T x) { return sqrt(x); }
  133. /// Return floating-point remainder of X/Y.
  134. template <class T> T Mod(T x, T y) { return fmod(x, y); }
  135. /// Return fractional part of passed value in range [0, 1).
  136. template <class T> T Fract(T value) { return value - floor(value); }
  137. /// Round value down.
  138. template <class T> T Floor(T x) { return floor(x); }
  139. /// Round value down. Returns integer value.
  140. template <class T> int FloorToInt(T x) { return static_cast<int>(floor(x)); }
  141. /// Round value to nearest integer.
  142. template <class T> T Round(T x) { return floor(x + T(0.5)); }
  143. /// Round value to nearest integer.
  144. template <class T> int RoundToInt(T x) { return static_cast<int>(floor(x + T(0.5))); }
  145. /// Round value up.
  146. template <class T> T Ceil(T x) { return ceil(x); }
  147. /// Round value up.
  148. template <class T> int CeilToInt(T x) { return static_cast<int>(ceil(x)); }
  149. /// Check whether an unsigned integer is a power of two.
  150. inline bool IsPowerOfTwo(unsigned value)
  151. {
  152. return !(value & (value - 1));
  153. }
  154. /// Round up to next power of two.
  155. inline unsigned NextPowerOfTwo(unsigned value)
  156. {
  157. // http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
  158. --value;
  159. value |= value >> 1;
  160. value |= value >> 2;
  161. value |= value >> 4;
  162. value |= value >> 8;
  163. value |= value >> 16;
  164. return ++value;
  165. }
  166. /// Return log base two or the MSB position of the given value.
  167. inline unsigned LogBaseTwo(unsigned value)
  168. {
  169. // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious
  170. unsigned ret = 0;
  171. while (value >>= 1) // Unroll for more speed...
  172. ++ret;
  173. return ret;
  174. }
  175. /// Count the number of set bits in a mask.
  176. inline unsigned CountSetBits(unsigned value)
  177. {
  178. // Brian Kernighan's method
  179. unsigned count = 0;
  180. for (count = 0; value; count++)
  181. value &= value - 1;
  182. return count;
  183. }
  184. /// Update a hash with the given 8-bit value using the SDBM algorithm.
  185. inline unsigned SDBMHash(unsigned hash, unsigned char c) { return c + (hash << 6) + (hash << 16) - hash; }
  186. /// Return a random float between 0.0 (inclusive) and 1.0 (exclusive.)
  187. inline float Random() { return Rand() / 32768.0f; }
  188. /// Return a random float between 0.0 and range, inclusive from both ends.
  189. inline float Random(float range) { return Rand() * range / 32767.0f; }
  190. /// Return a random float between min and max, inclusive from both ends.
  191. inline float Random(float min, float max) { return Rand() * (max - min) / 32767.0f + min; }
  192. /// Return a random integer between 0 and range - 1.
  193. inline int Random(int range) { return (int)(Random() * range); }
  194. /// Return a random integer between min and max - 1.
  195. inline int Random(int min, int max) { float range = (float)(max - min); return (int)(Random() * range) + min; }
  196. /// Return a random normal distributed number with the given mean value and variance.
  197. inline float RandomNormal(float meanValue, float variance) { return RandStandardNormal() * sqrtf(variance) + meanValue; }
  198. /// Convert float to half float. From https://gist.github.com/martinkallman/5049614
  199. inline unsigned short FloatToHalf(float value)
  200. {
  201. unsigned inu = FloatToRawIntBits(value);
  202. unsigned t1 = inu & 0x7fffffff; // Non-sign bits
  203. unsigned t2 = inu & 0x80000000; // Sign bit
  204. unsigned t3 = inu & 0x7f800000; // Exponent
  205. t1 >>= 13; // Align mantissa on MSB
  206. t2 >>= 16; // Shift sign bit into position
  207. t1 -= 0x1c000; // Adjust bias
  208. t1 = (t3 < 0x38800000) ? 0 : t1; // Flush-to-zero
  209. t1 = (t3 > 0x47000000) ? 0x7bff : t1; // Clamp-to-max
  210. t1 = (t3 == 0 ? 0 : t1); // Denormals-as-zero
  211. t1 |= t2; // Re-insert sign bit
  212. return (unsigned short)t1;
  213. }
  214. /// Convert half float to float. From https://gist.github.com/martinkallman/5049614
  215. inline float HalfToFloat(unsigned short value)
  216. {
  217. unsigned t1 = value & 0x7fff; // Non-sign bits
  218. unsigned t2 = value & 0x8000; // Sign bit
  219. unsigned t3 = value & 0x7c00; // Exponent
  220. t1 <<= 13; // Align mantissa on MSB
  221. t2 <<= 16; // Shift sign bit into position
  222. t1 += 0x38000000; // Adjust bias
  223. t1 = (t3 == 0 ? 0 : t1); // Denormals-as-zero
  224. t1 |= t2; // Re-insert sign bit
  225. float out;
  226. *((unsigned*)&out) = t1;
  227. return out;
  228. }
  229. /// Calculate both sine and cosine, with angle in degrees.
  230. ATOMIC_API void SinCos(float angle, float& sin, float& cos);
  231. }
  232. #ifdef _MSC_VER
  233. #pragma warning(pop)
  234. #endif