| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- // ======================================================================== //
- // Copyright 2009-2017 Intel Corporation //
- // //
- // Licensed under the Apache License, Version 2.0 (the "License"); //
- // you may not use this file except in compliance with the License. //
- // You may obtain a copy of the License at //
- // //
- // http://www.apache.org/licenses/LICENSE-2.0 //
- // //
- // Unless required by applicable law or agreed to in writing, software //
- // distributed under the License is distributed on an "AS IS" BASIS, //
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. //
- // See the License for the specific language governing permissions and //
- // limitations under the License. //
- // ======================================================================== //
- #include "parallel_partition.h"
- #include "../sys/regression.h"
- namespace embree
- {
- struct parallel_partition_regression_test : public RegressionTest
- {
- parallel_partition_regression_test(const char* name) : RegressionTest(name) {
- registerRegressionTest(this);
- }
-
- bool run ()
- {
- bool passed = true;
- for (size_t i=0; i<100; i++)
- {
- /* create random permutation */
- size_t N = std::rand() % 1000000;
- std::vector<unsigned> array(N);
- for (unsigned i=0; i<N; i++) array[i] = i;
- for (auto& v : array) std::swap(v,array[std::rand()%array.size()]);
- size_t split = std::rand() % (N+1);
- /* perform parallel partitioning */
- size_t left_sum = 0, right_sum = 0;
- size_t mid = parallel_partitioning(array.data(),0,array.size(),0,left_sum,right_sum,
- [&] ( size_t i ) { return i < split; },
- [] ( size_t& sum, unsigned v) { sum += v; },
- [] ( size_t& sum, size_t v) { sum += v; },
- 128);
-
- /*serial_partitioning(array.data(),0,array.size(),left_sum,right_sum,
- [&] ( size_t i ) { return i < split; },
- [] ( size_t& left_sum, int v) { left_sum += v; });*/
- /* verify result */
- passed &= mid == split;
- passed &= left_sum == split*(split-1)/2;
- passed &= right_sum == N*(N-1)/2-left_sum;
- for (size_t i=0; i<split; i++) passed &= array[i] < split;
- for (size_t i=split; i<N; i++) passed &= array[i] >= split;
- }
-
- return passed;
- }
- };
- parallel_partition_regression_test parallel_partition_regression("parallel_partition_regression_test");
- }
|