PhysicsWorld.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936
  1. //
  2. // Copyright (c) 2008-2015 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Core/Context.h"
  24. #include "../Core/Mutex.h"
  25. #include "../Core/Profiler.h"
  26. #include "../Graphics/DebugRenderer.h"
  27. #include "../Atomic3D/Model.h"
  28. #include "../IO/Log.h"
  29. #include "../Math/Ray.h"
  30. #include "../Physics/CollisionShape.h"
  31. #include "../Physics/Constraint.h"
  32. #include "../Physics/PhysicsEvents.h"
  33. #include "../Physics/PhysicsUtils.h"
  34. #include "../Physics/PhysicsWorld.h"
  35. #include "../Physics/RigidBody.h"
  36. #include "../Scene/Scene.h"
  37. #include "../Scene/SceneEvents.h"
  38. #include <Bullet/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  39. #include <Bullet/src/BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  40. #include <Bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  41. #include <Bullet/src/BulletCollision/CollisionShapes/btBoxShape.h>
  42. #include <Bullet/src/BulletCollision/CollisionShapes/btSphereShape.h>
  43. #include <Bullet/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  44. #include <Bullet/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  45. extern ContactAddedCallback gContactAddedCallback;
  46. namespace Atomic
  47. {
  48. const char* PHYSICS_CATEGORY = "Physics";
  49. extern const char* SUBSYSTEM_CATEGORY;
  50. static const int MAX_SOLVER_ITERATIONS = 256;
  51. static const int DEFAULT_FPS = 60;
  52. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  53. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  54. {
  55. return lhs.distance_ < rhs.distance_;
  56. }
  57. void InternalPreTickCallback(btDynamicsWorld* world, btScalar timeStep)
  58. {
  59. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  60. }
  61. void InternalTickCallback(btDynamicsWorld* world, btScalar timeStep)
  62. {
  63. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  64. }
  65. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0,
  66. int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  67. {
  68. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  69. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  70. cp.m_combinedRestitution =
  71. colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  72. return true;
  73. }
  74. /// Callback for physics world queries.
  75. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  76. {
  77. /// Construct.
  78. PhysicsQueryCallback(PODVector<RigidBody*>& result, unsigned collisionMask) :
  79. result_(result),
  80. collisionMask_(collisionMask)
  81. {
  82. }
  83. /// Add a contact result.
  84. virtual btScalar addSingleResult(btManifoldPoint&, const btCollisionObjectWrapper* colObj0Wrap, int, int,
  85. const btCollisionObjectWrapper* colObj1Wrap, int, int)
  86. {
  87. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  88. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  89. result_.Push(body);
  90. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  91. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  92. result_.Push(body);
  93. return 0.0f;
  94. }
  95. /// Found rigid bodies.
  96. PODVector<RigidBody*>& result_;
  97. /// Collision mask for the query.
  98. unsigned collisionMask_;
  99. };
  100. PhysicsWorld::PhysicsWorld(Context* context) :
  101. Component(context),
  102. collisionConfiguration_(0),
  103. collisionDispatcher_(0),
  104. broadphase_(0),
  105. solver_(0),
  106. world_(0),
  107. fps_(DEFAULT_FPS),
  108. maxSubSteps_(0),
  109. timeAcc_(0.0f),
  110. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  111. interpolation_(true),
  112. internalEdge_(true),
  113. applyingTransforms_(false),
  114. debugRenderer_(0),
  115. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  116. {
  117. gContactAddedCallback = CustomMaterialCombinerCallback;
  118. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  119. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  120. broadphase_ = new btDbvtBroadphase();
  121. solver_ = new btSequentialImpulseConstraintSolver();
  122. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  123. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  124. world_->getDispatchInfo().m_useContinuous = true;
  125. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  126. world_->setDebugDrawer(this);
  127. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  128. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  129. }
  130. PhysicsWorld::~PhysicsWorld()
  131. {
  132. if (scene_)
  133. {
  134. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  135. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  136. (*i)->ReleaseConstraint();
  137. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  138. (*i)->ReleaseBody();
  139. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  140. (*i)->ReleaseShape();
  141. }
  142. delete world_;
  143. world_ = 0;
  144. delete solver_;
  145. solver_ = 0;
  146. delete broadphase_;
  147. broadphase_ = 0;
  148. delete collisionDispatcher_;
  149. collisionDispatcher_ = 0;
  150. delete collisionConfiguration_;
  151. collisionConfiguration_ = 0;
  152. }
  153. void PhysicsWorld::RegisterObject(Context* context)
  154. {
  155. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  156. MIXED_ACCESSOR_ATTRIBUTE("Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  157. ATTRIBUTE("Physics FPS", int, fps_, DEFAULT_FPS, AM_DEFAULT);
  158. ATTRIBUTE("Max Substeps", int, maxSubSteps_, 0, AM_DEFAULT);
  159. ACCESSOR_ATTRIBUTE("Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  160. ATTRIBUTE("Net Max Angular Vel.", float, maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  161. ATTRIBUTE("Interpolation", bool, interpolation_, true, AM_FILE);
  162. ATTRIBUTE("Internal Edge Utility", bool, internalEdge_, true, AM_DEFAULT);
  163. ACCESSOR_ATTRIBUTE("Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  164. }
  165. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  166. {
  167. if (debugRenderer_)
  168. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  169. else
  170. return false;
  171. }
  172. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  173. {
  174. if (debugRenderer_)
  175. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  176. }
  177. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  178. {
  179. if (debug)
  180. {
  181. PROFILE(PhysicsDrawDebug);
  182. debugRenderer_ = debug;
  183. debugDepthTest_ = depthTest;
  184. world_->debugDrawWorld();
  185. debugRenderer_ = 0;
  186. }
  187. }
  188. void PhysicsWorld::reportErrorWarning(const char* warningString)
  189. {
  190. LOGWARNING("Physics: " + String(warningString));
  191. }
  192. void PhysicsWorld::drawContactPoint(const btVector3& pointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime,
  193. const btVector3& color)
  194. {
  195. }
  196. void PhysicsWorld::draw3dText(const btVector3& location, const char* textString)
  197. {
  198. }
  199. void PhysicsWorld::Update(float timeStep)
  200. {
  201. PROFILE(UpdatePhysics);
  202. float internalTimeStep = 1.0f / fps_;
  203. int maxSubSteps = (int)(timeStep * fps_) + 1;
  204. if (maxSubSteps_ < 0)
  205. {
  206. internalTimeStep = timeStep;
  207. maxSubSteps = 1;
  208. }
  209. else if (maxSubSteps_ > 0)
  210. maxSubSteps = Min(maxSubSteps, maxSubSteps_);
  211. delayedWorldTransforms_.Clear();
  212. if (interpolation_)
  213. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  214. else
  215. {
  216. timeAcc_ += timeStep;
  217. while (timeAcc_ >= internalTimeStep && maxSubSteps > 0)
  218. {
  219. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  220. timeAcc_ -= internalTimeStep;
  221. --maxSubSteps;
  222. }
  223. }
  224. // Apply delayed (parented) world transforms now
  225. while (!delayedWorldTransforms_.Empty())
  226. {
  227. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  228. i != delayedWorldTransforms_.End(); ++i)
  229. {
  230. const DelayedWorldTransform& transform = i->second_;
  231. // If parent's transform has already been assigned, can proceed
  232. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  233. {
  234. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  235. delayedWorldTransforms_.Erase(i);
  236. }
  237. }
  238. }
  239. }
  240. void PhysicsWorld::UpdateCollisions()
  241. {
  242. world_->performDiscreteCollisionDetection();
  243. }
  244. void PhysicsWorld::SetFps(int fps)
  245. {
  246. fps_ = (unsigned)Clamp(fps, 1, 1000);
  247. MarkNetworkUpdate();
  248. }
  249. void PhysicsWorld::SetGravity(const Vector3& gravity)
  250. {
  251. world_->setGravity(ToBtVector3(gravity));
  252. MarkNetworkUpdate();
  253. }
  254. void PhysicsWorld::SetMaxSubSteps(int num)
  255. {
  256. maxSubSteps_ = num;
  257. MarkNetworkUpdate();
  258. }
  259. void PhysicsWorld::SetNumIterations(int num)
  260. {
  261. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  262. world_->getSolverInfo().m_numIterations = num;
  263. MarkNetworkUpdate();
  264. }
  265. void PhysicsWorld::SetInterpolation(bool enable)
  266. {
  267. interpolation_ = enable;
  268. }
  269. void PhysicsWorld::SetInternalEdge(bool enable)
  270. {
  271. internalEdge_ = enable;
  272. MarkNetworkUpdate();
  273. }
  274. void PhysicsWorld::SetSplitImpulse(bool enable)
  275. {
  276. world_->getSolverInfo().m_splitImpulse = enable;
  277. MarkNetworkUpdate();
  278. }
  279. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  280. {
  281. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  282. MarkNetworkUpdate();
  283. }
  284. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  285. {
  286. PROFILE(PhysicsRaycast);
  287. btCollisionWorld::AllHitsRayResultCallback
  288. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  289. rayCallback.m_collisionFilterGroup = (short)0xffff;
  290. rayCallback.m_collisionFilterMask = (short)collisionMask;
  291. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  292. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  293. {
  294. PhysicsRaycastResult newResult;
  295. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  296. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  297. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  298. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  299. result.Push(newResult);
  300. }
  301. Sort(result.Begin(), result.End(), CompareRaycastResults);
  302. }
  303. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  304. {
  305. PROFILE(PhysicsRaycastSingle);
  306. btCollisionWorld::ClosestRayResultCallback
  307. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  308. rayCallback.m_collisionFilterGroup = (short)0xffff;
  309. rayCallback.m_collisionFilterMask = (short)collisionMask;
  310. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  311. if (rayCallback.hasHit())
  312. {
  313. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  314. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  315. result.distance_ = (result.position_ - ray.origin_).Length();
  316. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  317. }
  318. else
  319. {
  320. result.position_ = Vector3::ZERO;
  321. result.normal_ = Vector3::ZERO;
  322. result.distance_ = M_INFINITY;
  323. result.body_ = 0;
  324. }
  325. }
  326. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  327. {
  328. PROFILE(PhysicsSphereCast);
  329. btSphereShape shape(radius);
  330. btCollisionWorld::ClosestConvexResultCallback
  331. convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  332. convexCallback.m_collisionFilterGroup = (short)0xffff;
  333. convexCallback.m_collisionFilterMask = (short)collisionMask;
  334. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  335. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  336. if (convexCallback.hasHit())
  337. {
  338. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  339. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  340. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  341. result.distance_ = (result.position_ - ray.origin_).Length();
  342. }
  343. else
  344. {
  345. result.body_ = 0;
  346. result.position_ = Vector3::ZERO;
  347. result.normal_ = Vector3::ZERO;
  348. result.distance_ = M_INFINITY;
  349. }
  350. }
  351. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, CollisionShape* shape, const Vector3& startPos,
  352. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  353. {
  354. if (!shape || !shape->GetCollisionShape())
  355. {
  356. LOGERROR("Null collision shape for convex cast");
  357. result.body_ = 0;
  358. result.position_ = Vector3::ZERO;
  359. result.normal_ = Vector3::ZERO;
  360. result.distance_ = M_INFINITY;
  361. return;
  362. }
  363. // If shape is attached in a rigidbody, set its collision group temporarily to 0 to make sure it is not returned in the sweep result
  364. RigidBody* bodyComp = shape->GetComponent<RigidBody>();
  365. btRigidBody* body = bodyComp ? bodyComp->GetBody() : (btRigidBody*)0;
  366. btBroadphaseProxy* proxy = body ? body->getBroadphaseProxy() : (btBroadphaseProxy*)0;
  367. short group = 0;
  368. if (proxy)
  369. {
  370. group = proxy->m_collisionFilterGroup;
  371. proxy->m_collisionFilterGroup = 0;
  372. }
  373. ConvexCast(result, shape->GetCollisionShape(), startPos, startRot, endPos, endRot, collisionMask);
  374. // Restore the collision group
  375. if (proxy)
  376. proxy->m_collisionFilterGroup = group;
  377. }
  378. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, btCollisionShape* shape, const Vector3& startPos,
  379. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  380. {
  381. if (!shape)
  382. {
  383. LOGERROR("Null collision shape for convex cast");
  384. result.body_ = 0;
  385. result.position_ = Vector3::ZERO;
  386. result.normal_ = Vector3::ZERO;
  387. result.distance_ = M_INFINITY;
  388. return;
  389. }
  390. if (!shape->isConvex())
  391. {
  392. LOGERROR("Can not use non-convex collision shape for convex cast");
  393. result.body_ = 0;
  394. result.position_ = Vector3::ZERO;
  395. result.normal_ = Vector3::ZERO;
  396. result.distance_ = M_INFINITY;
  397. return;
  398. }
  399. PROFILE(PhysicsConvexCast);
  400. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(startPos), ToBtVector3(endPos));
  401. convexCallback.m_collisionFilterGroup = (short)0xffff;
  402. convexCallback.m_collisionFilterMask = (short)collisionMask;
  403. world_->convexSweepTest(static_cast<btConvexShape*>(shape), btTransform(ToBtQuaternion(startRot),
  404. convexCallback.m_convexFromWorld), btTransform(ToBtQuaternion(endRot), convexCallback.m_convexToWorld),
  405. convexCallback);
  406. if (convexCallback.hasHit())
  407. {
  408. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  409. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  410. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  411. result.distance_ = (result.position_ - startPos).Length();
  412. }
  413. else
  414. {
  415. result.body_ = 0;
  416. result.position_ = Vector3::ZERO;
  417. result.normal_ = Vector3::ZERO;
  418. result.distance_ = M_INFINITY;
  419. }
  420. }
  421. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  422. {
  423. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  424. i != triMeshCache_.End();)
  425. {
  426. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  427. if (current->first_.first_ == model)
  428. triMeshCache_.Erase(current);
  429. }
  430. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  431. i != convexCache_.End();)
  432. {
  433. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  434. if (current->first_.first_ == model)
  435. convexCache_.Erase(current);
  436. }
  437. }
  438. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  439. {
  440. PROFILE(PhysicsSphereQuery);
  441. result.Clear();
  442. btSphereShape sphereShape(sphere.radius_);
  443. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  444. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  445. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  446. tempRigidBody->activate();
  447. world_->addRigidBody(tempRigidBody);
  448. PhysicsQueryCallback callback(result, collisionMask);
  449. world_->contactTest(tempRigidBody, callback);
  450. world_->removeRigidBody(tempRigidBody);
  451. delete tempRigidBody;
  452. }
  453. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  454. {
  455. PROFILE(PhysicsBoxQuery);
  456. result.Clear();
  457. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  458. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  459. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  460. tempRigidBody->activate();
  461. world_->addRigidBody(tempRigidBody);
  462. PhysicsQueryCallback callback(result, collisionMask);
  463. world_->contactTest(tempRigidBody, callback);
  464. world_->removeRigidBody(tempRigidBody);
  465. delete tempRigidBody;
  466. }
  467. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  468. {
  469. PROFILE(GetCollidingBodies);
  470. result.Clear();
  471. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  472. i != currentCollisions_.End(); ++i)
  473. {
  474. if (i->first_.first_ == body)
  475. result.Push(i->first_.second_);
  476. else if (i->first_.second_ == body)
  477. result.Push(i->first_.first_);
  478. }
  479. }
  480. Vector3 PhysicsWorld::GetGravity() const
  481. {
  482. return ToVector3(world_->getGravity());
  483. }
  484. int PhysicsWorld::GetNumIterations() const
  485. {
  486. return world_->getSolverInfo().m_numIterations;
  487. }
  488. bool PhysicsWorld::GetSplitImpulse() const
  489. {
  490. return world_->getSolverInfo().m_splitImpulse != 0;
  491. }
  492. void PhysicsWorld::AddRigidBody(RigidBody* body)
  493. {
  494. rigidBodies_.Push(body);
  495. }
  496. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  497. {
  498. rigidBodies_.Remove(body);
  499. // Remove possible dangling pointer from the delayedWorldTransforms structure
  500. delayedWorldTransforms_.Erase(body);
  501. }
  502. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  503. {
  504. collisionShapes_.Push(shape);
  505. }
  506. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  507. {
  508. collisionShapes_.Remove(shape);
  509. }
  510. void PhysicsWorld::AddConstraint(Constraint* constraint)
  511. {
  512. constraints_.Push(constraint);
  513. }
  514. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  515. {
  516. constraints_.Remove(constraint);
  517. }
  518. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  519. {
  520. delayedWorldTransforms_[transform.rigidBody_] = transform;
  521. }
  522. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  523. {
  524. DebugRenderer* debug = GetComponent<DebugRenderer>();
  525. DrawDebugGeometry(debug, depthTest);
  526. }
  527. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  528. {
  529. debugRenderer_ = debug;
  530. }
  531. void PhysicsWorld::SetDebugDepthTest(bool enable)
  532. {
  533. debugDepthTest_ = enable;
  534. }
  535. void PhysicsWorld::CleanupGeometryCache()
  536. {
  537. // Remove cached shapes whose only reference is the cache itself
  538. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  539. i != triMeshCache_.End();)
  540. {
  541. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  542. if (current->second_.Refs() == 1)
  543. triMeshCache_.Erase(current);
  544. }
  545. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  546. i != convexCache_.End();)
  547. {
  548. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  549. if (current->second_.Refs() == 1)
  550. convexCache_.Erase(current);
  551. }
  552. }
  553. void PhysicsWorld::OnSceneSet(Scene* scene)
  554. {
  555. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  556. if (scene)
  557. {
  558. scene_ = GetScene();
  559. SubscribeToEvent(scene_, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  560. }
  561. else
  562. UnsubscribeFromEvent(E_SCENESUBSYSTEMUPDATE);
  563. }
  564. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  565. {
  566. using namespace SceneSubsystemUpdate;
  567. Update(eventData[P_TIMESTEP].GetFloat());
  568. }
  569. void PhysicsWorld::PreStep(float timeStep)
  570. {
  571. // Send pre-step event
  572. using namespace PhysicsPreStep;
  573. VariantMap& eventData = GetEventDataMap();
  574. eventData[P_WORLD] = this;
  575. eventData[P_TIMESTEP] = timeStep;
  576. SendEvent(E_PHYSICSPRESTEP, eventData);
  577. // Start profiling block for the actual simulation step
  578. #ifdef ATOMIC_PROFILING
  579. Profiler* profiler = GetSubsystem<Profiler>();
  580. if (profiler)
  581. profiler->BeginBlock("StepSimulation");
  582. #endif
  583. }
  584. void PhysicsWorld::PostStep(float timeStep)
  585. {
  586. #ifdef ATOMIC_PROFILING
  587. Profiler* profiler = GetSubsystem<Profiler>();
  588. if (profiler)
  589. profiler->EndBlock();
  590. #endif
  591. SendCollisionEvents();
  592. // Send post-step event
  593. using namespace PhysicsPostStep;
  594. VariantMap& eventData = GetEventDataMap();
  595. eventData[P_WORLD] = this;
  596. eventData[P_TIMESTEP] = timeStep;
  597. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  598. }
  599. void PhysicsWorld::SendCollisionEvents()
  600. {
  601. PROFILE(SendCollisionEvents);
  602. currentCollisions_.Clear();
  603. physicsCollisionData_.Clear();
  604. nodeCollisionData_.Clear();
  605. int numManifolds = collisionDispatcher_->getNumManifolds();
  606. if (numManifolds)
  607. {
  608. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  609. for (int i = 0; i < numManifolds; ++i)
  610. {
  611. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  612. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  613. if (!contactManifold->getNumContacts())
  614. continue;
  615. const btCollisionObject* objectA = contactManifold->getBody0();
  616. const btCollisionObject* objectB = contactManifold->getBody1();
  617. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  618. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  619. // If it's not a rigidbody, maybe a ghost object
  620. if (!bodyA || !bodyB)
  621. continue;
  622. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  623. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  624. continue;
  625. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  626. continue;
  627. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  628. !bodyA->IsActive() && !bodyB->IsActive())
  629. continue;
  630. WeakPtr<RigidBody> bodyWeakA(bodyA);
  631. WeakPtr<RigidBody> bodyWeakB(bodyB);
  632. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  633. if (bodyA < bodyB)
  634. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  635. else
  636. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  637. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  638. // objects during collision event handling
  639. currentCollisions_[bodyPair] = contactManifold;
  640. }
  641. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  642. i != currentCollisions_.End(); ++i)
  643. {
  644. RigidBody* bodyA = i->first_.first_;
  645. RigidBody* bodyB = i->first_.second_;
  646. if (!bodyA || !bodyB)
  647. continue;
  648. btPersistentManifold* contactManifold = i->second_;
  649. Node* nodeA = bodyA->GetNode();
  650. Node* nodeB = bodyB->GetNode();
  651. WeakPtr<Node> nodeWeakA(nodeA);
  652. WeakPtr<Node> nodeWeakB(nodeB);
  653. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  654. bool newCollision = !previousCollisions_.Contains(i->first_);
  655. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  656. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  657. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  658. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  659. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  660. contacts_.Clear();
  661. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  662. {
  663. btManifoldPoint& point = contactManifold->getContactPoint(j);
  664. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  665. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  666. contacts_.WriteFloat(point.m_distance1);
  667. contacts_.WriteFloat(point.m_appliedImpulse);
  668. }
  669. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  670. // Send separate collision start event if collision is new
  671. if (newCollision)
  672. {
  673. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  674. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  675. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  676. continue;
  677. }
  678. // Then send the ongoing collision event
  679. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  680. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  681. continue;
  682. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  683. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  684. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  685. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  686. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  687. if (newCollision)
  688. {
  689. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  690. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  691. continue;
  692. }
  693. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  694. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  695. continue;
  696. contacts_.Clear();
  697. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  698. {
  699. btManifoldPoint& point = contactManifold->getContactPoint(j);
  700. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  701. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  702. contacts_.WriteFloat(point.m_distance1);
  703. contacts_.WriteFloat(point.m_appliedImpulse);
  704. }
  705. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  706. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  707. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  708. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  709. if (newCollision)
  710. {
  711. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  712. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  713. continue;
  714. }
  715. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  716. }
  717. }
  718. // Send collision end events as applicable
  719. {
  720. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  721. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator
  722. i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  723. {
  724. if (!currentCollisions_.Contains(i->first_))
  725. {
  726. RigidBody* bodyA = i->first_.first_;
  727. RigidBody* bodyB = i->first_.second_;
  728. if (!bodyA || !bodyB)
  729. continue;
  730. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  731. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  732. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  733. continue;
  734. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  735. continue;
  736. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  737. !bodyA->IsActive() && !bodyB->IsActive())
  738. continue;
  739. Node* nodeA = bodyA->GetNode();
  740. Node* nodeB = bodyB->GetNode();
  741. WeakPtr<Node> nodeWeakA(nodeA);
  742. WeakPtr<Node> nodeWeakB(nodeB);
  743. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  744. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  745. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  746. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  747. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  748. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  749. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  750. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  751. continue;
  752. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  753. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  754. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  755. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  756. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  757. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  758. continue;
  759. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  760. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  761. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  762. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  763. }
  764. }
  765. }
  766. previousCollisions_ = currentCollisions_;
  767. }
  768. void RegisterPhysicsLibrary(Context* context)
  769. {
  770. CollisionShape::RegisterObject(context);
  771. RigidBody::RegisterObject(context);
  772. Constraint::RegisterObject(context);
  773. PhysicsWorld::RegisterObject(context);
  774. }
  775. }