Batch.cpp 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899
  1. //
  2. // Copyright (c) 2008-2016 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Graphics/Camera.h"
  24. #include "../Graphics/Geometry.h"
  25. #include "../Graphics/Graphics.h"
  26. #include "../Graphics/GraphicsImpl.h"
  27. #include "../Graphics/Material.h"
  28. #include "../Graphics/Renderer.h"
  29. #include "../Graphics/ShaderVariation.h"
  30. #include "../Graphics/Technique.h"
  31. #include "../Graphics/Texture2D.h"
  32. #include "../Graphics/VertexBuffer.h"
  33. #include "../Graphics/View.h"
  34. #include "../Scene/Scene.h"
  35. #include "../DebugNew.h"
  36. namespace Atomic
  37. {
  38. inline bool CompareBatchesState(Batch* lhs, Batch* rhs)
  39. {
  40. if (lhs->renderOrder_ != rhs->renderOrder_)
  41. return lhs->renderOrder_ < rhs->renderOrder_;
  42. else if (lhs->sortKey_ != rhs->sortKey_)
  43. return lhs->sortKey_ < rhs->sortKey_;
  44. else
  45. return lhs->distance_ < rhs->distance_;
  46. }
  47. inline bool CompareBatchesFrontToBack(Batch* lhs, Batch* rhs)
  48. {
  49. if (lhs->renderOrder_ != rhs->renderOrder_)
  50. return lhs->renderOrder_ < rhs->renderOrder_;
  51. else if (lhs->distance_ != rhs->distance_)
  52. return lhs->distance_ < rhs->distance_;
  53. else
  54. return lhs->sortKey_ < rhs->sortKey_;
  55. }
  56. inline bool CompareBatchesBackToFront(Batch* lhs, Batch* rhs)
  57. {
  58. if (lhs->renderOrder_ != rhs->renderOrder_)
  59. return lhs->renderOrder_ < rhs->renderOrder_;
  60. else if (lhs->distance_ != rhs->distance_)
  61. return lhs->distance_ > rhs->distance_;
  62. else
  63. return lhs->sortKey_ < rhs->sortKey_;
  64. }
  65. inline bool CompareInstancesFrontToBack(const InstanceData& lhs, const InstanceData& rhs)
  66. {
  67. return lhs.distance_ < rhs.distance_;
  68. }
  69. inline bool CompareBatchGroupOrder(BatchGroup* lhs, BatchGroup* rhs)
  70. {
  71. return lhs->renderOrder_ < rhs->renderOrder_;
  72. }
  73. void CalculateShadowMatrix(Matrix4& dest, LightBatchQueue* queue, unsigned split, Renderer* renderer)
  74. {
  75. Camera* shadowCamera = queue->shadowSplits_[split].shadowCamera_;
  76. const IntRect& viewport = queue->shadowSplits_[split].shadowViewport_;
  77. Matrix3x4 shadowView(shadowCamera->GetView());
  78. Matrix4 shadowProj(shadowCamera->GetGPUProjection());
  79. Matrix4 texAdjust(Matrix4::IDENTITY);
  80. Texture2D* shadowMap = queue->shadowMap_;
  81. if (!shadowMap)
  82. return;
  83. float width = (float)shadowMap->GetWidth();
  84. float height = (float)shadowMap->GetHeight();
  85. Vector3 offset(
  86. (float)viewport.left_ / width,
  87. (float)viewport.top_ / height,
  88. 0.0f
  89. );
  90. Vector3 scale(
  91. 0.5f * (float)viewport.Width() / width,
  92. 0.5f * (float)viewport.Height() / height,
  93. 1.0f
  94. );
  95. // Add pixel-perfect offset if needed by the graphics API
  96. const Vector2& pixelUVOffset = Graphics::GetPixelUVOffset();
  97. offset.x_ += scale.x_ + pixelUVOffset.x_ / width;
  98. offset.y_ += scale.y_ + pixelUVOffset.y_ / height;
  99. #ifdef ATOMIC_OPENGL
  100. offset.z_ = 0.5f;
  101. scale.z_ = 0.5f;
  102. offset.y_ = 1.0f - offset.y_;
  103. #else
  104. scale.y_ = -scale.y_;
  105. #endif
  106. // If using 4 shadow samples, offset the position diagonally by half pixel
  107. if (renderer->GetShadowQuality() == SHADOWQUALITY_PCF_16BIT || renderer->GetShadowQuality() == SHADOWQUALITY_PCF_24BIT)
  108. {
  109. offset.x_ -= 0.5f / width;
  110. offset.y_ -= 0.5f / height;
  111. }
  112. texAdjust.SetTranslation(offset);
  113. texAdjust.SetScale(scale);
  114. dest = texAdjust * shadowProj * shadowView;
  115. }
  116. void CalculateSpotMatrix(Matrix4& dest, Light* light)
  117. {
  118. Node* lightNode = light->GetNode();
  119. Matrix3x4 spotView = Matrix3x4(lightNode->GetWorldPosition(), lightNode->GetWorldRotation(), 1.0f).Inverse();
  120. Matrix4 spotProj(Matrix4::ZERO);
  121. Matrix4 texAdjust(Matrix4::IDENTITY);
  122. // Make the projected light slightly smaller than the shadow map to prevent light spill
  123. float h = 1.005f / tanf(light->GetFov() * M_DEGTORAD * 0.5f);
  124. float w = h / light->GetAspectRatio();
  125. spotProj.m00_ = w;
  126. spotProj.m11_ = h;
  127. spotProj.m22_ = 1.0f / Max(light->GetRange(), M_EPSILON);
  128. spotProj.m32_ = 1.0f;
  129. #ifdef ATOMIC_OPENGL
  130. texAdjust.SetTranslation(Vector3(0.5f, 0.5f, 0.5f));
  131. texAdjust.SetScale(Vector3(0.5f, -0.5f, 0.5f));
  132. #else
  133. texAdjust.SetTranslation(Vector3(0.5f, 0.5f, 0.0f));
  134. texAdjust.SetScale(Vector3(0.5f, -0.5f, 1.0f));
  135. #endif
  136. dest = texAdjust * spotProj * spotView;
  137. }
  138. void Batch::CalculateSortKey()
  139. {
  140. unsigned shaderID = (unsigned)(
  141. ((*((unsigned*)&vertexShader_) / sizeof(ShaderVariation)) + (*((unsigned*)&pixelShader_) / sizeof(ShaderVariation))) &
  142. 0x7fff);
  143. if (!isBase_)
  144. shaderID |= 0x8000;
  145. unsigned lightQueueID = (unsigned)((*((unsigned*)&lightQueue_) / sizeof(LightBatchQueue)) & 0xffff);
  146. unsigned materialID = (unsigned)((*((unsigned*)&material_) / sizeof(Material)) & 0xffff);
  147. unsigned geometryID = (unsigned)((*((unsigned*)&geometry_) / sizeof(Geometry)) & 0xffff);
  148. sortKey_ = (((unsigned long long)shaderID) << 48) | (((unsigned long long)lightQueueID) << 32) |
  149. (((unsigned long long)materialID) << 16) | geometryID;
  150. }
  151. void Batch::Prepare(View* view, Camera* camera, bool setModelTransform, bool allowDepthWrite) const
  152. {
  153. if (!vertexShader_ || !pixelShader_)
  154. return;
  155. Graphics* graphics = view->GetGraphics();
  156. Renderer* renderer = view->GetRenderer();
  157. Node* cameraNode = camera ? camera->GetNode() : 0;
  158. Light* light = lightQueue_ ? lightQueue_->light_ : 0;
  159. Texture2D* shadowMap = lightQueue_ ? lightQueue_->shadowMap_ : 0;
  160. // Set shaders first. The available shader parameters and their register/uniform positions depend on the currently set shaders
  161. graphics->SetShaders(vertexShader_, pixelShader_);
  162. // Set pass / material-specific renderstates
  163. if (pass_ && material_)
  164. {
  165. BlendMode blend = pass_->GetBlendMode();
  166. // Turn additive blending into subtract if the light is negative
  167. if (light && light->IsNegative())
  168. {
  169. if (blend == BLEND_ADD)
  170. blend = BLEND_SUBTRACT;
  171. else if (blend == BLEND_ADDALPHA)
  172. blend = BLEND_SUBTRACTALPHA;
  173. }
  174. graphics->SetBlendMode(blend, pass_->GetAlphaToCoverage() || material_->GetAlphaToCoverage());
  175. bool isShadowPass = pass_->GetIndex() == Technique::shadowPassIndex;
  176. CullMode effectiveCullMode = pass_->GetCullMode();
  177. // Get cull mode from material if pass doesn't override it
  178. if (effectiveCullMode == MAX_CULLMODES)
  179. effectiveCullMode = isShadowPass ? material_->GetShadowCullMode() : material_->GetCullMode();
  180. renderer->SetCullMode(effectiveCullMode, camera);
  181. if (!isShadowPass)
  182. {
  183. const BiasParameters& depthBias = material_->GetDepthBias();
  184. graphics->SetDepthBias(depthBias.constantBias_, depthBias.slopeScaledBias_);
  185. }
  186. // Use the "least filled" fill mode combined from camera & material
  187. graphics->SetFillMode((FillMode)(Max(camera->GetFillMode(), material_->GetFillMode())));
  188. graphics->SetDepthTest(pass_->GetDepthTestMode());
  189. graphics->SetDepthWrite(pass_->GetDepthWrite() && allowDepthWrite);
  190. }
  191. // Set global (per-frame) shader parameters
  192. if (graphics->NeedParameterUpdate(SP_FRAME, (void*)0))
  193. view->SetGlobalShaderParameters();
  194. // Set camera & viewport shader parameters
  195. unsigned cameraHash = (unsigned)(size_t)camera;
  196. IntRect viewport = graphics->GetViewport();
  197. IntVector2 viewSize = IntVector2(viewport.Width(), viewport.Height());
  198. unsigned viewportHash = (unsigned)(viewSize.x_ | (viewSize.y_ << 16));
  199. if (graphics->NeedParameterUpdate(SP_CAMERA, reinterpret_cast<const void*>(cameraHash + viewportHash)))
  200. {
  201. view->SetCameraShaderParameters(camera);
  202. // During renderpath commands the G-Buffer or viewport texture is assumed to always be viewport-sized
  203. view->SetGBufferShaderParameters(viewSize, IntRect(0, 0, viewSize.x_, viewSize.y_));
  204. }
  205. // Set model or skinning transforms
  206. if (setModelTransform && graphics->NeedParameterUpdate(SP_OBJECT, worldTransform_))
  207. {
  208. if (geometryType_ == GEOM_SKINNED)
  209. {
  210. graphics->SetShaderParameter(VSP_SKINMATRICES, reinterpret_cast<const float*>(worldTransform_),
  211. 12 * numWorldTransforms_);
  212. }
  213. else
  214. graphics->SetShaderParameter(VSP_MODEL, *worldTransform_);
  215. // Set the orientation for billboards, either from the object itself or from the camera
  216. if (geometryType_ == GEOM_BILLBOARD)
  217. {
  218. if (numWorldTransforms_ > 1)
  219. graphics->SetShaderParameter(VSP_BILLBOARDROT, worldTransform_[1].RotationMatrix());
  220. else
  221. graphics->SetShaderParameter(VSP_BILLBOARDROT, cameraNode->GetWorldRotation().RotationMatrix());
  222. }
  223. }
  224. // Set zone-related shader parameters
  225. BlendMode blend = graphics->GetBlendMode();
  226. // If the pass is additive, override fog color to black so that shaders do not need a separate additive path
  227. bool overrideFogColorToBlack = blend == BLEND_ADD || blend == BLEND_ADDALPHA;
  228. unsigned zoneHash = (unsigned)(size_t)zone_;
  229. if (overrideFogColorToBlack)
  230. zoneHash += 0x80000000;
  231. if (zone_ && graphics->NeedParameterUpdate(SP_ZONE, reinterpret_cast<const void*>(zoneHash)))
  232. {
  233. graphics->SetShaderParameter(VSP_AMBIENTSTARTCOLOR, zone_->GetAmbientStartColor());
  234. graphics->SetShaderParameter(VSP_AMBIENTENDCOLOR,
  235. zone_->GetAmbientEndColor().ToVector4() - zone_->GetAmbientStartColor().ToVector4());
  236. const BoundingBox& box = zone_->GetBoundingBox();
  237. Vector3 boxSize = box.Size();
  238. Matrix3x4 adjust(Matrix3x4::IDENTITY);
  239. adjust.SetScale(Vector3(1.0f / boxSize.x_, 1.0f / boxSize.y_, 1.0f / boxSize.z_));
  240. adjust.SetTranslation(Vector3(0.5f, 0.5f, 0.5f));
  241. Matrix3x4 zoneTransform = adjust * zone_->GetInverseWorldTransform();
  242. graphics->SetShaderParameter(VSP_ZONE, zoneTransform);
  243. graphics->SetShaderParameter(PSP_AMBIENTCOLOR, zone_->GetAmbientColor());
  244. graphics->SetShaderParameter(PSP_FOGCOLOR, overrideFogColorToBlack ? Color::BLACK : zone_->GetFogColor());
  245. float farClip = camera->GetFarClip();
  246. float fogStart = Min(zone_->GetFogStart(), farClip);
  247. float fogEnd = Min(zone_->GetFogEnd(), farClip);
  248. if (fogStart >= fogEnd * (1.0f - M_LARGE_EPSILON))
  249. fogStart = fogEnd * (1.0f - M_LARGE_EPSILON);
  250. float fogRange = Max(fogEnd - fogStart, M_EPSILON);
  251. Vector4 fogParams(fogEnd / farClip, farClip / fogRange, 0.0f, 0.0f);
  252. Node* zoneNode = zone_->GetNode();
  253. if (zone_->GetHeightFog() && zoneNode)
  254. {
  255. Vector3 worldFogHeightVec = zoneNode->GetWorldTransform() * Vector3(0.0f, zone_->GetFogHeight(), 0.0f);
  256. fogParams.z_ = worldFogHeightVec.y_;
  257. fogParams.w_ = zone_->GetFogHeightScale() / Max(zoneNode->GetWorldScale().y_, M_EPSILON);
  258. }
  259. graphics->SetShaderParameter(PSP_FOGPARAMS, fogParams);
  260. }
  261. // Set light-related shader parameters
  262. if (lightQueue_)
  263. {
  264. if (light && graphics->NeedParameterUpdate(SP_LIGHT, lightQueue_))
  265. {
  266. Node* lightNode = light->GetNode();
  267. float atten = 1.0f / Max(light->GetRange(), M_EPSILON);
  268. Vector3 lightDir(lightNode->GetWorldRotation() * Vector3::BACK);
  269. Vector4 lightPos(lightNode->GetWorldPosition(), atten);
  270. graphics->SetShaderParameter(VSP_LIGHTDIR, lightDir);
  271. graphics->SetShaderParameter(VSP_LIGHTPOS, lightPos);
  272. if (graphics->HasShaderParameter(VSP_LIGHTMATRICES))
  273. {
  274. switch (light->GetLightType())
  275. {
  276. case LIGHT_DIRECTIONAL:
  277. {
  278. Matrix4 shadowMatrices[MAX_CASCADE_SPLITS];
  279. unsigned numSplits = Min(MAX_CASCADE_SPLITS, lightQueue_->shadowSplits_.Size());
  280. for (unsigned i = 0; i < numSplits; ++i)
  281. CalculateShadowMatrix(shadowMatrices[i], lightQueue_, i, renderer);
  282. graphics->SetShaderParameter(VSP_LIGHTMATRICES, shadowMatrices[0].Data(), 16 * numSplits);
  283. }
  284. break;
  285. case LIGHT_SPOT:
  286. {
  287. Matrix4 shadowMatrices[2];
  288. CalculateSpotMatrix(shadowMatrices[0], light);
  289. bool isShadowed = shadowMap && graphics->HasTextureUnit(TU_SHADOWMAP);
  290. if (isShadowed)
  291. CalculateShadowMatrix(shadowMatrices[1], lightQueue_, 0, renderer);
  292. graphics->SetShaderParameter(VSP_LIGHTMATRICES, shadowMatrices[0].Data(), isShadowed ? 32 : 16);
  293. }
  294. break;
  295. case LIGHT_POINT:
  296. {
  297. Matrix4 lightVecRot(lightNode->GetWorldRotation().RotationMatrix());
  298. // HLSL compiler will pack the parameters as if the matrix is only 3x4, so must be careful to not overwrite
  299. // the next parameter
  300. #ifdef ATOMIC_OPENGL
  301. graphics->SetShaderParameter(VSP_LIGHTMATRICES, lightVecRot.Data(), 16);
  302. #else
  303. graphics->SetShaderParameter(VSP_LIGHTMATRICES, lightVecRot.Data(), 12);
  304. #endif
  305. }
  306. break;
  307. }
  308. }
  309. float fade = 1.0f;
  310. float fadeEnd = light->GetDrawDistance();
  311. float fadeStart = light->GetFadeDistance();
  312. // Do fade calculation for light if both fade & draw distance defined
  313. if (light->GetLightType() != LIGHT_DIRECTIONAL && fadeEnd > 0.0f && fadeStart > 0.0f && fadeStart < fadeEnd)
  314. fade = Min(1.0f - (light->GetDistance() - fadeStart) / (fadeEnd - fadeStart), 1.0f);
  315. // Negative lights will use subtract blending, so write absolute RGB values to the shader parameter
  316. graphics->SetShaderParameter(PSP_LIGHTCOLOR, Color(light->GetEffectiveColor().Abs(),
  317. light->GetEffectiveSpecularIntensity()) * fade);
  318. graphics->SetShaderParameter(PSP_LIGHTDIR, lightDir);
  319. graphics->SetShaderParameter(PSP_LIGHTPOS, lightPos);
  320. if (graphics->HasShaderParameter(PSP_LIGHTMATRICES))
  321. {
  322. switch (light->GetLightType())
  323. {
  324. case LIGHT_DIRECTIONAL:
  325. {
  326. Matrix4 shadowMatrices[MAX_CASCADE_SPLITS];
  327. unsigned numSplits = Min(MAX_CASCADE_SPLITS, lightQueue_->shadowSplits_.Size());
  328. for (unsigned i = 0; i < numSplits; ++i)
  329. CalculateShadowMatrix(shadowMatrices[i], lightQueue_, i, renderer);
  330. graphics->SetShaderParameter(PSP_LIGHTMATRICES, shadowMatrices[0].Data(), 16 * numSplits);
  331. }
  332. break;
  333. case LIGHT_SPOT:
  334. {
  335. Matrix4 shadowMatrices[2];
  336. CalculateSpotMatrix(shadowMatrices[0], light);
  337. bool isShadowed = lightQueue_->shadowMap_ != 0;
  338. if (isShadowed)
  339. CalculateShadowMatrix(shadowMatrices[1], lightQueue_, 0, renderer);
  340. graphics->SetShaderParameter(PSP_LIGHTMATRICES, shadowMatrices[0].Data(), isShadowed ? 32 : 16);
  341. }
  342. break;
  343. case LIGHT_POINT:
  344. {
  345. Matrix4 lightVecRot(lightNode->GetWorldRotation().RotationMatrix());
  346. // HLSL compiler will pack the parameters as if the matrix is only 3x4, so must be careful to not overwrite
  347. // the next parameter
  348. #ifdef ATOMIC_OPENGL
  349. graphics->SetShaderParameter(PSP_LIGHTMATRICES, lightVecRot.Data(), 16);
  350. #else
  351. graphics->SetShaderParameter(PSP_LIGHTMATRICES, lightVecRot.Data(), 12);
  352. #endif
  353. }
  354. break;
  355. }
  356. }
  357. // Set shadow mapping shader parameters
  358. if (shadowMap)
  359. {
  360. {
  361. // Calculate point light shadow sampling offsets (unrolled cube map)
  362. unsigned faceWidth = (unsigned)(shadowMap->GetWidth() / 2);
  363. unsigned faceHeight = (unsigned)(shadowMap->GetHeight() / 3);
  364. float width = (float)shadowMap->GetWidth();
  365. float height = (float)shadowMap->GetHeight();
  366. #ifdef ATOMIC_OPENGL
  367. float mulX = (float)(faceWidth - 3) / width;
  368. float mulY = (float)(faceHeight - 3) / height;
  369. float addX = 1.5f / width;
  370. float addY = 1.5f / height;
  371. #else
  372. float mulX = (float)(faceWidth - 4) / width;
  373. float mulY = (float)(faceHeight - 4) / height;
  374. float addX = 2.5f / width;
  375. float addY = 2.5f / height;
  376. #endif
  377. // If using 4 shadow samples, offset the position diagonally by half pixel
  378. if (renderer->GetShadowQuality() == SHADOWQUALITY_PCF_16BIT || renderer->GetShadowQuality() == SHADOWQUALITY_PCF_24BIT)
  379. {
  380. addX -= 0.5f / width;
  381. addY -= 0.5f / height;
  382. }
  383. graphics->SetShaderParameter(PSP_SHADOWCUBEADJUST, Vector4(mulX, mulY, addX, addY));
  384. }
  385. {
  386. // Calculate shadow camera depth parameters for point light shadows and shadow fade parameters for
  387. // directional light shadows, stored in the same uniform
  388. Camera* shadowCamera = lightQueue_->shadowSplits_[0].shadowCamera_;
  389. float nearClip = shadowCamera->GetNearClip();
  390. float farClip = shadowCamera->GetFarClip();
  391. float q = farClip / (farClip - nearClip);
  392. float r = -q * nearClip;
  393. const CascadeParameters& parameters = light->GetShadowCascade();
  394. float viewFarClip = camera->GetFarClip();
  395. float shadowRange = parameters.GetShadowRange();
  396. float fadeStart = parameters.fadeStart_ * shadowRange / viewFarClip;
  397. float fadeEnd = shadowRange / viewFarClip;
  398. float fadeRange = fadeEnd - fadeStart;
  399. graphics->SetShaderParameter(PSP_SHADOWDEPTHFADE, Vector4(q, r, fadeStart, 1.0f / fadeRange));
  400. }
  401. {
  402. float intensity = light->GetShadowIntensity();
  403. float fadeStart = light->GetShadowFadeDistance();
  404. float fadeEnd = light->GetShadowDistance();
  405. if (fadeStart > 0.0f && fadeEnd > 0.0f && fadeEnd > fadeStart)
  406. intensity =
  407. Lerp(intensity, 1.0f, Clamp((light->GetDistance() - fadeStart) / (fadeEnd - fadeStart), 0.0f, 1.0f));
  408. float pcfValues = (1.0f - intensity);
  409. float samples = 1.0f;
  410. if (renderer->GetShadowQuality() == SHADOWQUALITY_PCF_16BIT || renderer->GetShadowQuality() == SHADOWQUALITY_PCF_24BIT)
  411. samples = 4.0f;
  412. graphics->SetShaderParameter(PSP_SHADOWINTENSITY, Vector4(pcfValues / samples, intensity, 0.0f, 0.0f));
  413. }
  414. float sizeX = 1.0f / (float)shadowMap->GetWidth();
  415. float sizeY = 1.0f / (float)shadowMap->GetHeight();
  416. graphics->SetShaderParameter(PSP_SHADOWMAPINVSIZE, Vector2(sizeX, sizeY));
  417. Vector4 lightSplits(M_LARGE_VALUE, M_LARGE_VALUE, M_LARGE_VALUE, M_LARGE_VALUE);
  418. if (lightQueue_->shadowSplits_.Size() > 1)
  419. lightSplits.x_ = lightQueue_->shadowSplits_[0].farSplit_ / camera->GetFarClip();
  420. if (lightQueue_->shadowSplits_.Size() > 2)
  421. lightSplits.y_ = lightQueue_->shadowSplits_[1].farSplit_ / camera->GetFarClip();
  422. if (lightQueue_->shadowSplits_.Size() > 3)
  423. lightSplits.z_ = lightQueue_->shadowSplits_[2].farSplit_ / camera->GetFarClip();
  424. graphics->SetShaderParameter(PSP_SHADOWSPLITS, lightSplits);
  425. if (graphics->HasShaderParameter(PSP_VSMSHADOWPARAMS))
  426. graphics->SetShaderParameter(PSP_VSMSHADOWPARAMS, renderer->GetVSMShadowParameters());
  427. if (light->GetShadowBias().normalOffset_ > 0.0f)
  428. {
  429. Vector4 normalOffsetScale(Vector4::ZERO);
  430. // Scale normal offset strength with the width of the shadow camera view
  431. if (light->GetLightType() != LIGHT_DIRECTIONAL)
  432. {
  433. Camera* shadowCamera = lightQueue_->shadowSplits_[0].shadowCamera_;
  434. normalOffsetScale.x_ = 2.0f * tanf(shadowCamera->GetFov() * M_DEGTORAD * 0.5f) * shadowCamera->GetFarClip();
  435. }
  436. else
  437. {
  438. normalOffsetScale.x_ = lightQueue_->shadowSplits_[0].shadowCamera_->GetOrthoSize();
  439. if (lightQueue_->shadowSplits_.Size() > 1)
  440. normalOffsetScale.y_ = lightQueue_->shadowSplits_[1].shadowCamera_->GetOrthoSize();
  441. if (lightQueue_->shadowSplits_.Size() > 2)
  442. normalOffsetScale.z_ = lightQueue_->shadowSplits_[2].shadowCamera_->GetOrthoSize();
  443. if (lightQueue_->shadowSplits_.Size() > 3)
  444. normalOffsetScale.w_ = lightQueue_->shadowSplits_[3].shadowCamera_->GetOrthoSize();
  445. }
  446. normalOffsetScale *= light->GetShadowBias().normalOffset_;
  447. #ifdef GL_ES_VERSION_2_0
  448. normalOffsetScale *= renderer->GetMobileNormalOffsetMul();
  449. #endif
  450. graphics->SetShaderParameter(VSP_NORMALOFFSETSCALE, normalOffsetScale);
  451. graphics->SetShaderParameter(PSP_NORMALOFFSETSCALE, normalOffsetScale);
  452. }
  453. }
  454. }
  455. else if (lightQueue_->vertexLights_.Size() && graphics->HasShaderParameter(VSP_VERTEXLIGHTS) &&
  456. graphics->NeedParameterUpdate(SP_LIGHT, lightQueue_))
  457. {
  458. Vector4 vertexLights[MAX_VERTEX_LIGHTS * 3];
  459. const PODVector<Light*>& lights = lightQueue_->vertexLights_;
  460. for (unsigned i = 0; i < lights.Size(); ++i)
  461. {
  462. Light* vertexLight = lights[i];
  463. Node* vertexLightNode = vertexLight->GetNode();
  464. LightType type = vertexLight->GetLightType();
  465. // Attenuation
  466. float invRange, cutoff, invCutoff;
  467. if (type == LIGHT_DIRECTIONAL)
  468. invRange = 0.0f;
  469. else
  470. invRange = 1.0f / Max(vertexLight->GetRange(), M_EPSILON);
  471. if (type == LIGHT_SPOT)
  472. {
  473. cutoff = Cos(vertexLight->GetFov() * 0.5f);
  474. invCutoff = 1.0f / (1.0f - cutoff);
  475. }
  476. else
  477. {
  478. cutoff = -1.0f;
  479. invCutoff = 1.0f;
  480. }
  481. // Color
  482. float fade = 1.0f;
  483. float fadeEnd = vertexLight->GetDrawDistance();
  484. float fadeStart = vertexLight->GetFadeDistance();
  485. // Do fade calculation for light if both fade & draw distance defined
  486. if (vertexLight->GetLightType() != LIGHT_DIRECTIONAL && fadeEnd > 0.0f && fadeStart > 0.0f && fadeStart < fadeEnd)
  487. fade = Min(1.0f - (vertexLight->GetDistance() - fadeStart) / (fadeEnd - fadeStart), 1.0f);
  488. Color color = vertexLight->GetEffectiveColor() * fade;
  489. vertexLights[i * 3] = Vector4(color.r_, color.g_, color.b_, invRange);
  490. // Direction
  491. vertexLights[i * 3 + 1] = Vector4(-(vertexLightNode->GetWorldDirection()), cutoff);
  492. // Position
  493. vertexLights[i * 3 + 2] = Vector4(vertexLightNode->GetWorldPosition(), invCutoff);
  494. }
  495. graphics->SetShaderParameter(VSP_VERTEXLIGHTS, vertexLights[0].Data(), lights.Size() * 3 * 4);
  496. }
  497. }
  498. // Set zone texture if necessary
  499. #ifndef GL_ES_VERSION_2_0
  500. if (zone_ && graphics->HasTextureUnit(TU_ZONE))
  501. graphics->SetTexture(TU_ZONE, zone_->GetZoneTexture());
  502. #else
  503. // On OpenGL ES set the zone texture to the environment unit instead
  504. if (zone_ && zone_->GetZoneTexture() && graphics->HasTextureUnit(TU_ENVIRONMENT))
  505. graphics->SetTexture(TU_ENVIRONMENT, zone_->GetZoneTexture());
  506. #endif
  507. // Set material-specific shader parameters and textures
  508. if (material_)
  509. {
  510. if (graphics->NeedParameterUpdate(SP_MATERIAL, reinterpret_cast<const void*>(material_->GetShaderParameterHash())))
  511. {
  512. const HashMap<StringHash, MaterialShaderParameter>& parameters = material_->GetShaderParameters();
  513. for (HashMap<StringHash, MaterialShaderParameter>::ConstIterator i = parameters.Begin(); i != parameters.End(); ++i)
  514. graphics->SetShaderParameter(i->first_, i->second_.value_);
  515. }
  516. const HashMap<TextureUnit, SharedPtr<Texture> >& textures = material_->GetTextures();
  517. for (HashMap<TextureUnit, SharedPtr<Texture> >::ConstIterator i = textures.Begin(); i != textures.End(); ++i)
  518. {
  519. if (graphics->HasTextureUnit(i->first_))
  520. graphics->SetTexture(i->first_, i->second_.Get());
  521. }
  522. }
  523. // Set light-related textures
  524. if (light)
  525. {
  526. if (shadowMap && graphics->HasTextureUnit(TU_SHADOWMAP))
  527. graphics->SetTexture(TU_SHADOWMAP, shadowMap);
  528. if (graphics->HasTextureUnit(TU_LIGHTRAMP))
  529. {
  530. Texture* rampTexture = light->GetRampTexture();
  531. if (!rampTexture)
  532. rampTexture = renderer->GetDefaultLightRamp();
  533. graphics->SetTexture(TU_LIGHTRAMP, rampTexture);
  534. }
  535. if (graphics->HasTextureUnit(TU_LIGHTSHAPE))
  536. {
  537. Texture* shapeTexture = light->GetShapeTexture();
  538. if (!shapeTexture && light->GetLightType() == LIGHT_SPOT)
  539. shapeTexture = renderer->GetDefaultLightSpot();
  540. graphics->SetTexture(TU_LIGHTSHAPE, shapeTexture);
  541. }
  542. }
  543. }
  544. void Batch::Draw(View* view, Camera* camera, bool allowDepthWrite) const
  545. {
  546. if (!geometry_->IsEmpty())
  547. {
  548. Prepare(view, camera, true, allowDepthWrite);
  549. geometry_->Draw(view->GetGraphics());
  550. }
  551. }
  552. void BatchGroup::SetInstancingData(void* lockedData, unsigned stride, unsigned& freeIndex)
  553. {
  554. // Do not use up buffer space if not going to draw as instanced
  555. if (geometryType_ != GEOM_INSTANCED)
  556. return;
  557. startIndex_ = freeIndex;
  558. unsigned char* buffer = static_cast<unsigned char*>(lockedData) + startIndex_ * stride;
  559. for (unsigned i = 0; i < instances_.Size(); ++i)
  560. {
  561. const InstanceData& instance = instances_[i];
  562. memcpy(buffer, instance.worldTransform_, sizeof(Matrix3x4));
  563. if (instance.instancingData_)
  564. memcpy(buffer + sizeof(Matrix3x4), instance.instancingData_, stride - sizeof(Matrix3x4));
  565. buffer += stride;
  566. }
  567. freeIndex += instances_.Size();
  568. }
  569. void BatchGroup::Draw(View* view, Camera* camera, bool allowDepthWrite) const
  570. {
  571. Graphics* graphics = view->GetGraphics();
  572. Renderer* renderer = view->GetRenderer();
  573. if (instances_.Size() && !geometry_->IsEmpty())
  574. {
  575. // Draw as individual objects if instancing not supported or could not fill the instancing buffer
  576. VertexBuffer* instanceBuffer = renderer->GetInstancingBuffer();
  577. if (!instanceBuffer || geometryType_ != GEOM_INSTANCED || startIndex_ == M_MAX_UNSIGNED)
  578. {
  579. Batch::Prepare(view, camera, false, allowDepthWrite);
  580. graphics->SetIndexBuffer(geometry_->GetIndexBuffer());
  581. graphics->SetVertexBuffers(geometry_->GetVertexBuffers());
  582. for (unsigned i = 0; i < instances_.Size(); ++i)
  583. {
  584. if (graphics->NeedParameterUpdate(SP_OBJECT, instances_[i].worldTransform_))
  585. graphics->SetShaderParameter(VSP_MODEL, *instances_[i].worldTransform_);
  586. graphics->Draw(geometry_->GetPrimitiveType(), geometry_->GetIndexStart(), geometry_->GetIndexCount(),
  587. geometry_->GetVertexStart(), geometry_->GetVertexCount());
  588. }
  589. }
  590. else
  591. {
  592. Batch::Prepare(view, camera, false, allowDepthWrite);
  593. // Get the geometry vertex buffers, then add the instancing stream buffer
  594. // Hack: use a const_cast to avoid dynamic allocation of new temp vectors
  595. Vector<SharedPtr<VertexBuffer> >& vertexBuffers = const_cast<Vector<SharedPtr<VertexBuffer> >&>(
  596. geometry_->GetVertexBuffers());
  597. vertexBuffers.Push(SharedPtr<VertexBuffer>(instanceBuffer));
  598. graphics->SetIndexBuffer(geometry_->GetIndexBuffer());
  599. graphics->SetVertexBuffers(vertexBuffers, startIndex_);
  600. graphics->DrawInstanced(geometry_->GetPrimitiveType(), geometry_->GetIndexStart(), geometry_->GetIndexCount(),
  601. geometry_->GetVertexStart(), geometry_->GetVertexCount(), instances_.Size());
  602. // Remove the instancing buffer & element mask now
  603. vertexBuffers.Pop();
  604. }
  605. }
  606. }
  607. unsigned BatchGroupKey::ToHash() const
  608. {
  609. return (unsigned)((size_t)zone_ / sizeof(Zone) + (size_t)lightQueue_ / sizeof(LightBatchQueue) + (size_t)pass_ / sizeof(Pass) +
  610. (size_t)material_ / sizeof(Material) + (size_t)geometry_ / sizeof(Geometry)) + renderOrder_;
  611. }
  612. void BatchQueue::Clear(int maxSortedInstances)
  613. {
  614. batches_.Clear();
  615. sortedBatches_.Clear();
  616. batchGroups_.Clear();
  617. maxSortedInstances_ = (unsigned)maxSortedInstances;
  618. }
  619. void BatchQueue::SortBackToFront()
  620. {
  621. sortedBatches_.Resize(batches_.Size());
  622. for (unsigned i = 0; i < batches_.Size(); ++i)
  623. sortedBatches_[i] = &batches_[i];
  624. Sort(sortedBatches_.Begin(), sortedBatches_.End(), CompareBatchesBackToFront);
  625. sortedBatchGroups_.Resize(batchGroups_.Size());
  626. unsigned index = 0;
  627. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  628. sortedBatchGroups_[index++] = &i->second_;
  629. Sort(sortedBatchGroups_.Begin(), sortedBatchGroups_.End(), CompareBatchGroupOrder);
  630. }
  631. void BatchQueue::SortFrontToBack()
  632. {
  633. sortedBatches_.Clear();
  634. for (unsigned i = 0; i < batches_.Size(); ++i)
  635. sortedBatches_.Push(&batches_[i]);
  636. SortFrontToBack2Pass(sortedBatches_);
  637. // Sort each group front to back
  638. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  639. {
  640. if (i->second_.instances_.Size() <= maxSortedInstances_)
  641. {
  642. Sort(i->second_.instances_.Begin(), i->second_.instances_.End(), CompareInstancesFrontToBack);
  643. if (i->second_.instances_.Size())
  644. i->second_.distance_ = i->second_.instances_[0].distance_;
  645. }
  646. else
  647. {
  648. float minDistance = M_INFINITY;
  649. for (PODVector<InstanceData>::ConstIterator j = i->second_.instances_.Begin(); j != i->second_.instances_.End(); ++j)
  650. minDistance = Min(minDistance, j->distance_);
  651. i->second_.distance_ = minDistance;
  652. }
  653. }
  654. sortedBatchGroups_.Resize(batchGroups_.Size());
  655. unsigned index = 0;
  656. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  657. sortedBatchGroups_[index++] = &i->second_;
  658. SortFrontToBack2Pass(reinterpret_cast<PODVector<Batch*>& >(sortedBatchGroups_));
  659. }
  660. void BatchQueue::SortFrontToBack2Pass(PODVector<Batch*>& batches)
  661. {
  662. // Mobile devices likely use a tiled deferred approach, with which front-to-back sorting is irrelevant. The 2-pass
  663. // method is also time consuming, so just sort with state having priority
  664. #ifdef GL_ES_VERSION_2_0
  665. Sort(batches.Begin(), batches.End(), CompareBatchesState);
  666. #else
  667. // For desktop, first sort by distance and remap shader/material/geometry IDs in the sort key
  668. Sort(batches.Begin(), batches.End(), CompareBatchesFrontToBack);
  669. unsigned freeShaderID = 0;
  670. unsigned short freeMaterialID = 0;
  671. unsigned short freeGeometryID = 0;
  672. for (PODVector<Batch*>::Iterator i = batches.Begin(); i != batches.End(); ++i)
  673. {
  674. Batch* batch = *i;
  675. unsigned shaderID = (unsigned)(batch->sortKey_ >> 32);
  676. HashMap<unsigned, unsigned>::ConstIterator j = shaderRemapping_.Find(shaderID);
  677. if (j != shaderRemapping_.End())
  678. shaderID = j->second_;
  679. else
  680. {
  681. shaderID = shaderRemapping_[shaderID] = freeShaderID | (shaderID & 0x80000000);
  682. ++freeShaderID;
  683. }
  684. unsigned short materialID = (unsigned short)(batch->sortKey_ & 0xffff0000);
  685. HashMap<unsigned short, unsigned short>::ConstIterator k = materialRemapping_.Find(materialID);
  686. if (k != materialRemapping_.End())
  687. materialID = k->second_;
  688. else
  689. {
  690. materialID = materialRemapping_[materialID] = freeMaterialID;
  691. ++freeMaterialID;
  692. }
  693. unsigned short geometryID = (unsigned short)(batch->sortKey_ & 0xffff);
  694. HashMap<unsigned short, unsigned short>::ConstIterator l = geometryRemapping_.Find(geometryID);
  695. if (l != geometryRemapping_.End())
  696. geometryID = l->second_;
  697. else
  698. {
  699. geometryID = geometryRemapping_[geometryID] = freeGeometryID;
  700. ++freeGeometryID;
  701. }
  702. batch->sortKey_ = (((unsigned long long)shaderID) << 32) | (((unsigned long long)materialID) << 16) | geometryID;
  703. }
  704. shaderRemapping_.Clear();
  705. materialRemapping_.Clear();
  706. geometryRemapping_.Clear();
  707. // Finally sort again with the rewritten ID's
  708. Sort(batches.Begin(), batches.End(), CompareBatchesState);
  709. #endif
  710. }
  711. void BatchQueue::SetInstancingData(void* lockedData, unsigned stride, unsigned& freeIndex)
  712. {
  713. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  714. i->second_.SetInstancingData(lockedData, stride, freeIndex);
  715. }
  716. void BatchQueue::Draw(View* view, Camera* camera, bool markToStencil, bool usingLightOptimization, bool allowDepthWrite) const
  717. {
  718. Graphics* graphics = view->GetGraphics();
  719. Renderer* renderer = view->GetRenderer();
  720. // If View has set up its own light optimizations, do not disturb the stencil/scissor test settings
  721. if (!usingLightOptimization)
  722. {
  723. graphics->SetScissorTest(false);
  724. // During G-buffer rendering, mark opaque pixels' lightmask to stencil buffer if requested
  725. if (!markToStencil)
  726. graphics->SetStencilTest(false);
  727. }
  728. // Instanced
  729. for (PODVector<BatchGroup*>::ConstIterator i = sortedBatchGroups_.Begin(); i != sortedBatchGroups_.End(); ++i)
  730. {
  731. BatchGroup* group = *i;
  732. if (markToStencil)
  733. graphics->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, group->lightMask_);
  734. group->Draw(view, camera, allowDepthWrite);
  735. }
  736. // Non-instanced
  737. for (PODVector<Batch*>::ConstIterator i = sortedBatches_.Begin(); i != sortedBatches_.End(); ++i)
  738. {
  739. Batch* batch = *i;
  740. if (markToStencil)
  741. graphics->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, batch->lightMask_);
  742. if (!usingLightOptimization)
  743. {
  744. // If drawing an alpha batch, we can optimize fillrate by scissor test
  745. if (!batch->isBase_ && batch->lightQueue_)
  746. renderer->OptimizeLightByScissor(batch->lightQueue_->light_, camera);
  747. else
  748. graphics->SetScissorTest(false);
  749. }
  750. batch->Draw(view, camera, allowDepthWrite);
  751. }
  752. }
  753. unsigned BatchQueue::GetNumInstances() const
  754. {
  755. unsigned total = 0;
  756. for (HashMap<BatchGroupKey, BatchGroup>::ConstIterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  757. {
  758. if (i->second_.geometryType_ == GEOM_INSTANCED)
  759. total += i->second_.instances_.Size();
  760. }
  761. return total;
  762. }
  763. }