PhysicsWorld.cpp 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089
  1. //
  2. // Copyright (c) 2008-2017 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Core/Context.h"
  24. #include "../Core/Mutex.h"
  25. #include "../Core/Profiler.h"
  26. #include "../Graphics/DebugRenderer.h"
  27. #include "../Graphics/Model.h"
  28. #include "../IO/Log.h"
  29. #include "../Math/Ray.h"
  30. #include "../Physics/CollisionShape.h"
  31. #include "../Physics/Constraint.h"
  32. #include "../Physics/PhysicsEvents.h"
  33. #include "../Physics/PhysicsUtils.h"
  34. #include "../Physics/PhysicsWorld.h"
  35. #include "../Physics/RaycastVehicle.h"
  36. #include "../Physics/RigidBody.h"
  37. #include "../Scene/Scene.h"
  38. #include "../Scene/SceneEvents.h"
  39. // ATOMIC BEGIN
  40. #include <Bullet/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  41. #include <Bullet/src/BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  42. #include <Bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  43. #include <Bullet/src/BulletCollision/CollisionShapes/btBoxShape.h>
  44. #include <Bullet/src/BulletCollision/CollisionShapes/btSphereShape.h>
  45. #include <Bullet/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  46. #include <Bullet/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  47. // ATOMIC END
  48. extern ContactAddedCallback gContactAddedCallback;
  49. namespace Atomic
  50. {
  51. const char* PHYSICS_CATEGORY = "Physics";
  52. extern const char* SUBSYSTEM_CATEGORY;
  53. static const int MAX_SOLVER_ITERATIONS = 256;
  54. static const int DEFAULT_FPS = 60;
  55. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  56. PhysicsWorldConfig PhysicsWorld::config;
  57. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  58. {
  59. return lhs.distance_ < rhs.distance_;
  60. }
  61. void InternalPreTickCallback(btDynamicsWorld* world, btScalar timeStep)
  62. {
  63. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  64. }
  65. void InternalTickCallback(btDynamicsWorld* world, btScalar timeStep)
  66. {
  67. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  68. }
  69. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0,
  70. int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  71. {
  72. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  73. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  74. cp.m_combinedRestitution =
  75. colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  76. return true;
  77. }
  78. /// Callback for physics world queries.
  79. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  80. {
  81. /// Construct.
  82. PhysicsQueryCallback(PODVector<RigidBody*>& result, unsigned collisionMask) :
  83. result_(result),
  84. collisionMask_(collisionMask)
  85. {
  86. }
  87. /// Add a contact result.
  88. virtual btScalar addSingleResult(btManifoldPoint&, const btCollisionObjectWrapper* colObj0Wrap, int, int,
  89. const btCollisionObjectWrapper* colObj1Wrap, int, int)
  90. {
  91. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  92. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  93. result_.Push(body);
  94. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  95. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  96. result_.Push(body);
  97. return 0.0f;
  98. }
  99. /// Found rigid bodies.
  100. PODVector<RigidBody*>& result_;
  101. /// Collision mask for the query.
  102. unsigned collisionMask_;
  103. };
  104. PhysicsWorld::PhysicsWorld(Context* context) :
  105. Component(context),
  106. collisionConfiguration_(0),
  107. fps_(DEFAULT_FPS),
  108. maxSubSteps_(0),
  109. timeAcc_(0.0f),
  110. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  111. updateEnabled_(true),
  112. interpolation_(true),
  113. internalEdge_(true),
  114. applyingTransforms_(false),
  115. simulating_(false),
  116. debugRenderer_(0),
  117. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  118. {
  119. gContactAddedCallback = CustomMaterialCombinerCallback;
  120. if (PhysicsWorld::config.collisionConfig_)
  121. collisionConfiguration_ = PhysicsWorld::config.collisionConfig_;
  122. else
  123. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  124. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  125. broadphase_ = new btDbvtBroadphase();
  126. solver_ = new btSequentialImpulseConstraintSolver();
  127. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_.Get(), broadphase_.Get(), solver_.Get(), collisionConfiguration_);
  128. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  129. world_->getDispatchInfo().m_useContinuous = true;
  130. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  131. world_->setDebugDrawer(this);
  132. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  133. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  134. world_->setSynchronizeAllMotionStates(true);
  135. }
  136. PhysicsWorld::~PhysicsWorld()
  137. {
  138. if (scene_)
  139. {
  140. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  141. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  142. (*i)->ReleaseConstraint();
  143. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  144. (*i)->ReleaseBody();
  145. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  146. (*i)->ReleaseShape();
  147. }
  148. world_.Reset();
  149. solver_.Reset();
  150. broadphase_.Reset();
  151. collisionDispatcher_.Reset();
  152. // Delete configuration only if it was the default created by PhysicsWorld
  153. if (!PhysicsWorld::config.collisionConfig_)
  154. delete collisionConfiguration_;
  155. collisionConfiguration_ = 0;
  156. }
  157. void PhysicsWorld::RegisterObject(Context* context)
  158. {
  159. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  160. ATOMIC_MIXED_ACCESSOR_ATTRIBUTE("Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  161. ATOMIC_ATTRIBUTE("Physics FPS", int, fps_, DEFAULT_FPS, AM_DEFAULT);
  162. ATOMIC_ATTRIBUTE("Max Substeps", int, maxSubSteps_, 0, AM_DEFAULT);
  163. ATOMIC_ACCESSOR_ATTRIBUTE("Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  164. ATOMIC_ATTRIBUTE("Net Max Angular Vel.", float, maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  165. ATOMIC_ATTRIBUTE("Interpolation", bool, interpolation_, true, AM_FILE);
  166. ATOMIC_ATTRIBUTE("Internal Edge Utility", bool, internalEdge_, true, AM_DEFAULT);
  167. ATOMIC_ACCESSOR_ATTRIBUTE("Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  168. }
  169. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  170. {
  171. if (debugRenderer_)
  172. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  173. else
  174. return false;
  175. }
  176. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  177. {
  178. if (debugRenderer_)
  179. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  180. }
  181. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  182. {
  183. if (debug)
  184. {
  185. ATOMIC_PROFILE(PhysicsDrawDebug);
  186. debugRenderer_ = debug;
  187. debugDepthTest_ = depthTest;
  188. world_->debugDrawWorld();
  189. debugRenderer_ = 0;
  190. }
  191. }
  192. void PhysicsWorld::reportErrorWarning(const char* warningString)
  193. {
  194. ATOMIC_LOGWARNING("Physics: " + String(warningString));
  195. }
  196. void PhysicsWorld::drawContactPoint(const btVector3& pointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime,
  197. const btVector3& color)
  198. {
  199. }
  200. void PhysicsWorld::draw3dText(const btVector3& location, const char* textString)
  201. {
  202. }
  203. void PhysicsWorld::Update(float timeStep)
  204. {
  205. ATOMIC_PROFILE(UpdatePhysics);
  206. float internalTimeStep = 1.0f / fps_;
  207. int maxSubSteps = (int)(timeStep * fps_) + 1;
  208. if (maxSubSteps_ < 0)
  209. {
  210. internalTimeStep = timeStep;
  211. maxSubSteps = 1;
  212. }
  213. else if (maxSubSteps_ > 0)
  214. maxSubSteps = Min(maxSubSteps, maxSubSteps_);
  215. delayedWorldTransforms_.Clear();
  216. simulating_ = true;
  217. if (interpolation_)
  218. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  219. else
  220. {
  221. timeAcc_ += timeStep;
  222. while (timeAcc_ >= internalTimeStep && maxSubSteps > 0)
  223. {
  224. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  225. timeAcc_ -= internalTimeStep;
  226. --maxSubSteps;
  227. }
  228. }
  229. simulating_ = false;
  230. // Apply delayed (parented) world transforms now
  231. while (!delayedWorldTransforms_.Empty())
  232. {
  233. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  234. i != delayedWorldTransforms_.End();)
  235. {
  236. const DelayedWorldTransform& transform = i->second_;
  237. // If parent's transform has already been assigned, can proceed
  238. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  239. {
  240. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  241. i = delayedWorldTransforms_.Erase(i);
  242. }
  243. else
  244. ++i;
  245. }
  246. }
  247. }
  248. void PhysicsWorld::UpdateCollisions()
  249. {
  250. world_->performDiscreteCollisionDetection();
  251. }
  252. void PhysicsWorld::SetFps(int fps)
  253. {
  254. fps_ = (unsigned)Clamp(fps, 1, 1000);
  255. MarkNetworkUpdate();
  256. }
  257. void PhysicsWorld::SetGravity(const Vector3& gravity)
  258. {
  259. world_->setGravity(ToBtVector3(gravity));
  260. MarkNetworkUpdate();
  261. }
  262. void PhysicsWorld::SetMaxSubSteps(int num)
  263. {
  264. maxSubSteps_ = num;
  265. MarkNetworkUpdate();
  266. }
  267. void PhysicsWorld::SetNumIterations(int num)
  268. {
  269. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  270. world_->getSolverInfo().m_numIterations = num;
  271. MarkNetworkUpdate();
  272. }
  273. void PhysicsWorld::SetUpdateEnabled(bool enable)
  274. {
  275. updateEnabled_ = enable;
  276. }
  277. void PhysicsWorld::SetInterpolation(bool enable)
  278. {
  279. interpolation_ = enable;
  280. }
  281. void PhysicsWorld::SetInternalEdge(bool enable)
  282. {
  283. internalEdge_ = enable;
  284. MarkNetworkUpdate();
  285. }
  286. void PhysicsWorld::SetSplitImpulse(bool enable)
  287. {
  288. world_->getSolverInfo().m_splitImpulse = enable;
  289. MarkNetworkUpdate();
  290. }
  291. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  292. {
  293. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  294. MarkNetworkUpdate();
  295. }
  296. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  297. {
  298. ATOMIC_PROFILE(PhysicsRaycast);
  299. if (maxDistance >= M_INFINITY)
  300. ATOMIC_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  301. btCollisionWorld::AllHitsRayResultCallback
  302. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  303. rayCallback.m_collisionFilterGroup = (short)0xffff;
  304. rayCallback.m_collisionFilterMask = (short)collisionMask;
  305. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  306. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  307. {
  308. PhysicsRaycastResult newResult;
  309. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  310. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  311. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  312. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  313. newResult.hitFraction_ = rayCallback.m_closestHitFraction;
  314. result.Push(newResult);
  315. }
  316. Sort(result.Begin(), result.End(), CompareRaycastResults);
  317. }
  318. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  319. {
  320. ATOMIC_PROFILE(PhysicsRaycastSingle);
  321. if (maxDistance >= M_INFINITY)
  322. ATOMIC_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  323. btCollisionWorld::ClosestRayResultCallback
  324. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  325. rayCallback.m_collisionFilterGroup = (short)0xffff;
  326. rayCallback.m_collisionFilterMask = (short)collisionMask;
  327. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  328. if (rayCallback.hasHit())
  329. {
  330. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  331. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  332. result.distance_ = (result.position_ - ray.origin_).Length();
  333. result.hitFraction_ = rayCallback.m_closestHitFraction;
  334. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  335. }
  336. else
  337. {
  338. result.position_ = Vector3::ZERO;
  339. result.normal_ = Vector3::ZERO;
  340. result.distance_ = M_INFINITY;
  341. result.hitFraction_ = 0.0f;
  342. result.body_ = 0;
  343. }
  344. }
  345. void PhysicsWorld::RaycastSingleSegmented(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, float segmentDistance, unsigned collisionMask)
  346. {
  347. ATOMIC_PROFILE(PhysicsRaycastSingleSegmented);
  348. if (maxDistance >= M_INFINITY)
  349. ATOMIC_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  350. btVector3 start = ToBtVector3(ray.origin_);
  351. btVector3 end;
  352. btVector3 direction = ToBtVector3(ray.direction_);
  353. float distance;
  354. for (float remainingDistance = maxDistance; remainingDistance > 0; remainingDistance -= segmentDistance)
  355. {
  356. distance = Min(remainingDistance, segmentDistance);
  357. end = start + distance * direction;
  358. btCollisionWorld::ClosestRayResultCallback rayCallback(start, end);
  359. rayCallback.m_collisionFilterGroup = (short)0xffff;
  360. rayCallback.m_collisionFilterMask = (short)collisionMask;
  361. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  362. if (rayCallback.hasHit())
  363. {
  364. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  365. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  366. result.distance_ = (result.position_ - ray.origin_).Length();
  367. result.hitFraction_ = rayCallback.m_closestHitFraction;
  368. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  369. // No need to cast the rest of the segments
  370. return;
  371. }
  372. // Use the end position as the new start position
  373. start = end;
  374. }
  375. // Didn't hit anything
  376. result.position_ = Vector3::ZERO;
  377. result.normal_ = Vector3::ZERO;
  378. result.distance_ = M_INFINITY;
  379. result.hitFraction_ = 0.0f;
  380. result.body_ = 0;
  381. }
  382. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  383. {
  384. ATOMIC_PROFILE(PhysicsSphereCast);
  385. if (maxDistance >= M_INFINITY)
  386. ATOMIC_LOGWARNING("Infinite maxDistance in physics sphere cast is not supported");
  387. btSphereShape shape(radius);
  388. Vector3 endPos = ray.origin_ + maxDistance * ray.direction_;
  389. btCollisionWorld::ClosestConvexResultCallback
  390. convexCallback(ToBtVector3(ray.origin_), ToBtVector3(endPos));
  391. convexCallback.m_collisionFilterGroup = (short)0xffff;
  392. convexCallback.m_collisionFilterMask = (short)collisionMask;
  393. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  394. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  395. if (convexCallback.hasHit())
  396. {
  397. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  398. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  399. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  400. result.distance_ = convexCallback.m_closestHitFraction * (endPos - ray.origin_).Length();
  401. result.hitFraction_ = convexCallback.m_closestHitFraction;
  402. }
  403. else
  404. {
  405. result.body_ = 0;
  406. result.position_ = Vector3::ZERO;
  407. result.normal_ = Vector3::ZERO;
  408. result.distance_ = M_INFINITY;
  409. result.hitFraction_ = 0.0f;
  410. }
  411. }
  412. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, CollisionShape* shape, const Vector3& startPos,
  413. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  414. {
  415. if (!shape || !shape->GetCollisionShape())
  416. {
  417. ATOMIC_LOGERROR("Null collision shape for convex cast");
  418. result.body_ = 0;
  419. result.position_ = Vector3::ZERO;
  420. result.normal_ = Vector3::ZERO;
  421. result.distance_ = M_INFINITY;
  422. result.hitFraction_ = 0.0f;
  423. return;
  424. }
  425. // If shape is attached in a rigidbody, set its collision group temporarily to 0 to make sure it is not returned in the sweep result
  426. RigidBody* bodyComp = shape->GetComponent<RigidBody>();
  427. btRigidBody* body = bodyComp ? bodyComp->GetBody() : (btRigidBody*)0;
  428. btBroadphaseProxy* proxy = body ? body->getBroadphaseProxy() : (btBroadphaseProxy*)0;
  429. short group = 0;
  430. if (proxy)
  431. {
  432. group = proxy->m_collisionFilterGroup;
  433. proxy->m_collisionFilterGroup = 0;
  434. }
  435. // Take the shape's offset position & rotation into account
  436. Node* shapeNode = shape->GetNode();
  437. Matrix3x4 startTransform(startPos, startRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  438. Matrix3x4 endTransform(endPos, endRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  439. Vector3 effectiveStartPos = startTransform * shape->GetPosition();
  440. Vector3 effectiveEndPos = endTransform * shape->GetPosition();
  441. Quaternion effectiveStartRot = startRot * shape->GetRotation();
  442. Quaternion effectiveEndRot = endRot * shape->GetRotation();
  443. ConvexCast(result, shape->GetCollisionShape(), effectiveStartPos, effectiveStartRot, effectiveEndPos, effectiveEndRot, collisionMask);
  444. // Restore the collision group
  445. if (proxy)
  446. proxy->m_collisionFilterGroup = group;
  447. }
  448. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, btCollisionShape* shape, const Vector3& startPos,
  449. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  450. {
  451. if (!shape)
  452. {
  453. ATOMIC_LOGERROR("Null collision shape for convex cast");
  454. result.body_ = 0;
  455. result.position_ = Vector3::ZERO;
  456. result.normal_ = Vector3::ZERO;
  457. result.distance_ = M_INFINITY;
  458. result.hitFraction_ = 0.0f;
  459. return;
  460. }
  461. if (!shape->isConvex())
  462. {
  463. ATOMIC_LOGERROR("Can not use non-convex collision shape for convex cast");
  464. result.body_ = 0;
  465. result.position_ = Vector3::ZERO;
  466. result.normal_ = Vector3::ZERO;
  467. result.distance_ = M_INFINITY;
  468. result.hitFraction_ = 0.0f;
  469. return;
  470. }
  471. ATOMIC_PROFILE(PhysicsConvexCast);
  472. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(startPos), ToBtVector3(endPos));
  473. convexCallback.m_collisionFilterGroup = (short)0xffff;
  474. convexCallback.m_collisionFilterMask = (short)collisionMask;
  475. world_->convexSweepTest(static_cast<btConvexShape*>(shape), btTransform(ToBtQuaternion(startRot),
  476. convexCallback.m_convexFromWorld), btTransform(ToBtQuaternion(endRot), convexCallback.m_convexToWorld),
  477. convexCallback);
  478. if (convexCallback.hasHit())
  479. {
  480. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  481. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  482. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  483. result.distance_ = convexCallback.m_closestHitFraction * (endPos - startPos).Length();
  484. result.hitFraction_ = convexCallback.m_closestHitFraction;
  485. }
  486. else
  487. {
  488. result.body_ = 0;
  489. result.position_ = Vector3::ZERO;
  490. result.normal_ = Vector3::ZERO;
  491. result.distance_ = M_INFINITY;
  492. result.hitFraction_ = 0.0f;
  493. }
  494. }
  495. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  496. {
  497. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  498. i != triMeshCache_.End();)
  499. {
  500. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  501. if (current->first_.first_ == model)
  502. triMeshCache_.Erase(current);
  503. }
  504. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  505. i != convexCache_.End();)
  506. {
  507. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  508. if (current->first_.first_ == model)
  509. convexCache_.Erase(current);
  510. }
  511. }
  512. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  513. {
  514. ATOMIC_PROFILE(PhysicsSphereQuery);
  515. result.Clear();
  516. btSphereShape sphereShape(sphere.radius_);
  517. UniquePtr<btRigidBody> tempRigidBody(new btRigidBody(1.0f, 0, &sphereShape));
  518. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  519. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  520. tempRigidBody->activate();
  521. world_->addRigidBody(tempRigidBody.Get());
  522. PhysicsQueryCallback callback(result, collisionMask);
  523. world_->contactTest(tempRigidBody.Get(), callback);
  524. world_->removeRigidBody(tempRigidBody.Get());
  525. }
  526. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  527. {
  528. ATOMIC_PROFILE(PhysicsBoxQuery);
  529. result.Clear();
  530. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  531. UniquePtr<btRigidBody> tempRigidBody(new btRigidBody(1.0f, 0, &boxShape));
  532. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  533. tempRigidBody->activate();
  534. world_->addRigidBody(tempRigidBody.Get());
  535. PhysicsQueryCallback callback(result, collisionMask);
  536. world_->contactTest(tempRigidBody.Get(), callback);
  537. world_->removeRigidBody(tempRigidBody.Get());
  538. }
  539. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  540. {
  541. ATOMIC_PROFILE(PhysicsBodyQuery);
  542. result.Clear();
  543. if (!body || !body->GetBody())
  544. return;
  545. PhysicsQueryCallback callback(result, body->GetCollisionMask());
  546. world_->contactTest(body->GetBody(), callback);
  547. // Remove the body itself from the returned list
  548. for (unsigned i = 0; i < result.Size(); i++)
  549. {
  550. if (result[i] == body)
  551. {
  552. result.Erase(i);
  553. break;
  554. }
  555. }
  556. }
  557. void PhysicsWorld::GetCollidingBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  558. {
  559. ATOMIC_PROFILE(GetCollidingBodies);
  560. result.Clear();
  561. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator i = currentCollisions_.Begin();
  562. i != currentCollisions_.End(); ++i)
  563. {
  564. if (i->first_.first_ == body)
  565. {
  566. if (i->first_.second_)
  567. result.Push(i->first_.second_);
  568. }
  569. else if (i->first_.second_ == body)
  570. {
  571. if (i->first_.first_)
  572. result.Push(i->first_.first_);
  573. }
  574. }
  575. }
  576. Vector3 PhysicsWorld::GetGravity() const
  577. {
  578. return ToVector3(world_->getGravity());
  579. }
  580. int PhysicsWorld::GetNumIterations() const
  581. {
  582. return world_->getSolverInfo().m_numIterations;
  583. }
  584. bool PhysicsWorld::GetSplitImpulse() const
  585. {
  586. return world_->getSolverInfo().m_splitImpulse != 0;
  587. }
  588. void PhysicsWorld::AddRigidBody(RigidBody* body)
  589. {
  590. rigidBodies_.Push(body);
  591. }
  592. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  593. {
  594. rigidBodies_.Remove(body);
  595. // Remove possible dangling pointer from the delayedWorldTransforms structure
  596. delayedWorldTransforms_.Erase(body);
  597. }
  598. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  599. {
  600. collisionShapes_.Push(shape);
  601. }
  602. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  603. {
  604. collisionShapes_.Remove(shape);
  605. }
  606. void PhysicsWorld::AddConstraint(Constraint* constraint)
  607. {
  608. constraints_.Push(constraint);
  609. }
  610. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  611. {
  612. constraints_.Remove(constraint);
  613. }
  614. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  615. {
  616. delayedWorldTransforms_[transform.rigidBody_] = transform;
  617. }
  618. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  619. {
  620. DebugRenderer* debug = GetComponent<DebugRenderer>();
  621. DrawDebugGeometry(debug, depthTest);
  622. }
  623. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  624. {
  625. debugRenderer_ = debug;
  626. }
  627. void PhysicsWorld::SetDebugDepthTest(bool enable)
  628. {
  629. debugDepthTest_ = enable;
  630. }
  631. void PhysicsWorld::CleanupGeometryCache()
  632. {
  633. // Remove cached shapes whose only reference is the cache itself
  634. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  635. i != triMeshCache_.End();)
  636. {
  637. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  638. if (current->second_.Refs() == 1)
  639. triMeshCache_.Erase(current);
  640. }
  641. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  642. i != convexCache_.End();)
  643. {
  644. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  645. if (current->second_.Refs() == 1)
  646. convexCache_.Erase(current);
  647. }
  648. }
  649. void PhysicsWorld::OnSceneSet(Scene* scene)
  650. {
  651. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  652. if (scene)
  653. {
  654. scene_ = GetScene();
  655. SubscribeToEvent(scene_, E_SCENESUBSYSTEMUPDATE, ATOMIC_HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  656. }
  657. else
  658. UnsubscribeFromEvent(E_SCENESUBSYSTEMUPDATE);
  659. }
  660. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  661. {
  662. if (!updateEnabled_)
  663. return;
  664. using namespace SceneSubsystemUpdate;
  665. Update(eventData[P_TIMESTEP].GetFloat());
  666. }
  667. void PhysicsWorld::PreStep(float timeStep)
  668. {
  669. // Send pre-step event
  670. using namespace PhysicsPreStep;
  671. VariantMap& eventData = GetEventDataMap();
  672. eventData[P_WORLD] = this;
  673. eventData[P_TIMESTEP] = timeStep;
  674. SendEvent(E_PHYSICSPRESTEP, eventData);
  675. // ATOMIC BEGIN
  676. // Start profiling block for the actual simulation step
  677. ATOMIC_PROFILE_NONSCOPED("PhysicsStepSimulation");
  678. // ATOMIC END
  679. }
  680. void PhysicsWorld::PostStep(float timeStep)
  681. {
  682. // ATOMIC BEGIN
  683. ATOMIC_PROFILE_END();
  684. // ATOMIC END
  685. SendCollisionEvents();
  686. // Send post-step event
  687. using namespace PhysicsPostStep;
  688. VariantMap& eventData = GetEventDataMap();
  689. eventData[P_WORLD] = this;
  690. eventData[P_TIMESTEP] = timeStep;
  691. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  692. }
  693. void PhysicsWorld::SendCollisionEvents()
  694. {
  695. ATOMIC_PROFILE(SendCollisionEvents);
  696. currentCollisions_.Clear();
  697. physicsCollisionData_.Clear();
  698. nodeCollisionData_.Clear();
  699. int numManifolds = collisionDispatcher_->getNumManifolds();
  700. if (numManifolds)
  701. {
  702. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  703. for (int i = 0; i < numManifolds; ++i)
  704. {
  705. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  706. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  707. if (!contactManifold->getNumContacts())
  708. continue;
  709. const btCollisionObject* objectA = contactManifold->getBody0();
  710. const btCollisionObject* objectB = contactManifold->getBody1();
  711. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  712. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  713. // If it's not a rigidbody, maybe a ghost object
  714. if (!bodyA || !bodyB)
  715. continue;
  716. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  717. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  718. continue;
  719. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  720. continue;
  721. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  722. !bodyA->IsActive() && !bodyB->IsActive())
  723. continue;
  724. WeakPtr<RigidBody> bodyWeakA(bodyA);
  725. WeakPtr<RigidBody> bodyWeakB(bodyB);
  726. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  727. // objects during collision event handling
  728. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  729. if (bodyA < bodyB)
  730. {
  731. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  732. currentCollisions_[bodyPair].manifold_ = contactManifold;
  733. }
  734. else
  735. {
  736. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  737. currentCollisions_[bodyPair].flippedManifold_ = contactManifold;
  738. }
  739. }
  740. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator i = currentCollisions_.Begin();
  741. i != currentCollisions_.End(); ++i)
  742. {
  743. RigidBody* bodyA = i->first_.first_;
  744. RigidBody* bodyB = i->first_.second_;
  745. if (!bodyA || !bodyB)
  746. continue;
  747. Node* nodeA = bodyA->GetNode();
  748. Node* nodeB = bodyB->GetNode();
  749. WeakPtr<Node> nodeWeakA(nodeA);
  750. WeakPtr<Node> nodeWeakB(nodeB);
  751. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  752. bool newCollision = !previousCollisions_.Contains(i->first_);
  753. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  754. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  755. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  756. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  757. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  758. contacts_.Clear();
  759. // "Pointers not flipped"-manifold, send unmodified normals
  760. btPersistentManifold* contactManifold = i->second_.manifold_;
  761. if (contactManifold)
  762. {
  763. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  764. {
  765. btManifoldPoint& point = contactManifold->getContactPoint(j);
  766. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  767. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  768. contacts_.WriteFloat(point.m_distance1);
  769. contacts_.WriteFloat(point.m_appliedImpulse);
  770. }
  771. }
  772. // "Pointers flipped"-manifold, flip normals also
  773. contactManifold = i->second_.flippedManifold_;
  774. if (contactManifold)
  775. {
  776. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  777. {
  778. btManifoldPoint& point = contactManifold->getContactPoint(j);
  779. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  780. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  781. contacts_.WriteFloat(point.m_distance1);
  782. contacts_.WriteFloat(point.m_appliedImpulse);
  783. }
  784. }
  785. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  786. // Send separate collision start event if collision is new
  787. if (newCollision)
  788. {
  789. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  790. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  791. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  792. continue;
  793. }
  794. // Then send the ongoing collision event
  795. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  796. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  797. continue;
  798. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  799. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  800. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  801. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  802. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  803. if (newCollision)
  804. {
  805. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  806. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  807. continue;
  808. }
  809. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  810. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  811. continue;
  812. // Flip perspective to body B
  813. contacts_.Clear();
  814. contactManifold = i->second_.manifold_;
  815. if (contactManifold)
  816. {
  817. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  818. {
  819. btManifoldPoint& point = contactManifold->getContactPoint(j);
  820. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  821. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  822. contacts_.WriteFloat(point.m_distance1);
  823. contacts_.WriteFloat(point.m_appliedImpulse);
  824. }
  825. }
  826. contactManifold = i->second_.flippedManifold_;
  827. if (contactManifold)
  828. {
  829. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  830. {
  831. btManifoldPoint& point = contactManifold->getContactPoint(j);
  832. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  833. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  834. contacts_.WriteFloat(point.m_distance1);
  835. contacts_.WriteFloat(point.m_appliedImpulse);
  836. }
  837. }
  838. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  839. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  840. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  841. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  842. if (newCollision)
  843. {
  844. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  845. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  846. continue;
  847. }
  848. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  849. }
  850. }
  851. // Send collision end events as applicable
  852. {
  853. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  854. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator
  855. i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  856. {
  857. if (!currentCollisions_.Contains(i->first_))
  858. {
  859. RigidBody* bodyA = i->first_.first_;
  860. RigidBody* bodyB = i->first_.second_;
  861. if (!bodyA || !bodyB)
  862. continue;
  863. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  864. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  865. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  866. continue;
  867. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  868. continue;
  869. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  870. !bodyA->IsActive() && !bodyB->IsActive())
  871. continue;
  872. Node* nodeA = bodyA->GetNode();
  873. Node* nodeB = bodyB->GetNode();
  874. WeakPtr<Node> nodeWeakA(nodeA);
  875. WeakPtr<Node> nodeWeakB(nodeB);
  876. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  877. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  878. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  879. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  880. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  881. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  882. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  883. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  884. continue;
  885. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  886. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  887. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  888. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  889. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  890. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  891. continue;
  892. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  893. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  894. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  895. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  896. }
  897. }
  898. }
  899. previousCollisions_ = currentCollisions_;
  900. }
  901. void RegisterPhysicsLibrary(Context* context)
  902. {
  903. CollisionShape::RegisterObject(context);
  904. RigidBody::RegisterObject(context);
  905. Constraint::RegisterObject(context);
  906. PhysicsWorld::RegisterObject(context);
  907. RaycastVehicle::RegisterObject(context);
  908. }
  909. }