PhysicsWorld.cpp 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954
  1. //
  2. // Copyright (c) 2008-2015 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Core/Context.h"
  24. #include "../Core/Mutex.h"
  25. #include "../Core/Profiler.h"
  26. #include "../Graphics/DebugRenderer.h"
  27. #include "../Atomic3D/Model.h"
  28. #include "../IO/Log.h"
  29. #include "../Math/Ray.h"
  30. #include "../Physics/CollisionShape.h"
  31. #include "../Physics/Constraint.h"
  32. #include "../Physics/PhysicsEvents.h"
  33. #include "../Physics/PhysicsUtils.h"
  34. #include "../Physics/PhysicsWorld.h"
  35. #include "../Physics/RigidBody.h"
  36. #include "../Scene/Scene.h"
  37. #include "../Scene/SceneEvents.h"
  38. #include <Bullet/src/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  39. #include <Bullet/src/BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  40. #include <Bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  41. #include <Bullet/src/BulletCollision/CollisionShapes/btBoxShape.h>
  42. #include <Bullet/src/BulletCollision/CollisionShapes/btSphereShape.h>
  43. #include <Bullet/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  44. #include <Bullet/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  45. extern ContactAddedCallback gContactAddedCallback;
  46. namespace Atomic
  47. {
  48. const char* PHYSICS_CATEGORY = "Physics";
  49. extern const char* SUBSYSTEM_CATEGORY;
  50. static const int MAX_SOLVER_ITERATIONS = 256;
  51. static const int DEFAULT_FPS = 60;
  52. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  53. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  54. {
  55. return lhs.distance_ < rhs.distance_;
  56. }
  57. void InternalPreTickCallback(btDynamicsWorld* world, btScalar timeStep)
  58. {
  59. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  60. }
  61. void InternalTickCallback(btDynamicsWorld* world, btScalar timeStep)
  62. {
  63. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  64. }
  65. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0,
  66. int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  67. {
  68. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  69. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  70. cp.m_combinedRestitution =
  71. colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  72. return true;
  73. }
  74. /// Callback for physics world queries.
  75. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  76. {
  77. /// Construct.
  78. PhysicsQueryCallback(PODVector<RigidBody*>& result, unsigned collisionMask) :
  79. result_(result),
  80. collisionMask_(collisionMask)
  81. {
  82. }
  83. /// Add a contact result.
  84. virtual btScalar addSingleResult(btManifoldPoint&, const btCollisionObjectWrapper* colObj0Wrap, int, int,
  85. const btCollisionObjectWrapper* colObj1Wrap, int, int)
  86. {
  87. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  88. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  89. result_.Push(body);
  90. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  91. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  92. result_.Push(body);
  93. return 0.0f;
  94. }
  95. /// Found rigid bodies.
  96. PODVector<RigidBody*>& result_;
  97. /// Collision mask for the query.
  98. unsigned collisionMask_;
  99. };
  100. PhysicsWorld::PhysicsWorld(Context* context) :
  101. Component(context),
  102. collisionConfiguration_(0),
  103. collisionDispatcher_(0),
  104. broadphase_(0),
  105. solver_(0),
  106. world_(0),
  107. fps_(DEFAULT_FPS),
  108. maxSubSteps_(0),
  109. timeAcc_(0.0f),
  110. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  111. interpolation_(true),
  112. internalEdge_(true),
  113. applyingTransforms_(false),
  114. debugRenderer_(0),
  115. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  116. {
  117. gContactAddedCallback = CustomMaterialCombinerCallback;
  118. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  119. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  120. broadphase_ = new btDbvtBroadphase();
  121. solver_ = new btSequentialImpulseConstraintSolver();
  122. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  123. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  124. world_->getDispatchInfo().m_useContinuous = true;
  125. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  126. world_->setDebugDrawer(this);
  127. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  128. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  129. }
  130. PhysicsWorld::~PhysicsWorld()
  131. {
  132. if (scene_)
  133. {
  134. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  135. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  136. (*i)->ReleaseConstraint();
  137. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  138. (*i)->ReleaseBody();
  139. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  140. (*i)->ReleaseShape();
  141. }
  142. delete world_;
  143. world_ = 0;
  144. delete solver_;
  145. solver_ = 0;
  146. delete broadphase_;
  147. broadphase_ = 0;
  148. delete collisionDispatcher_;
  149. collisionDispatcher_ = 0;
  150. delete collisionConfiguration_;
  151. collisionConfiguration_ = 0;
  152. }
  153. void PhysicsWorld::RegisterObject(Context* context)
  154. {
  155. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  156. MIXED_ACCESSOR_ATTRIBUTE("Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  157. ATTRIBUTE("Physics FPS", int, fps_, DEFAULT_FPS, AM_DEFAULT);
  158. ATTRIBUTE("Max Substeps", int, maxSubSteps_, 0, AM_DEFAULT);
  159. ACCESSOR_ATTRIBUTE("Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  160. ATTRIBUTE("Net Max Angular Vel.", float, maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  161. ATTRIBUTE("Interpolation", bool, interpolation_, true, AM_FILE);
  162. ATTRIBUTE("Internal Edge Utility", bool, internalEdge_, true, AM_DEFAULT);
  163. ACCESSOR_ATTRIBUTE("Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  164. }
  165. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  166. {
  167. if (debugRenderer_)
  168. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  169. else
  170. return false;
  171. }
  172. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  173. {
  174. if (debugRenderer_)
  175. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  176. }
  177. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  178. {
  179. if (debug)
  180. {
  181. PROFILE(PhysicsDrawDebug);
  182. debugRenderer_ = debug;
  183. debugDepthTest_ = depthTest;
  184. world_->debugDrawWorld();
  185. debugRenderer_ = 0;
  186. }
  187. }
  188. void PhysicsWorld::reportErrorWarning(const char* warningString)
  189. {
  190. LOGWARNING("Physics: " + String(warningString));
  191. }
  192. void PhysicsWorld::drawContactPoint(const btVector3& pointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime,
  193. const btVector3& color)
  194. {
  195. }
  196. void PhysicsWorld::draw3dText(const btVector3& location, const char* textString)
  197. {
  198. }
  199. void PhysicsWorld::Update(float timeStep)
  200. {
  201. PROFILE(UpdatePhysics);
  202. float internalTimeStep = 1.0f / fps_;
  203. int maxSubSteps = (int)(timeStep * fps_) + 1;
  204. if (maxSubSteps_ < 0)
  205. {
  206. internalTimeStep = timeStep;
  207. maxSubSteps = 1;
  208. }
  209. else if (maxSubSteps_ > 0)
  210. maxSubSteps = Min(maxSubSteps, maxSubSteps_);
  211. delayedWorldTransforms_.Clear();
  212. if (interpolation_)
  213. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  214. else
  215. {
  216. timeAcc_ += timeStep;
  217. while (timeAcc_ >= internalTimeStep && maxSubSteps > 0)
  218. {
  219. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  220. timeAcc_ -= internalTimeStep;
  221. --maxSubSteps;
  222. }
  223. }
  224. // Apply delayed (parented) world transforms now
  225. while (!delayedWorldTransforms_.Empty())
  226. {
  227. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  228. i != delayedWorldTransforms_.End(); ++i)
  229. {
  230. const DelayedWorldTransform& transform = i->second_;
  231. // If parent's transform has already been assigned, can proceed
  232. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  233. {
  234. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  235. delayedWorldTransforms_.Erase(i);
  236. }
  237. }
  238. }
  239. }
  240. void PhysicsWorld::UpdateCollisions()
  241. {
  242. world_->performDiscreteCollisionDetection();
  243. }
  244. void PhysicsWorld::SetFps(int fps)
  245. {
  246. fps_ = (unsigned)Clamp(fps, 1, 1000);
  247. MarkNetworkUpdate();
  248. }
  249. void PhysicsWorld::SetGravity(const Vector3& gravity)
  250. {
  251. world_->setGravity(ToBtVector3(gravity));
  252. MarkNetworkUpdate();
  253. }
  254. void PhysicsWorld::SetMaxSubSteps(int num)
  255. {
  256. maxSubSteps_ = num;
  257. MarkNetworkUpdate();
  258. }
  259. void PhysicsWorld::SetNumIterations(int num)
  260. {
  261. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  262. world_->getSolverInfo().m_numIterations = num;
  263. MarkNetworkUpdate();
  264. }
  265. void PhysicsWorld::SetInterpolation(bool enable)
  266. {
  267. interpolation_ = enable;
  268. }
  269. void PhysicsWorld::SetInternalEdge(bool enable)
  270. {
  271. internalEdge_ = enable;
  272. MarkNetworkUpdate();
  273. }
  274. void PhysicsWorld::SetSplitImpulse(bool enable)
  275. {
  276. world_->getSolverInfo().m_splitImpulse = enable;
  277. MarkNetworkUpdate();
  278. }
  279. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  280. {
  281. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  282. MarkNetworkUpdate();
  283. }
  284. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  285. {
  286. PROFILE(PhysicsRaycast);
  287. if (maxDistance >= M_INFINITY)
  288. LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  289. btCollisionWorld::AllHitsRayResultCallback
  290. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  291. rayCallback.m_collisionFilterGroup = (short)0xffff;
  292. rayCallback.m_collisionFilterMask = (short)collisionMask;
  293. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  294. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  295. {
  296. PhysicsRaycastResult newResult;
  297. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  298. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  299. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  300. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  301. result.Push(newResult);
  302. }
  303. Sort(result.Begin(), result.End(), CompareRaycastResults);
  304. }
  305. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  306. {
  307. PROFILE(PhysicsRaycastSingle);
  308. if (maxDistance >= M_INFINITY)
  309. LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  310. btCollisionWorld::ClosestRayResultCallback
  311. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  312. rayCallback.m_collisionFilterGroup = (short)0xffff;
  313. rayCallback.m_collisionFilterMask = (short)collisionMask;
  314. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  315. if (rayCallback.hasHit())
  316. {
  317. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  318. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  319. result.distance_ = (result.position_ - ray.origin_).Length();
  320. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  321. }
  322. else
  323. {
  324. result.position_ = Vector3::ZERO;
  325. result.normal_ = Vector3::ZERO;
  326. result.distance_ = M_INFINITY;
  327. result.body_ = 0;
  328. }
  329. }
  330. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  331. {
  332. PROFILE(PhysicsSphereCast);
  333. if (maxDistance >= M_INFINITY)
  334. LOGWARNING("Infinite maxDistance in physics sphere cast is not supported");
  335. btSphereShape shape(radius);
  336. btCollisionWorld::ClosestConvexResultCallback
  337. convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  338. convexCallback.m_collisionFilterGroup = (short)0xffff;
  339. convexCallback.m_collisionFilterMask = (short)collisionMask;
  340. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  341. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  342. if (convexCallback.hasHit())
  343. {
  344. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  345. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  346. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  347. result.distance_ = (result.position_ - ray.origin_).Length();
  348. }
  349. else
  350. {
  351. result.body_ = 0;
  352. result.position_ = Vector3::ZERO;
  353. result.normal_ = Vector3::ZERO;
  354. result.distance_ = M_INFINITY;
  355. }
  356. }
  357. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, CollisionShape* shape, const Vector3& startPos,
  358. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  359. {
  360. if (!shape || !shape->GetCollisionShape())
  361. {
  362. LOGERROR("Null collision shape for convex cast");
  363. result.body_ = 0;
  364. result.position_ = Vector3::ZERO;
  365. result.normal_ = Vector3::ZERO;
  366. result.distance_ = M_INFINITY;
  367. return;
  368. }
  369. // If shape is attached in a rigidbody, set its collision group temporarily to 0 to make sure it is not returned in the sweep result
  370. RigidBody* bodyComp = shape->GetComponent<RigidBody>();
  371. btRigidBody* body = bodyComp ? bodyComp->GetBody() : (btRigidBody*)0;
  372. btBroadphaseProxy* proxy = body ? body->getBroadphaseProxy() : (btBroadphaseProxy*)0;
  373. short group = 0;
  374. if (proxy)
  375. {
  376. group = proxy->m_collisionFilterGroup;
  377. proxy->m_collisionFilterGroup = 0;
  378. }
  379. // Take the shape's offset position & rotation into account
  380. Node* shapeNode = shape->GetNode();
  381. Matrix3x4 startTransform(startPos, startRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  382. Matrix3x4 endTransform(endPos, endRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  383. Vector3 effectiveStartPos = startTransform * shape->GetPosition();
  384. Vector3 effectiveEndPos = endTransform * shape->GetPosition();
  385. Quaternion effectiveStartRot = startRot * shape->GetRotation();
  386. Quaternion effectiveEndRot = endRot * shape->GetRotation();
  387. ConvexCast(result, shape->GetCollisionShape(), effectiveStartPos, effectiveStartRot, effectiveEndPos, effectiveEndRot, collisionMask);
  388. // Restore the collision group
  389. if (proxy)
  390. proxy->m_collisionFilterGroup = group;
  391. }
  392. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, btCollisionShape* shape, const Vector3& startPos,
  393. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  394. {
  395. if (!shape)
  396. {
  397. LOGERROR("Null collision shape for convex cast");
  398. result.body_ = 0;
  399. result.position_ = Vector3::ZERO;
  400. result.normal_ = Vector3::ZERO;
  401. result.distance_ = M_INFINITY;
  402. return;
  403. }
  404. if (!shape->isConvex())
  405. {
  406. LOGERROR("Can not use non-convex collision shape for convex cast");
  407. result.body_ = 0;
  408. result.position_ = Vector3::ZERO;
  409. result.normal_ = Vector3::ZERO;
  410. result.distance_ = M_INFINITY;
  411. return;
  412. }
  413. PROFILE(PhysicsConvexCast);
  414. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(startPos), ToBtVector3(endPos));
  415. convexCallback.m_collisionFilterGroup = (short)0xffff;
  416. convexCallback.m_collisionFilterMask = (short)collisionMask;
  417. world_->convexSweepTest(static_cast<btConvexShape*>(shape), btTransform(ToBtQuaternion(startRot),
  418. convexCallback.m_convexFromWorld), btTransform(ToBtQuaternion(endRot), convexCallback.m_convexToWorld),
  419. convexCallback);
  420. if (convexCallback.hasHit())
  421. {
  422. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  423. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  424. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  425. result.distance_ = (result.position_ - startPos).Length();
  426. }
  427. else
  428. {
  429. result.body_ = 0;
  430. result.position_ = Vector3::ZERO;
  431. result.normal_ = Vector3::ZERO;
  432. result.distance_ = M_INFINITY;
  433. }
  434. }
  435. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  436. {
  437. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  438. i != triMeshCache_.End();)
  439. {
  440. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  441. if (current->first_.first_ == model)
  442. triMeshCache_.Erase(current);
  443. }
  444. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  445. i != convexCache_.End();)
  446. {
  447. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  448. if (current->first_.first_ == model)
  449. convexCache_.Erase(current);
  450. }
  451. }
  452. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  453. {
  454. PROFILE(PhysicsSphereQuery);
  455. result.Clear();
  456. btSphereShape sphereShape(sphere.radius_);
  457. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  458. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  459. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  460. tempRigidBody->activate();
  461. world_->addRigidBody(tempRigidBody);
  462. PhysicsQueryCallback callback(result, collisionMask);
  463. world_->contactTest(tempRigidBody, callback);
  464. world_->removeRigidBody(tempRigidBody);
  465. delete tempRigidBody;
  466. }
  467. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  468. {
  469. PROFILE(PhysicsBoxQuery);
  470. result.Clear();
  471. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  472. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  473. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  474. tempRigidBody->activate();
  475. world_->addRigidBody(tempRigidBody);
  476. PhysicsQueryCallback callback(result, collisionMask);
  477. world_->contactTest(tempRigidBody, callback);
  478. world_->removeRigidBody(tempRigidBody);
  479. delete tempRigidBody;
  480. }
  481. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  482. {
  483. PROFILE(GetCollidingBodies);
  484. result.Clear();
  485. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  486. i != currentCollisions_.End(); ++i)
  487. {
  488. if (i->first_.first_ == body)
  489. result.Push(i->first_.second_);
  490. else if (i->first_.second_ == body)
  491. result.Push(i->first_.first_);
  492. }
  493. }
  494. Vector3 PhysicsWorld::GetGravity() const
  495. {
  496. return ToVector3(world_->getGravity());
  497. }
  498. int PhysicsWorld::GetNumIterations() const
  499. {
  500. return world_->getSolverInfo().m_numIterations;
  501. }
  502. bool PhysicsWorld::GetSplitImpulse() const
  503. {
  504. return world_->getSolverInfo().m_splitImpulse != 0;
  505. }
  506. void PhysicsWorld::AddRigidBody(RigidBody* body)
  507. {
  508. rigidBodies_.Push(body);
  509. }
  510. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  511. {
  512. rigidBodies_.Remove(body);
  513. // Remove possible dangling pointer from the delayedWorldTransforms structure
  514. delayedWorldTransforms_.Erase(body);
  515. }
  516. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  517. {
  518. collisionShapes_.Push(shape);
  519. }
  520. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  521. {
  522. collisionShapes_.Remove(shape);
  523. }
  524. void PhysicsWorld::AddConstraint(Constraint* constraint)
  525. {
  526. constraints_.Push(constraint);
  527. }
  528. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  529. {
  530. constraints_.Remove(constraint);
  531. }
  532. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  533. {
  534. delayedWorldTransforms_[transform.rigidBody_] = transform;
  535. }
  536. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  537. {
  538. DebugRenderer* debug = GetComponent<DebugRenderer>();
  539. DrawDebugGeometry(debug, depthTest);
  540. }
  541. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  542. {
  543. debugRenderer_ = debug;
  544. }
  545. void PhysicsWorld::SetDebugDepthTest(bool enable)
  546. {
  547. debugDepthTest_ = enable;
  548. }
  549. void PhysicsWorld::CleanupGeometryCache()
  550. {
  551. // Remove cached shapes whose only reference is the cache itself
  552. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  553. i != triMeshCache_.End();)
  554. {
  555. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  556. if (current->second_.Refs() == 1)
  557. triMeshCache_.Erase(current);
  558. }
  559. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  560. i != convexCache_.End();)
  561. {
  562. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  563. if (current->second_.Refs() == 1)
  564. convexCache_.Erase(current);
  565. }
  566. }
  567. void PhysicsWorld::OnSceneSet(Scene* scene)
  568. {
  569. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  570. if (scene)
  571. {
  572. scene_ = GetScene();
  573. SubscribeToEvent(scene_, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  574. }
  575. else
  576. UnsubscribeFromEvent(E_SCENESUBSYSTEMUPDATE);
  577. }
  578. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  579. {
  580. using namespace SceneSubsystemUpdate;
  581. Update(eventData[P_TIMESTEP].GetFloat());
  582. }
  583. void PhysicsWorld::PreStep(float timeStep)
  584. {
  585. // Send pre-step event
  586. using namespace PhysicsPreStep;
  587. VariantMap& eventData = GetEventDataMap();
  588. eventData[P_WORLD] = this;
  589. eventData[P_TIMESTEP] = timeStep;
  590. SendEvent(E_PHYSICSPRESTEP, eventData);
  591. // Start profiling block for the actual simulation step
  592. #ifdef ATOMIC_PROFILING
  593. Profiler* profiler = GetSubsystem<Profiler>();
  594. if (profiler)
  595. profiler->BeginBlock("StepSimulation");
  596. #endif
  597. }
  598. void PhysicsWorld::PostStep(float timeStep)
  599. {
  600. #ifdef ATOMIC_PROFILING
  601. Profiler* profiler = GetSubsystem<Profiler>();
  602. if (profiler)
  603. profiler->EndBlock();
  604. #endif
  605. SendCollisionEvents();
  606. // Send post-step event
  607. using namespace PhysicsPostStep;
  608. VariantMap& eventData = GetEventDataMap();
  609. eventData[P_WORLD] = this;
  610. eventData[P_TIMESTEP] = timeStep;
  611. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  612. }
  613. void PhysicsWorld::SendCollisionEvents()
  614. {
  615. PROFILE(SendCollisionEvents);
  616. currentCollisions_.Clear();
  617. physicsCollisionData_.Clear();
  618. nodeCollisionData_.Clear();
  619. int numManifolds = collisionDispatcher_->getNumManifolds();
  620. if (numManifolds)
  621. {
  622. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  623. for (int i = 0; i < numManifolds; ++i)
  624. {
  625. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  626. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  627. if (!contactManifold->getNumContacts())
  628. continue;
  629. const btCollisionObject* objectA = contactManifold->getBody0();
  630. const btCollisionObject* objectB = contactManifold->getBody1();
  631. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  632. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  633. // If it's not a rigidbody, maybe a ghost object
  634. if (!bodyA || !bodyB)
  635. continue;
  636. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  637. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  638. continue;
  639. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  640. continue;
  641. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  642. !bodyA->IsActive() && !bodyB->IsActive())
  643. continue;
  644. WeakPtr<RigidBody> bodyWeakA(bodyA);
  645. WeakPtr<RigidBody> bodyWeakB(bodyB);
  646. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  647. if (bodyA < bodyB)
  648. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  649. else
  650. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  651. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  652. // objects during collision event handling
  653. currentCollisions_[bodyPair] = contactManifold;
  654. }
  655. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  656. i != currentCollisions_.End(); ++i)
  657. {
  658. RigidBody* bodyA = i->first_.first_;
  659. RigidBody* bodyB = i->first_.second_;
  660. if (!bodyA || !bodyB)
  661. continue;
  662. btPersistentManifold* contactManifold = i->second_;
  663. Node* nodeA = bodyA->GetNode();
  664. Node* nodeB = bodyB->GetNode();
  665. WeakPtr<Node> nodeWeakA(nodeA);
  666. WeakPtr<Node> nodeWeakB(nodeB);
  667. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  668. bool newCollision = !previousCollisions_.Contains(i->first_);
  669. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  670. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  671. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  672. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  673. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  674. contacts_.Clear();
  675. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  676. {
  677. btManifoldPoint& point = contactManifold->getContactPoint(j);
  678. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  679. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  680. contacts_.WriteFloat(point.m_distance1);
  681. contacts_.WriteFloat(point.m_appliedImpulse);
  682. }
  683. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  684. // Send separate collision start event if collision is new
  685. if (newCollision)
  686. {
  687. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  688. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  689. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  690. continue;
  691. }
  692. // Then send the ongoing collision event
  693. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  694. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  695. continue;
  696. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  697. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  698. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  699. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  700. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  701. if (newCollision)
  702. {
  703. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  704. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  705. continue;
  706. }
  707. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  708. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  709. continue;
  710. contacts_.Clear();
  711. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  712. {
  713. btManifoldPoint& point = contactManifold->getContactPoint(j);
  714. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  715. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  716. contacts_.WriteFloat(point.m_distance1);
  717. contacts_.WriteFloat(point.m_appliedImpulse);
  718. }
  719. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  720. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  721. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  722. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  723. if (newCollision)
  724. {
  725. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  726. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  727. continue;
  728. }
  729. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  730. }
  731. }
  732. // Send collision end events as applicable
  733. {
  734. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  735. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator
  736. i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  737. {
  738. if (!currentCollisions_.Contains(i->first_))
  739. {
  740. RigidBody* bodyA = i->first_.first_;
  741. RigidBody* bodyB = i->first_.second_;
  742. if (!bodyA || !bodyB)
  743. continue;
  744. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  745. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  746. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  747. continue;
  748. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  749. continue;
  750. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  751. !bodyA->IsActive() && !bodyB->IsActive())
  752. continue;
  753. Node* nodeA = bodyA->GetNode();
  754. Node* nodeB = bodyB->GetNode();
  755. WeakPtr<Node> nodeWeakA(nodeA);
  756. WeakPtr<Node> nodeWeakB(nodeB);
  757. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  758. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  759. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  760. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  761. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  762. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  763. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  764. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  765. continue;
  766. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  767. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  768. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  769. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  770. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  771. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  772. continue;
  773. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  774. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  775. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  776. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  777. }
  778. }
  779. }
  780. previousCollisions_ = currentCollisions_;
  781. }
  782. void RegisterPhysicsLibrary(Context* context)
  783. {
  784. CollisionShape::RegisterObject(context);
  785. RigidBody::RegisterObject(context);
  786. Constraint::RegisterObject(context);
  787. PhysicsWorld::RegisterObject(context);
  788. }
  789. }