Ray.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. //
  2. // Copyright (c) 2008-2017 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Math/BoundingBox.h"
  24. #include "../Math/Frustum.h"
  25. #include "../Math/Ray.h"
  26. #include "../DebugNew.h"
  27. namespace Atomic
  28. {
  29. Vector3 Ray::ClosestPoint(const Ray& ray) const
  30. {
  31. // Algorithm based on http://paulbourke.net/geometry/lineline3d/
  32. Vector3 p13 = origin_ - ray.origin_;
  33. Vector3 p43 = ray.direction_;
  34. Vector3 p21 = direction_;
  35. float d1343 = p13.DotProduct(p43);
  36. float d4321 = p43.DotProduct(p21);
  37. float d1321 = p13.DotProduct(p21);
  38. float d4343 = p43.DotProduct(p43);
  39. float d2121 = p21.DotProduct(p21);
  40. float d = d2121 * d4343 - d4321 * d4321;
  41. if (Abs(d) < M_EPSILON)
  42. return origin_;
  43. float n = d1343 * d4321 - d1321 * d4343;
  44. float a = n / d;
  45. return origin_ + a * direction_;
  46. }
  47. float Ray::HitDistance(const Plane& plane) const
  48. {
  49. float d = plane.normal_.DotProduct(direction_);
  50. if (Abs(d) >= M_EPSILON)
  51. {
  52. float t = -(plane.normal_.DotProduct(origin_) + plane.d_) / d;
  53. if (t >= 0.0f)
  54. return t;
  55. else
  56. return M_INFINITY;
  57. }
  58. else
  59. return M_INFINITY;
  60. }
  61. float Ray::HitDistance(const BoundingBox& box) const
  62. {
  63. // If undefined, no hit (infinite distance)
  64. if (!box.Defined())
  65. return M_INFINITY;
  66. // Check for ray origin being inside the box
  67. if (box.IsInside(origin_))
  68. return 0.0f;
  69. float dist = M_INFINITY;
  70. // Check for intersecting in the X-direction
  71. if (origin_.x_ < box.min_.x_ && direction_.x_ > 0.0f)
  72. {
  73. float x = (box.min_.x_ - origin_.x_) / direction_.x_;
  74. if (x < dist)
  75. {
  76. Vector3 point = origin_ + x * direction_;
  77. if (point.y_ >= box.min_.y_ && point.y_ <= box.max_.y_ && point.z_ >= box.min_.z_ && point.z_ <= box.max_.z_)
  78. dist = x;
  79. }
  80. }
  81. if (origin_.x_ > box.max_.x_ && direction_.x_ < 0.0f)
  82. {
  83. float x = (box.max_.x_ - origin_.x_) / direction_.x_;
  84. if (x < dist)
  85. {
  86. Vector3 point = origin_ + x * direction_;
  87. if (point.y_ >= box.min_.y_ && point.y_ <= box.max_.y_ && point.z_ >= box.min_.z_ && point.z_ <= box.max_.z_)
  88. dist = x;
  89. }
  90. }
  91. // Check for intersecting in the Y-direction
  92. if (origin_.y_ < box.min_.y_ && direction_.y_ > 0.0f)
  93. {
  94. float x = (box.min_.y_ - origin_.y_) / direction_.y_;
  95. if (x < dist)
  96. {
  97. Vector3 point = origin_ + x * direction_;
  98. if (point.x_ >= box.min_.x_ && point.x_ <= box.max_.x_ && point.z_ >= box.min_.z_ && point.z_ <= box.max_.z_)
  99. dist = x;
  100. }
  101. }
  102. if (origin_.y_ > box.max_.y_ && direction_.y_ < 0.0f)
  103. {
  104. float x = (box.max_.y_ - origin_.y_) / direction_.y_;
  105. if (x < dist)
  106. {
  107. Vector3 point = origin_ + x * direction_;
  108. if (point.x_ >= box.min_.x_ && point.x_ <= box.max_.x_ && point.z_ >= box.min_.z_ && point.z_ <= box.max_.z_)
  109. dist = x;
  110. }
  111. }
  112. // Check for intersecting in the Z-direction
  113. if (origin_.z_ < box.min_.z_ && direction_.z_ > 0.0f)
  114. {
  115. float x = (box.min_.z_ - origin_.z_) / direction_.z_;
  116. if (x < dist)
  117. {
  118. Vector3 point = origin_ + x * direction_;
  119. if (point.x_ >= box.min_.x_ && point.x_ <= box.max_.x_ && point.y_ >= box.min_.y_ && point.y_ <= box.max_.y_)
  120. dist = x;
  121. }
  122. }
  123. if (origin_.z_ > box.max_.z_ && direction_.z_ < 0.0f)
  124. {
  125. float x = (box.max_.z_ - origin_.z_) / direction_.z_;
  126. if (x < dist)
  127. {
  128. Vector3 point = origin_ + x * direction_;
  129. if (point.x_ >= box.min_.x_ && point.x_ <= box.max_.x_ && point.y_ >= box.min_.y_ && point.y_ <= box.max_.y_)
  130. dist = x;
  131. }
  132. }
  133. return dist;
  134. }
  135. float Ray::HitDistance(const Frustum& frustum, bool solidInside) const
  136. {
  137. float maxOutside = 0.0f;
  138. float minInside = M_INFINITY;
  139. bool allInside = true;
  140. for (unsigned i = 0; i < NUM_FRUSTUM_PLANES; ++i)
  141. {
  142. const Plane& plane = frustum.planes_[i];
  143. float distance = HitDistance(frustum.planes_[i]);
  144. if (plane.Distance(origin_) < 0.0f)
  145. {
  146. maxOutside = Max(maxOutside, distance);
  147. allInside = false;
  148. }
  149. else
  150. minInside = Min(minInside, distance);
  151. }
  152. if (allInside)
  153. return solidInside ? 0.0f : minInside;
  154. else if (maxOutside <= minInside)
  155. return maxOutside;
  156. else
  157. return M_INFINITY;
  158. }
  159. float Ray::HitDistance(const Sphere& sphere) const
  160. {
  161. Vector3 centeredOrigin = origin_ - sphere.center_;
  162. float squaredRadius = sphere.radius_ * sphere.radius_;
  163. // Check if ray originates inside the sphere
  164. if (centeredOrigin.LengthSquared() <= squaredRadius)
  165. return 0.0f;
  166. // Calculate intersection by quadratic equation
  167. float a = direction_.DotProduct(direction_);
  168. float b = 2.0f * centeredOrigin.DotProduct(direction_);
  169. float c = centeredOrigin.DotProduct(centeredOrigin) - squaredRadius;
  170. float d = b * b - 4.0f * a * c;
  171. // No solution
  172. if (d < 0.0f)
  173. return M_INFINITY;
  174. // Get the nearer solution
  175. float dSqrt = sqrtf(d);
  176. float dist = (-b - dSqrt) / (2.0f * a);
  177. if (dist >= 0.0f)
  178. return dist;
  179. else
  180. return (-b + dSqrt) / (2.0f * a);
  181. }
  182. float Ray::HitDistance(const Vector3& v0, const Vector3& v1, const Vector3& v2, Vector3* outNormal, Vector3* outBary) const
  183. {
  184. // Based on Fast, Minimum Storage Ray/Triangle Intersection by Möller & Trumbore
  185. // http://www.graphics.cornell.edu/pubs/1997/MT97.pdf
  186. // Calculate edge vectors
  187. Vector3 edge1(v1 - v0);
  188. Vector3 edge2(v2 - v0);
  189. // Calculate determinant & check backfacing
  190. Vector3 p(direction_.CrossProduct(edge2));
  191. float det = edge1.DotProduct(p);
  192. if (det >= M_EPSILON)
  193. {
  194. // Calculate u & v parameters and test
  195. Vector3 t(origin_ - v0);
  196. float u = t.DotProduct(p);
  197. if (u >= 0.0f && u <= det)
  198. {
  199. Vector3 q(t.CrossProduct(edge1));
  200. float v = direction_.DotProduct(q);
  201. if (v >= 0.0f && u + v <= det)
  202. {
  203. float distance = edge2.DotProduct(q) / det;
  204. // Discard hits behind the ray
  205. if (distance >= 0.0f)
  206. {
  207. // There is an intersection, so calculate distance & optional normal
  208. if (outNormal)
  209. *outNormal = edge1.CrossProduct(edge2);
  210. if (outBary)
  211. *outBary = Vector3(1 - (u / det) - (v / det), u / det, v / det);
  212. return distance;
  213. }
  214. }
  215. }
  216. }
  217. return M_INFINITY;
  218. }
  219. float Ray::HitDistance(const void* vertexData, unsigned vertexStride, unsigned vertexStart, unsigned vertexCount,
  220. Vector3* outNormal, Vector2* outUV, unsigned uvOffset) const
  221. {
  222. float nearest = M_INFINITY;
  223. const unsigned char* vertices = ((const unsigned char*)vertexData) + vertexStart * vertexStride;
  224. unsigned index = 0, nearestIdx = M_MAX_UNSIGNED;
  225. Vector3 barycentric;
  226. Vector3* outBary = outUV ? &barycentric : 0;
  227. while (index + 2 < vertexCount)
  228. {
  229. const Vector3& v0 = *((const Vector3*)(&vertices[index * vertexStride]));
  230. const Vector3& v1 = *((const Vector3*)(&vertices[(index + 1) * vertexStride]));
  231. const Vector3& v2 = *((const Vector3*)(&vertices[(index + 2) * vertexStride]));
  232. float distance = HitDistance(v0, v1, v2, outNormal, outBary);
  233. if (distance < nearest)
  234. {
  235. nearestIdx = index;
  236. nearest = distance;
  237. }
  238. index += 3;
  239. }
  240. if (outUV)
  241. {
  242. if (nearestIdx == M_MAX_UNSIGNED)
  243. *outUV = Vector2::ZERO;
  244. else
  245. {
  246. // Interpolate the UV coordinate using barycentric coordinate
  247. const Vector2& uv0 = *((const Vector2*)(&vertices[uvOffset + nearestIdx * vertexStride]));
  248. const Vector2& uv1 = *((const Vector2*)(&vertices[uvOffset + (nearestIdx + 1) * vertexStride]));
  249. const Vector2& uv2 = *((const Vector2*)(&vertices[uvOffset + (nearestIdx + 2) * vertexStride]));
  250. *outUV = Vector2(uv0.x_ * barycentric.x_ + uv1.x_ * barycentric.y_ + uv2.x_ * barycentric.z_,
  251. uv0.y_ * barycentric.x_ + uv1.y_ * barycentric.y_ + uv2.y_ * barycentric.z_);
  252. }
  253. }
  254. return nearest;
  255. }
  256. float Ray::HitDistance(const void* vertexData, unsigned vertexStride, const void* indexData, unsigned indexSize,
  257. unsigned indexStart, unsigned indexCount, Vector3* outNormal, Vector2* outUV, unsigned uvOffset) const
  258. {
  259. float nearest = M_INFINITY;
  260. const unsigned char* vertices = (const unsigned char*)vertexData;
  261. Vector3 barycentric;
  262. Vector3* outBary = outUV ? &barycentric : 0;
  263. // 16-bit indices
  264. if (indexSize == sizeof(unsigned short))
  265. {
  266. const unsigned short* indices = ((const unsigned short*)indexData) + indexStart;
  267. const unsigned short* indicesEnd = indices + indexCount;
  268. const unsigned short* nearestIndices = 0;
  269. while (indices < indicesEnd)
  270. {
  271. const Vector3& v0 = *((const Vector3*)(&vertices[indices[0] * vertexStride]));
  272. const Vector3& v1 = *((const Vector3*)(&vertices[indices[1] * vertexStride]));
  273. const Vector3& v2 = *((const Vector3*)(&vertices[indices[2] * vertexStride]));
  274. float distance = HitDistance(v0, v1, v2, outNormal, outBary);
  275. if (distance < nearest)
  276. {
  277. nearestIndices = indices;
  278. nearest = distance;
  279. }
  280. indices += 3;
  281. }
  282. if (outUV)
  283. {
  284. if (nearestIndices == 0)
  285. *outUV = Vector2::ZERO;
  286. else
  287. {
  288. // Interpolate the UV coordinate using barycentric coordinate
  289. const Vector2& uv0 = *((const Vector2*)(&vertices[uvOffset + nearestIndices[0] * vertexStride]));
  290. const Vector2& uv1 = *((const Vector2*)(&vertices[uvOffset + nearestIndices[1] * vertexStride]));
  291. const Vector2& uv2 = *((const Vector2*)(&vertices[uvOffset + nearestIndices[2] * vertexStride]));
  292. *outUV = Vector2(uv0.x_ * barycentric.x_ + uv1.x_ * barycentric.y_ + uv2.x_ * barycentric.z_,
  293. uv0.y_ * barycentric.x_ + uv1.y_ * barycentric.y_ + uv2.y_ * barycentric.z_);
  294. }
  295. }
  296. }
  297. // 32-bit indices
  298. else
  299. {
  300. const unsigned* indices = ((const unsigned*)indexData) + indexStart;
  301. const unsigned* indicesEnd = indices + indexCount;
  302. const unsigned* nearestIndices = 0;
  303. while (indices < indicesEnd)
  304. {
  305. const Vector3& v0 = *((const Vector3*)(&vertices[indices[0] * vertexStride]));
  306. const Vector3& v1 = *((const Vector3*)(&vertices[indices[1] * vertexStride]));
  307. const Vector3& v2 = *((const Vector3*)(&vertices[indices[2] * vertexStride]));
  308. float distance = HitDistance(v0, v1, v2, outNormal, outBary);
  309. if (distance < nearest)
  310. {
  311. nearestIndices = indices;
  312. nearest = distance;
  313. }
  314. indices += 3;
  315. }
  316. if (outUV)
  317. {
  318. if (nearestIndices == 0)
  319. *outUV = Vector2::ZERO;
  320. else
  321. {
  322. // Interpolate the UV coordinate using barycentric coordinate
  323. const Vector2& uv0 = *((const Vector2*)(&vertices[uvOffset + nearestIndices[0] * vertexStride]));
  324. const Vector2& uv1 = *((const Vector2*)(&vertices[uvOffset + nearestIndices[1] * vertexStride]));
  325. const Vector2& uv2 = *((const Vector2*)(&vertices[uvOffset + nearestIndices[2] * vertexStride]));
  326. *outUV = Vector2(uv0.x_ * barycentric.x_ + uv1.x_ * barycentric.y_ + uv2.x_ * barycentric.z_,
  327. uv0.y_ * barycentric.x_ + uv1.y_ * barycentric.y_ + uv2.y_ * barycentric.z_);
  328. }
  329. }
  330. }
  331. return nearest;
  332. }
  333. bool Ray::InsideGeometry(const void* vertexData, unsigned vertexSize, unsigned vertexStart, unsigned vertexCount) const
  334. {
  335. float currentFrontFace = M_INFINITY;
  336. float currentBackFace = M_INFINITY;
  337. const unsigned char* vertices = ((const unsigned char*)vertexData) + vertexStart * vertexSize;
  338. unsigned index = 0;
  339. while (index + 2 < vertexCount)
  340. {
  341. const Vector3& v0 = *((const Vector3*)(&vertices[index * vertexSize]));
  342. const Vector3& v1 = *((const Vector3*)(&vertices[(index + 1) * vertexSize]));
  343. const Vector3& v2 = *((const Vector3*)(&vertices[(index + 2) * vertexSize]));
  344. float frontFaceDistance = HitDistance(v0, v1, v2);
  345. float backFaceDistance = HitDistance(v2, v1, v0);
  346. currentFrontFace = Min(frontFaceDistance > 0.0f ? frontFaceDistance : M_INFINITY, currentFrontFace);
  347. // A backwards face is just a regular one, with the vertices in the opposite order. This essentially checks backfaces by
  348. // checking reversed frontfaces
  349. currentBackFace = Min(backFaceDistance > 0.0f ? backFaceDistance : M_INFINITY, currentBackFace);
  350. index += 3;
  351. }
  352. // If the closest face is a backface, that means that the ray originates from the inside of the geometry
  353. // NOTE: there may be cases where both are equal, as in, no collision to either. This is prevented in the most likely case
  354. // (ray doesn't hit either) by this conditional
  355. if (currentFrontFace != M_INFINITY || currentBackFace != M_INFINITY)
  356. return currentBackFace < currentFrontFace;
  357. // It is still possible for two triangles to be equally distant from the triangle, however, this is extremely unlikely.
  358. // As such, it is safe to assume they are not
  359. return false;
  360. }
  361. bool Ray::InsideGeometry(const void* vertexData, unsigned vertexSize, const void* indexData, unsigned indexSize,
  362. unsigned indexStart, unsigned indexCount) const
  363. {
  364. float currentFrontFace = M_INFINITY;
  365. float currentBackFace = M_INFINITY;
  366. const unsigned char* vertices = (const unsigned char*)vertexData;
  367. // 16-bit indices
  368. if (indexSize == sizeof(unsigned short))
  369. {
  370. const unsigned short* indices = ((const unsigned short*)indexData) + indexStart;
  371. const unsigned short* indicesEnd = indices + indexCount;
  372. while (indices < indicesEnd)
  373. {
  374. const Vector3& v0 = *((const Vector3*)(&vertices[indices[0] * vertexSize]));
  375. const Vector3& v1 = *((const Vector3*)(&vertices[indices[1] * vertexSize]));
  376. const Vector3& v2 = *((const Vector3*)(&vertices[indices[2] * vertexSize]));
  377. float frontFaceDistance = HitDistance(v0, v1, v2);
  378. float backFaceDistance = HitDistance(v2, v1, v0);
  379. currentFrontFace = Min(frontFaceDistance > 0.0f ? frontFaceDistance : M_INFINITY, currentFrontFace);
  380. // A backwards face is just a regular one, with the vertices in the opposite order. This essentially checks backfaces by
  381. // checking reversed frontfaces
  382. currentBackFace = Min(backFaceDistance > 0.0f ? backFaceDistance : M_INFINITY, currentBackFace);
  383. indices += 3;
  384. }
  385. }
  386. // 32-bit indices
  387. else
  388. {
  389. const unsigned* indices = ((const unsigned*)indexData) + indexStart;
  390. const unsigned* indicesEnd = indices + indexCount;
  391. while (indices < indicesEnd)
  392. {
  393. const Vector3& v0 = *((const Vector3*)(&vertices[indices[0] * vertexSize]));
  394. const Vector3& v1 = *((const Vector3*)(&vertices[indices[1] * vertexSize]));
  395. const Vector3& v2 = *((const Vector3*)(&vertices[indices[2] * vertexSize]));
  396. float frontFaceDistance = HitDistance(v0, v1, v2);
  397. float backFaceDistance = HitDistance(v2, v1, v0);
  398. currentFrontFace = Min(frontFaceDistance > 0.0f ? frontFaceDistance : M_INFINITY, currentFrontFace);
  399. // A backwards face is just a regular one, with the vertices in the opposite order. This essentially checks backfaces by
  400. // checking reversed frontfaces
  401. currentBackFace = Min(backFaceDistance > 0.0f ? backFaceDistance : M_INFINITY, currentBackFace);
  402. indices += 3;
  403. }
  404. }
  405. // If the closest face is a backface, that means that the ray originates from the inside of the geometry
  406. // NOTE: there may be cases where both are equal, as in, no collision to either. This is prevented in the most likely case
  407. // (ray doesn't hit either) by this conditional
  408. if (currentFrontFace != M_INFINITY || currentBackFace != M_INFINITY)
  409. return currentBackFace < currentFrontFace;
  410. // It is still possible for two triangles to be equally distant from the triangle, however, this is extremely unlikely.
  411. // As such, it is safe to assume they are not
  412. return false;
  413. }
  414. Ray Ray::Transformed(const Matrix3x4& transform) const
  415. {
  416. Ray ret;
  417. ret.origin_ = transform * origin_;
  418. ret.direction_ = transform * Vector4(direction_, 0.0f);
  419. return ret;
  420. }
  421. }