bss_dgram.c 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013
  1. /* crypto/bio/bio_dgram.c */
  2. /*
  3. * DTLS implementation written by Nagendra Modadugu
  4. * ([email protected]) for the OpenSSL project 2005.
  5. */
  6. /* ====================================================================
  7. * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. *
  13. * 1. Redistributions of source code must retain the above copyright
  14. * notice, this list of conditions and the following disclaimer.
  15. *
  16. * 2. Redistributions in binary form must reproduce the above copyright
  17. * notice, this list of conditions and the following disclaimer in
  18. * the documentation and/or other materials provided with the
  19. * distribution.
  20. *
  21. * 3. All advertising materials mentioning features or use of this
  22. * software must display the following acknowledgment:
  23. * "This product includes software developed by the OpenSSL Project
  24. * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
  25. *
  26. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  27. * endorse or promote products derived from this software without
  28. * prior written permission. For written permission, please contact
  29. * [email protected].
  30. *
  31. * 5. Products derived from this software may not be called "OpenSSL"
  32. * nor may "OpenSSL" appear in their names without prior written
  33. * permission of the OpenSSL Project.
  34. *
  35. * 6. Redistributions of any form whatsoever must retain the following
  36. * acknowledgment:
  37. * "This product includes software developed by the OpenSSL Project
  38. * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  41. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  43. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  44. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  45. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  46. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  47. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  48. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  49. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  50. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  51. * OF THE POSSIBILITY OF SUCH DAMAGE.
  52. * ====================================================================
  53. *
  54. * This product includes cryptographic software written by Eric Young
  55. * ([email protected]). This product includes software written by Tim
  56. * Hudson ([email protected]).
  57. *
  58. */
  59. #include <stdio.h>
  60. #include <errno.h>
  61. #define USE_SOCKETS
  62. #include "cryptlib.h"
  63. #include <openssl/bio.h>
  64. #ifndef OPENSSL_NO_DGRAM
  65. # if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VMS)
  66. # include <sys/timeb.h>
  67. # endif
  68. # ifndef OPENSSL_NO_SCTP
  69. # include <netinet/sctp.h>
  70. # include <fcntl.h>
  71. # define OPENSSL_SCTP_DATA_CHUNK_TYPE 0x00
  72. # define OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE 0xc0
  73. # endif
  74. # if defined(OPENSSL_SYS_LINUX) && !defined(IP_MTU)
  75. # define IP_MTU 14 /* linux is lame */
  76. # endif
  77. # if defined(__FreeBSD__) && defined(IN6_IS_ADDR_V4MAPPED)
  78. /* Standard definition causes type-punning problems. */
  79. # undef IN6_IS_ADDR_V4MAPPED
  80. # define s6_addr32 __u6_addr.__u6_addr32
  81. # define IN6_IS_ADDR_V4MAPPED(a) \
  82. (((a)->s6_addr32[0] == 0) && \
  83. ((a)->s6_addr32[1] == 0) && \
  84. ((a)->s6_addr32[2] == htonl(0x0000ffff)))
  85. # endif
  86. # ifdef WATT32
  87. # define sock_write SockWrite /* Watt-32 uses same names */
  88. # define sock_read SockRead
  89. # define sock_puts SockPuts
  90. # endif
  91. static int dgram_write(BIO *h, const char *buf, int num);
  92. static int dgram_read(BIO *h, char *buf, int size);
  93. static int dgram_puts(BIO *h, const char *str);
  94. static long dgram_ctrl(BIO *h, int cmd, long arg1, void *arg2);
  95. static int dgram_new(BIO *h);
  96. static int dgram_free(BIO *data);
  97. static int dgram_clear(BIO *bio);
  98. # ifndef OPENSSL_NO_SCTP
  99. static int dgram_sctp_write(BIO *h, const char *buf, int num);
  100. static int dgram_sctp_read(BIO *h, char *buf, int size);
  101. static int dgram_sctp_puts(BIO *h, const char *str);
  102. static long dgram_sctp_ctrl(BIO *h, int cmd, long arg1, void *arg2);
  103. static int dgram_sctp_new(BIO *h);
  104. static int dgram_sctp_free(BIO *data);
  105. # ifdef SCTP_AUTHENTICATION_EVENT
  106. static void dgram_sctp_handle_auth_free_key_event(BIO *b, union sctp_notification
  107. *snp);
  108. # endif
  109. # endif
  110. static int BIO_dgram_should_retry(int s);
  111. static void get_current_time(struct timeval *t);
  112. static BIO_METHOD methods_dgramp = {
  113. BIO_TYPE_DGRAM,
  114. "datagram socket",
  115. dgram_write,
  116. dgram_read,
  117. dgram_puts,
  118. NULL, /* dgram_gets, */
  119. dgram_ctrl,
  120. dgram_new,
  121. dgram_free,
  122. NULL,
  123. };
  124. # ifndef OPENSSL_NO_SCTP
  125. static BIO_METHOD methods_dgramp_sctp = {
  126. BIO_TYPE_DGRAM_SCTP,
  127. "datagram sctp socket",
  128. dgram_sctp_write,
  129. dgram_sctp_read,
  130. dgram_sctp_puts,
  131. NULL, /* dgram_gets, */
  132. dgram_sctp_ctrl,
  133. dgram_sctp_new,
  134. dgram_sctp_free,
  135. NULL,
  136. };
  137. # endif
  138. typedef struct bio_dgram_data_st {
  139. union {
  140. struct sockaddr sa;
  141. struct sockaddr_in sa_in;
  142. # if OPENSSL_USE_IPV6
  143. struct sockaddr_in6 sa_in6;
  144. # endif
  145. } peer;
  146. unsigned int connected;
  147. unsigned int _errno;
  148. unsigned int mtu;
  149. struct timeval next_timeout;
  150. struct timeval socket_timeout;
  151. } bio_dgram_data;
  152. # ifndef OPENSSL_NO_SCTP
  153. typedef struct bio_dgram_sctp_save_message_st {
  154. BIO *bio;
  155. char *data;
  156. int length;
  157. } bio_dgram_sctp_save_message;
  158. typedef struct bio_dgram_sctp_data_st {
  159. union {
  160. struct sockaddr sa;
  161. struct sockaddr_in sa_in;
  162. # if OPENSSL_USE_IPV6
  163. struct sockaddr_in6 sa_in6;
  164. # endif
  165. } peer;
  166. unsigned int connected;
  167. unsigned int _errno;
  168. unsigned int mtu;
  169. struct bio_dgram_sctp_sndinfo sndinfo;
  170. struct bio_dgram_sctp_rcvinfo rcvinfo;
  171. struct bio_dgram_sctp_prinfo prinfo;
  172. void (*handle_notifications) (BIO *bio, void *context, void *buf);
  173. void *notification_context;
  174. int in_handshake;
  175. int ccs_rcvd;
  176. int ccs_sent;
  177. int save_shutdown;
  178. int peer_auth_tested;
  179. bio_dgram_sctp_save_message saved_message;
  180. } bio_dgram_sctp_data;
  181. # endif
  182. BIO_METHOD *BIO_s_datagram(void)
  183. {
  184. return (&methods_dgramp);
  185. }
  186. BIO *BIO_new_dgram(int fd, int close_flag)
  187. {
  188. BIO *ret;
  189. ret = BIO_new(BIO_s_datagram());
  190. if (ret == NULL)
  191. return (NULL);
  192. BIO_set_fd(ret, fd, close_flag);
  193. return (ret);
  194. }
  195. static int dgram_new(BIO *bi)
  196. {
  197. bio_dgram_data *data = NULL;
  198. bi->init = 0;
  199. bi->num = 0;
  200. data = OPENSSL_malloc(sizeof(bio_dgram_data));
  201. if (data == NULL)
  202. return 0;
  203. memset(data, 0x00, sizeof(bio_dgram_data));
  204. bi->ptr = data;
  205. bi->flags = 0;
  206. return (1);
  207. }
  208. static int dgram_free(BIO *a)
  209. {
  210. bio_dgram_data *data;
  211. if (a == NULL)
  212. return (0);
  213. if (!dgram_clear(a))
  214. return 0;
  215. data = (bio_dgram_data *)a->ptr;
  216. if (data != NULL)
  217. OPENSSL_free(data);
  218. return (1);
  219. }
  220. static int dgram_clear(BIO *a)
  221. {
  222. if (a == NULL)
  223. return (0);
  224. if (a->shutdown) {
  225. if (a->init) {
  226. SHUTDOWN2(a->num);
  227. }
  228. a->init = 0;
  229. a->flags = 0;
  230. }
  231. return (1);
  232. }
  233. static void dgram_adjust_rcv_timeout(BIO *b)
  234. {
  235. # if defined(SO_RCVTIMEO)
  236. bio_dgram_data *data = (bio_dgram_data *)b->ptr;
  237. union {
  238. size_t s;
  239. int i;
  240. } sz = {
  241. 0
  242. };
  243. /* Is a timer active? */
  244. if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) {
  245. struct timeval timenow, timeleft;
  246. /* Read current socket timeout */
  247. # ifdef OPENSSL_SYS_WINDOWS
  248. int timeout;
  249. sz.i = sizeof(timeout);
  250. if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
  251. (void *)&timeout, &sz.i) < 0) {
  252. perror("getsockopt");
  253. } else {
  254. data->socket_timeout.tv_sec = timeout / 1000;
  255. data->socket_timeout.tv_usec = (timeout % 1000) * 1000;
  256. }
  257. # else
  258. sz.i = sizeof(data->socket_timeout);
  259. if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
  260. &(data->socket_timeout), (void *)&sz) < 0) {
  261. perror("getsockopt");
  262. } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0)
  263. OPENSSL_assert(sz.s <= sizeof(data->socket_timeout));
  264. # endif
  265. /* Get current time */
  266. get_current_time(&timenow);
  267. /* Calculate time left until timer expires */
  268. memcpy(&timeleft, &(data->next_timeout), sizeof(struct timeval));
  269. if (timeleft.tv_usec < timenow.tv_usec) {
  270. timeleft.tv_usec = 1000000 - timenow.tv_usec + timeleft.tv_usec;
  271. timeleft.tv_sec--;
  272. } else {
  273. timeleft.tv_usec -= timenow.tv_usec;
  274. }
  275. if (timeleft.tv_sec < timenow.tv_sec) {
  276. timeleft.tv_sec = 0;
  277. timeleft.tv_usec = 1;
  278. } else {
  279. timeleft.tv_sec -= timenow.tv_sec;
  280. }
  281. /*
  282. * Adjust socket timeout if next handhake message timer will expire
  283. * earlier.
  284. */
  285. if ((data->socket_timeout.tv_sec == 0
  286. && data->socket_timeout.tv_usec == 0)
  287. || (data->socket_timeout.tv_sec > timeleft.tv_sec)
  288. || (data->socket_timeout.tv_sec == timeleft.tv_sec
  289. && data->socket_timeout.tv_usec >= timeleft.tv_usec)) {
  290. # ifdef OPENSSL_SYS_WINDOWS
  291. timeout = timeleft.tv_sec * 1000 + timeleft.tv_usec / 1000;
  292. if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
  293. (void *)&timeout, sizeof(timeout)) < 0) {
  294. perror("setsockopt");
  295. }
  296. # else
  297. if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &timeleft,
  298. sizeof(struct timeval)) < 0) {
  299. perror("setsockopt");
  300. }
  301. # endif
  302. }
  303. }
  304. # endif
  305. }
  306. static void dgram_reset_rcv_timeout(BIO *b)
  307. {
  308. # if defined(SO_RCVTIMEO)
  309. bio_dgram_data *data = (bio_dgram_data *)b->ptr;
  310. /* Is a timer active? */
  311. if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) {
  312. # ifdef OPENSSL_SYS_WINDOWS
  313. int timeout = data->socket_timeout.tv_sec * 1000 +
  314. data->socket_timeout.tv_usec / 1000;
  315. if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
  316. (void *)&timeout, sizeof(timeout)) < 0) {
  317. perror("setsockopt");
  318. }
  319. # else
  320. if (setsockopt
  321. (b->num, SOL_SOCKET, SO_RCVTIMEO, &(data->socket_timeout),
  322. sizeof(struct timeval)) < 0) {
  323. perror("setsockopt");
  324. }
  325. # endif
  326. }
  327. # endif
  328. }
  329. static int dgram_read(BIO *b, char *out, int outl)
  330. {
  331. int ret = 0;
  332. bio_dgram_data *data = (bio_dgram_data *)b->ptr;
  333. struct {
  334. /*
  335. * See commentary in b_sock.c. <appro>
  336. */
  337. union {
  338. size_t s;
  339. int i;
  340. } len;
  341. union {
  342. struct sockaddr sa;
  343. struct sockaddr_in sa_in;
  344. # if OPENSSL_USE_IPV6
  345. struct sockaddr_in6 sa_in6;
  346. # endif
  347. } peer;
  348. } sa;
  349. sa.len.s = 0;
  350. sa.len.i = sizeof(sa.peer);
  351. if (out != NULL) {
  352. clear_socket_error();
  353. memset(&sa.peer, 0x00, sizeof(sa.peer));
  354. dgram_adjust_rcv_timeout(b);
  355. ret = recvfrom(b->num, out, outl, 0, &sa.peer.sa, (void *)&sa.len);
  356. if (sizeof(sa.len.i) != sizeof(sa.len.s) && sa.len.i == 0) {
  357. OPENSSL_assert(sa.len.s <= sizeof(sa.peer));
  358. sa.len.i = (int)sa.len.s;
  359. }
  360. if (!data->connected && ret >= 0)
  361. BIO_ctrl(b, BIO_CTRL_DGRAM_SET_PEER, 0, &sa.peer);
  362. BIO_clear_retry_flags(b);
  363. if (ret < 0) {
  364. if (BIO_dgram_should_retry(ret)) {
  365. BIO_set_retry_read(b);
  366. data->_errno = get_last_socket_error();
  367. }
  368. }
  369. dgram_reset_rcv_timeout(b);
  370. }
  371. return (ret);
  372. }
  373. static int dgram_write(BIO *b, const char *in, int inl)
  374. {
  375. int ret;
  376. bio_dgram_data *data = (bio_dgram_data *)b->ptr;
  377. clear_socket_error();
  378. if (data->connected)
  379. ret = writesocket(b->num, in, inl);
  380. else {
  381. int peerlen = sizeof(data->peer);
  382. if (data->peer.sa.sa_family == AF_INET)
  383. peerlen = sizeof(data->peer.sa_in);
  384. # if OPENSSL_USE_IPV6
  385. else if (data->peer.sa.sa_family == AF_INET6)
  386. peerlen = sizeof(data->peer.sa_in6);
  387. # endif
  388. # if defined(NETWARE_CLIB) && defined(NETWARE_BSDSOCK)
  389. ret = sendto(b->num, (char *)in, inl, 0, &data->peer.sa, peerlen);
  390. # else
  391. ret = sendto(b->num, in, inl, 0, &data->peer.sa, peerlen);
  392. # endif
  393. }
  394. BIO_clear_retry_flags(b);
  395. if (ret <= 0) {
  396. if (BIO_dgram_should_retry(ret)) {
  397. BIO_set_retry_write(b);
  398. data->_errno = get_last_socket_error();
  399. # if 0 /* higher layers are responsible for querying
  400. * MTU, if necessary */
  401. if (data->_errno == EMSGSIZE)
  402. /* retrieve the new MTU */
  403. BIO_ctrl(b, BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
  404. # endif
  405. }
  406. }
  407. return (ret);
  408. }
  409. static long dgram_get_mtu_overhead(bio_dgram_data *data)
  410. {
  411. long ret;
  412. switch (data->peer.sa.sa_family) {
  413. case AF_INET:
  414. /*
  415. * Assume this is UDP - 20 bytes for IP, 8 bytes for UDP
  416. */
  417. ret = 28;
  418. break;
  419. # if OPENSSL_USE_IPV6
  420. case AF_INET6:
  421. # ifdef IN6_IS_ADDR_V4MAPPED
  422. if (IN6_IS_ADDR_V4MAPPED(&data->peer.sa_in6.sin6_addr))
  423. /*
  424. * Assume this is UDP - 20 bytes for IP, 8 bytes for UDP
  425. */
  426. ret = 28;
  427. else
  428. # endif
  429. /*
  430. * Assume this is UDP - 40 bytes for IP, 8 bytes for UDP
  431. */
  432. ret = 48;
  433. break;
  434. # endif
  435. default:
  436. /* We don't know. Go with the historical default */
  437. ret = 28;
  438. break;
  439. }
  440. return ret;
  441. }
  442. static long dgram_ctrl(BIO *b, int cmd, long num, void *ptr)
  443. {
  444. long ret = 1;
  445. int *ip;
  446. struct sockaddr *to = NULL;
  447. bio_dgram_data *data = NULL;
  448. # if defined(OPENSSL_SYS_LINUX) && (defined(IP_MTU_DISCOVER) || defined(IP_MTU))
  449. int sockopt_val = 0;
  450. socklen_t sockopt_len; /* assume that system supporting IP_MTU is
  451. * modern enough to define socklen_t */
  452. socklen_t addr_len;
  453. union {
  454. struct sockaddr sa;
  455. struct sockaddr_in s4;
  456. # if OPENSSL_USE_IPV6
  457. struct sockaddr_in6 s6;
  458. # endif
  459. } addr;
  460. # endif
  461. data = (bio_dgram_data *)b->ptr;
  462. switch (cmd) {
  463. case BIO_CTRL_RESET:
  464. num = 0;
  465. case BIO_C_FILE_SEEK:
  466. ret = 0;
  467. break;
  468. case BIO_C_FILE_TELL:
  469. case BIO_CTRL_INFO:
  470. ret = 0;
  471. break;
  472. case BIO_C_SET_FD:
  473. dgram_clear(b);
  474. b->num = *((int *)ptr);
  475. b->shutdown = (int)num;
  476. b->init = 1;
  477. break;
  478. case BIO_C_GET_FD:
  479. if (b->init) {
  480. ip = (int *)ptr;
  481. if (ip != NULL)
  482. *ip = b->num;
  483. ret = b->num;
  484. } else
  485. ret = -1;
  486. break;
  487. case BIO_CTRL_GET_CLOSE:
  488. ret = b->shutdown;
  489. break;
  490. case BIO_CTRL_SET_CLOSE:
  491. b->shutdown = (int)num;
  492. break;
  493. case BIO_CTRL_PENDING:
  494. case BIO_CTRL_WPENDING:
  495. ret = 0;
  496. break;
  497. case BIO_CTRL_DUP:
  498. case BIO_CTRL_FLUSH:
  499. ret = 1;
  500. break;
  501. case BIO_CTRL_DGRAM_CONNECT:
  502. to = (struct sockaddr *)ptr;
  503. # if 0
  504. if (connect(b->num, to, sizeof(struct sockaddr)) < 0) {
  505. perror("connect");
  506. ret = 0;
  507. } else {
  508. # endif
  509. switch (to->sa_family) {
  510. case AF_INET:
  511. memcpy(&data->peer, to, sizeof(data->peer.sa_in));
  512. break;
  513. # if OPENSSL_USE_IPV6
  514. case AF_INET6:
  515. memcpy(&data->peer, to, sizeof(data->peer.sa_in6));
  516. break;
  517. # endif
  518. default:
  519. memcpy(&data->peer, to, sizeof(data->peer.sa));
  520. break;
  521. }
  522. # if 0
  523. }
  524. # endif
  525. break;
  526. /* (Linux)kernel sets DF bit on outgoing IP packets */
  527. case BIO_CTRL_DGRAM_MTU_DISCOVER:
  528. # if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DO)
  529. addr_len = (socklen_t) sizeof(addr);
  530. memset((void *)&addr, 0, sizeof(addr));
  531. if (getsockname(b->num, &addr.sa, &addr_len) < 0) {
  532. ret = 0;
  533. break;
  534. }
  535. switch (addr.sa.sa_family) {
  536. case AF_INET:
  537. sockopt_val = IP_PMTUDISC_DO;
  538. if ((ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER,
  539. &sockopt_val, sizeof(sockopt_val))) < 0)
  540. perror("setsockopt");
  541. break;
  542. # if OPENSSL_USE_IPV6 && defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DO)
  543. case AF_INET6:
  544. sockopt_val = IPV6_PMTUDISC_DO;
  545. if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER,
  546. &sockopt_val, sizeof(sockopt_val))) < 0)
  547. perror("setsockopt");
  548. break;
  549. # endif
  550. default:
  551. ret = -1;
  552. break;
  553. }
  554. ret = -1;
  555. # else
  556. break;
  557. # endif
  558. case BIO_CTRL_DGRAM_QUERY_MTU:
  559. # if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU)
  560. addr_len = (socklen_t) sizeof(addr);
  561. memset((void *)&addr, 0, sizeof(addr));
  562. if (getsockname(b->num, &addr.sa, &addr_len) < 0) {
  563. ret = 0;
  564. break;
  565. }
  566. sockopt_len = sizeof(sockopt_val);
  567. switch (addr.sa.sa_family) {
  568. case AF_INET:
  569. if ((ret =
  570. getsockopt(b->num, IPPROTO_IP, IP_MTU, (void *)&sockopt_val,
  571. &sockopt_len)) < 0 || sockopt_val < 0) {
  572. ret = 0;
  573. } else {
  574. /*
  575. * we assume that the transport protocol is UDP and no IP
  576. * options are used.
  577. */
  578. data->mtu = sockopt_val - 8 - 20;
  579. ret = data->mtu;
  580. }
  581. break;
  582. # if OPENSSL_USE_IPV6 && defined(IPV6_MTU)
  583. case AF_INET6:
  584. if ((ret =
  585. getsockopt(b->num, IPPROTO_IPV6, IPV6_MTU,
  586. (void *)&sockopt_val, &sockopt_len)) < 0
  587. || sockopt_val < 0) {
  588. ret = 0;
  589. } else {
  590. /*
  591. * we assume that the transport protocol is UDP and no IPV6
  592. * options are used.
  593. */
  594. data->mtu = sockopt_val - 8 - 40;
  595. ret = data->mtu;
  596. }
  597. break;
  598. # endif
  599. default:
  600. ret = 0;
  601. break;
  602. }
  603. # else
  604. ret = 0;
  605. # endif
  606. break;
  607. case BIO_CTRL_DGRAM_GET_FALLBACK_MTU:
  608. ret = -dgram_get_mtu_overhead(data);
  609. switch (data->peer.sa.sa_family) {
  610. case AF_INET:
  611. ret += 576;
  612. break;
  613. # if OPENSSL_USE_IPV6
  614. case AF_INET6:
  615. # ifdef IN6_IS_ADDR_V4MAPPED
  616. if (IN6_IS_ADDR_V4MAPPED(&data->peer.sa_in6.sin6_addr))
  617. ret += 576;
  618. else
  619. # endif
  620. ret += 1280;
  621. break;
  622. # endif
  623. default:
  624. ret += 576;
  625. break;
  626. }
  627. break;
  628. case BIO_CTRL_DGRAM_GET_MTU:
  629. return data->mtu;
  630. break;
  631. case BIO_CTRL_DGRAM_SET_MTU:
  632. data->mtu = num;
  633. ret = num;
  634. break;
  635. case BIO_CTRL_DGRAM_SET_CONNECTED:
  636. to = (struct sockaddr *)ptr;
  637. if (to != NULL) {
  638. data->connected = 1;
  639. switch (to->sa_family) {
  640. case AF_INET:
  641. memcpy(&data->peer, to, sizeof(data->peer.sa_in));
  642. break;
  643. # if OPENSSL_USE_IPV6
  644. case AF_INET6:
  645. memcpy(&data->peer, to, sizeof(data->peer.sa_in6));
  646. break;
  647. # endif
  648. default:
  649. memcpy(&data->peer, to, sizeof(data->peer.sa));
  650. break;
  651. }
  652. } else {
  653. data->connected = 0;
  654. memset(&(data->peer), 0x00, sizeof(data->peer));
  655. }
  656. break;
  657. case BIO_CTRL_DGRAM_GET_PEER:
  658. switch (data->peer.sa.sa_family) {
  659. case AF_INET:
  660. ret = sizeof(data->peer.sa_in);
  661. break;
  662. # if OPENSSL_USE_IPV6
  663. case AF_INET6:
  664. ret = sizeof(data->peer.sa_in6);
  665. break;
  666. # endif
  667. default:
  668. ret = sizeof(data->peer.sa);
  669. break;
  670. }
  671. if (num == 0 || num > ret)
  672. num = ret;
  673. memcpy(ptr, &data->peer, (ret = num));
  674. break;
  675. case BIO_CTRL_DGRAM_SET_PEER:
  676. to = (struct sockaddr *)ptr;
  677. switch (to->sa_family) {
  678. case AF_INET:
  679. memcpy(&data->peer, to, sizeof(data->peer.sa_in));
  680. break;
  681. # if OPENSSL_USE_IPV6
  682. case AF_INET6:
  683. memcpy(&data->peer, to, sizeof(data->peer.sa_in6));
  684. break;
  685. # endif
  686. default:
  687. memcpy(&data->peer, to, sizeof(data->peer.sa));
  688. break;
  689. }
  690. break;
  691. case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
  692. memcpy(&(data->next_timeout), ptr, sizeof(struct timeval));
  693. break;
  694. # if defined(SO_RCVTIMEO)
  695. case BIO_CTRL_DGRAM_SET_RECV_TIMEOUT:
  696. # ifdef OPENSSL_SYS_WINDOWS
  697. {
  698. struct timeval *tv = (struct timeval *)ptr;
  699. int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000;
  700. if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
  701. (void *)&timeout, sizeof(timeout)) < 0) {
  702. perror("setsockopt");
  703. ret = -1;
  704. }
  705. }
  706. # else
  707. if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr,
  708. sizeof(struct timeval)) < 0) {
  709. perror("setsockopt");
  710. ret = -1;
  711. }
  712. # endif
  713. break;
  714. case BIO_CTRL_DGRAM_GET_RECV_TIMEOUT:
  715. {
  716. union {
  717. size_t s;
  718. int i;
  719. } sz = {
  720. 0
  721. };
  722. # ifdef OPENSSL_SYS_WINDOWS
  723. int timeout;
  724. struct timeval *tv = (struct timeval *)ptr;
  725. sz.i = sizeof(timeout);
  726. if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
  727. (void *)&timeout, &sz.i) < 0) {
  728. perror("getsockopt");
  729. ret = -1;
  730. } else {
  731. tv->tv_sec = timeout / 1000;
  732. tv->tv_usec = (timeout % 1000) * 1000;
  733. ret = sizeof(*tv);
  734. }
  735. # else
  736. sz.i = sizeof(struct timeval);
  737. if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
  738. ptr, (void *)&sz) < 0) {
  739. perror("getsockopt");
  740. ret = -1;
  741. } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) {
  742. OPENSSL_assert(sz.s <= sizeof(struct timeval));
  743. ret = (int)sz.s;
  744. } else
  745. ret = sz.i;
  746. # endif
  747. }
  748. break;
  749. # endif
  750. # if defined(SO_SNDTIMEO)
  751. case BIO_CTRL_DGRAM_SET_SEND_TIMEOUT:
  752. # ifdef OPENSSL_SYS_WINDOWS
  753. {
  754. struct timeval *tv = (struct timeval *)ptr;
  755. int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000;
  756. if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
  757. (void *)&timeout, sizeof(timeout)) < 0) {
  758. perror("setsockopt");
  759. ret = -1;
  760. }
  761. }
  762. # else
  763. if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr,
  764. sizeof(struct timeval)) < 0) {
  765. perror("setsockopt");
  766. ret = -1;
  767. }
  768. # endif
  769. break;
  770. case BIO_CTRL_DGRAM_GET_SEND_TIMEOUT:
  771. {
  772. union {
  773. size_t s;
  774. int i;
  775. } sz = {
  776. 0
  777. };
  778. # ifdef OPENSSL_SYS_WINDOWS
  779. int timeout;
  780. struct timeval *tv = (struct timeval *)ptr;
  781. sz.i = sizeof(timeout);
  782. if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
  783. (void *)&timeout, &sz.i) < 0) {
  784. perror("getsockopt");
  785. ret = -1;
  786. } else {
  787. tv->tv_sec = timeout / 1000;
  788. tv->tv_usec = (timeout % 1000) * 1000;
  789. ret = sizeof(*tv);
  790. }
  791. # else
  792. sz.i = sizeof(struct timeval);
  793. if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
  794. ptr, (void *)&sz) < 0) {
  795. perror("getsockopt");
  796. ret = -1;
  797. } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) {
  798. OPENSSL_assert(sz.s <= sizeof(struct timeval));
  799. ret = (int)sz.s;
  800. } else
  801. ret = sz.i;
  802. # endif
  803. }
  804. break;
  805. # endif
  806. case BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP:
  807. /* fall-through */
  808. case BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP:
  809. # ifdef OPENSSL_SYS_WINDOWS
  810. if (data->_errno == WSAETIMEDOUT)
  811. # else
  812. if (data->_errno == EAGAIN)
  813. # endif
  814. {
  815. ret = 1;
  816. data->_errno = 0;
  817. } else
  818. ret = 0;
  819. break;
  820. # ifdef EMSGSIZE
  821. case BIO_CTRL_DGRAM_MTU_EXCEEDED:
  822. if (data->_errno == EMSGSIZE) {
  823. ret = 1;
  824. data->_errno = 0;
  825. } else
  826. ret = 0;
  827. break;
  828. # endif
  829. case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD:
  830. ret = dgram_get_mtu_overhead(data);
  831. break;
  832. default:
  833. ret = 0;
  834. break;
  835. }
  836. return (ret);
  837. }
  838. static int dgram_puts(BIO *bp, const char *str)
  839. {
  840. int n, ret;
  841. n = strlen(str);
  842. ret = dgram_write(bp, str, n);
  843. return (ret);
  844. }
  845. # ifndef OPENSSL_NO_SCTP
  846. BIO_METHOD *BIO_s_datagram_sctp(void)
  847. {
  848. return (&methods_dgramp_sctp);
  849. }
  850. BIO *BIO_new_dgram_sctp(int fd, int close_flag)
  851. {
  852. BIO *bio;
  853. int ret, optval = 20000;
  854. int auth_data = 0, auth_forward = 0;
  855. unsigned char *p;
  856. struct sctp_authchunk auth;
  857. struct sctp_authchunks *authchunks;
  858. socklen_t sockopt_len;
  859. # ifdef SCTP_AUTHENTICATION_EVENT
  860. # ifdef SCTP_EVENT
  861. struct sctp_event event;
  862. # else
  863. struct sctp_event_subscribe event;
  864. # endif
  865. # endif
  866. bio = BIO_new(BIO_s_datagram_sctp());
  867. if (bio == NULL)
  868. return (NULL);
  869. BIO_set_fd(bio, fd, close_flag);
  870. /* Activate SCTP-AUTH for DATA and FORWARD-TSN chunks */
  871. auth.sauth_chunk = OPENSSL_SCTP_DATA_CHUNK_TYPE;
  872. ret =
  873. setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth,
  874. sizeof(struct sctp_authchunk));
  875. if (ret < 0) {
  876. BIO_vfree(bio);
  877. return (NULL);
  878. }
  879. auth.sauth_chunk = OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE;
  880. ret =
  881. setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth,
  882. sizeof(struct sctp_authchunk));
  883. if (ret < 0) {
  884. BIO_vfree(bio);
  885. return (NULL);
  886. }
  887. /*
  888. * Test if activation was successful. When using accept(), SCTP-AUTH has
  889. * to be activated for the listening socket already, otherwise the
  890. * connected socket won't use it.
  891. */
  892. sockopt_len = (socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t));
  893. authchunks = OPENSSL_malloc(sockopt_len);
  894. if (!authchunks) {
  895. BIO_vfree(bio);
  896. return (NULL);
  897. }
  898. memset(authchunks, 0, sizeof(sockopt_len));
  899. ret =
  900. getsockopt(fd, IPPROTO_SCTP, SCTP_LOCAL_AUTH_CHUNKS, authchunks,
  901. &sockopt_len);
  902. if (ret < 0) {
  903. OPENSSL_free(authchunks);
  904. BIO_vfree(bio);
  905. return (NULL);
  906. }
  907. for (p = (unsigned char *)authchunks->gauth_chunks;
  908. p < (unsigned char *)authchunks + sockopt_len;
  909. p += sizeof(uint8_t)) {
  910. if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE)
  911. auth_data = 1;
  912. if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE)
  913. auth_forward = 1;
  914. }
  915. OPENSSL_free(authchunks);
  916. OPENSSL_assert(auth_data);
  917. OPENSSL_assert(auth_forward);
  918. # ifdef SCTP_AUTHENTICATION_EVENT
  919. # ifdef SCTP_EVENT
  920. memset(&event, 0, sizeof(struct sctp_event));
  921. event.se_assoc_id = 0;
  922. event.se_type = SCTP_AUTHENTICATION_EVENT;
  923. event.se_on = 1;
  924. ret =
  925. setsockopt(fd, IPPROTO_SCTP, SCTP_EVENT, &event,
  926. sizeof(struct sctp_event));
  927. if (ret < 0) {
  928. BIO_vfree(bio);
  929. return (NULL);
  930. }
  931. # else
  932. sockopt_len = (socklen_t) sizeof(struct sctp_event_subscribe);
  933. ret = getsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, &sockopt_len);
  934. if (ret < 0) {
  935. BIO_vfree(bio);
  936. return (NULL);
  937. }
  938. event.sctp_authentication_event = 1;
  939. ret =
  940. setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event,
  941. sizeof(struct sctp_event_subscribe));
  942. if (ret < 0) {
  943. BIO_vfree(bio);
  944. return (NULL);
  945. }
  946. # endif
  947. # endif
  948. /*
  949. * Disable partial delivery by setting the min size larger than the max
  950. * record size of 2^14 + 2048 + 13
  951. */
  952. ret =
  953. setsockopt(fd, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT, &optval,
  954. sizeof(optval));
  955. if (ret < 0) {
  956. BIO_vfree(bio);
  957. return (NULL);
  958. }
  959. return (bio);
  960. }
  961. int BIO_dgram_is_sctp(BIO *bio)
  962. {
  963. return (BIO_method_type(bio) == BIO_TYPE_DGRAM_SCTP);
  964. }
  965. static int dgram_sctp_new(BIO *bi)
  966. {
  967. bio_dgram_sctp_data *data = NULL;
  968. bi->init = 0;
  969. bi->num = 0;
  970. data = OPENSSL_malloc(sizeof(bio_dgram_sctp_data));
  971. if (data == NULL)
  972. return 0;
  973. memset(data, 0x00, sizeof(bio_dgram_sctp_data));
  974. # ifdef SCTP_PR_SCTP_NONE
  975. data->prinfo.pr_policy = SCTP_PR_SCTP_NONE;
  976. # endif
  977. bi->ptr = data;
  978. bi->flags = 0;
  979. return (1);
  980. }
  981. static int dgram_sctp_free(BIO *a)
  982. {
  983. bio_dgram_sctp_data *data;
  984. if (a == NULL)
  985. return (0);
  986. if (!dgram_clear(a))
  987. return 0;
  988. data = (bio_dgram_sctp_data *) a->ptr;
  989. if (data != NULL) {
  990. if (data->saved_message.data != NULL)
  991. OPENSSL_free(data->saved_message.data);
  992. OPENSSL_free(data);
  993. }
  994. return (1);
  995. }
  996. # ifdef SCTP_AUTHENTICATION_EVENT
  997. void dgram_sctp_handle_auth_free_key_event(BIO *b,
  998. union sctp_notification *snp)
  999. {
  1000. int ret;
  1001. struct sctp_authkey_event *authkeyevent = &snp->sn_auth_event;
  1002. if (authkeyevent->auth_indication == SCTP_AUTH_FREE_KEY) {
  1003. struct sctp_authkeyid authkeyid;
  1004. /* delete key */
  1005. authkeyid.scact_keynumber = authkeyevent->auth_keynumber;
  1006. ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY,
  1007. &authkeyid, sizeof(struct sctp_authkeyid));
  1008. }
  1009. }
  1010. # endif
  1011. static int dgram_sctp_read(BIO *b, char *out, int outl)
  1012. {
  1013. int ret = 0, n = 0, i, optval;
  1014. socklen_t optlen;
  1015. bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
  1016. union sctp_notification *snp;
  1017. struct msghdr msg;
  1018. struct iovec iov;
  1019. struct cmsghdr *cmsg;
  1020. char cmsgbuf[512];
  1021. if (out != NULL) {
  1022. clear_socket_error();
  1023. do {
  1024. memset(&data->rcvinfo, 0x00,
  1025. sizeof(struct bio_dgram_sctp_rcvinfo));
  1026. iov.iov_base = out;
  1027. iov.iov_len = outl;
  1028. msg.msg_name = NULL;
  1029. msg.msg_namelen = 0;
  1030. msg.msg_iov = &iov;
  1031. msg.msg_iovlen = 1;
  1032. msg.msg_control = cmsgbuf;
  1033. msg.msg_controllen = 512;
  1034. msg.msg_flags = 0;
  1035. n = recvmsg(b->num, &msg, 0);
  1036. if (n <= 0) {
  1037. if (n < 0)
  1038. ret = n;
  1039. break;
  1040. }
  1041. if (msg.msg_controllen > 0) {
  1042. for (cmsg = CMSG_FIRSTHDR(&msg); cmsg;
  1043. cmsg = CMSG_NXTHDR(&msg, cmsg)) {
  1044. if (cmsg->cmsg_level != IPPROTO_SCTP)
  1045. continue;
  1046. # ifdef SCTP_RCVINFO
  1047. if (cmsg->cmsg_type == SCTP_RCVINFO) {
  1048. struct sctp_rcvinfo *rcvinfo;
  1049. rcvinfo = (struct sctp_rcvinfo *)CMSG_DATA(cmsg);
  1050. data->rcvinfo.rcv_sid = rcvinfo->rcv_sid;
  1051. data->rcvinfo.rcv_ssn = rcvinfo->rcv_ssn;
  1052. data->rcvinfo.rcv_flags = rcvinfo->rcv_flags;
  1053. data->rcvinfo.rcv_ppid = rcvinfo->rcv_ppid;
  1054. data->rcvinfo.rcv_tsn = rcvinfo->rcv_tsn;
  1055. data->rcvinfo.rcv_cumtsn = rcvinfo->rcv_cumtsn;
  1056. data->rcvinfo.rcv_context = rcvinfo->rcv_context;
  1057. }
  1058. # endif
  1059. # ifdef SCTP_SNDRCV
  1060. if (cmsg->cmsg_type == SCTP_SNDRCV) {
  1061. struct sctp_sndrcvinfo *sndrcvinfo;
  1062. sndrcvinfo =
  1063. (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
  1064. data->rcvinfo.rcv_sid = sndrcvinfo->sinfo_stream;
  1065. data->rcvinfo.rcv_ssn = sndrcvinfo->sinfo_ssn;
  1066. data->rcvinfo.rcv_flags = sndrcvinfo->sinfo_flags;
  1067. data->rcvinfo.rcv_ppid = sndrcvinfo->sinfo_ppid;
  1068. data->rcvinfo.rcv_tsn = sndrcvinfo->sinfo_tsn;
  1069. data->rcvinfo.rcv_cumtsn = sndrcvinfo->sinfo_cumtsn;
  1070. data->rcvinfo.rcv_context = sndrcvinfo->sinfo_context;
  1071. }
  1072. # endif
  1073. }
  1074. }
  1075. if (msg.msg_flags & MSG_NOTIFICATION) {
  1076. snp = (union sctp_notification *)out;
  1077. if (snp->sn_header.sn_type == SCTP_SENDER_DRY_EVENT) {
  1078. # ifdef SCTP_EVENT
  1079. struct sctp_event event;
  1080. # else
  1081. struct sctp_event_subscribe event;
  1082. socklen_t eventsize;
  1083. # endif
  1084. /*
  1085. * If a message has been delayed until the socket is dry,
  1086. * it can be sent now.
  1087. */
  1088. if (data->saved_message.length > 0) {
  1089. dgram_sctp_write(data->saved_message.bio,
  1090. data->saved_message.data,
  1091. data->saved_message.length);
  1092. OPENSSL_free(data->saved_message.data);
  1093. data->saved_message.data = NULL;
  1094. data->saved_message.length = 0;
  1095. }
  1096. /* disable sender dry event */
  1097. # ifdef SCTP_EVENT
  1098. memset(&event, 0, sizeof(struct sctp_event));
  1099. event.se_assoc_id = 0;
  1100. event.se_type = SCTP_SENDER_DRY_EVENT;
  1101. event.se_on = 0;
  1102. i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
  1103. sizeof(struct sctp_event));
  1104. if (i < 0) {
  1105. ret = i;
  1106. break;
  1107. }
  1108. # else
  1109. eventsize = sizeof(struct sctp_event_subscribe);
  1110. i = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
  1111. &eventsize);
  1112. if (i < 0) {
  1113. ret = i;
  1114. break;
  1115. }
  1116. event.sctp_sender_dry_event = 0;
  1117. i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
  1118. sizeof(struct sctp_event_subscribe));
  1119. if (i < 0) {
  1120. ret = i;
  1121. break;
  1122. }
  1123. # endif
  1124. }
  1125. # ifdef SCTP_AUTHENTICATION_EVENT
  1126. if (snp->sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
  1127. dgram_sctp_handle_auth_free_key_event(b, snp);
  1128. # endif
  1129. if (data->handle_notifications != NULL)
  1130. data->handle_notifications(b, data->notification_context,
  1131. (void *)out);
  1132. memset(out, 0, outl);
  1133. } else
  1134. ret += n;
  1135. }
  1136. while ((msg.msg_flags & MSG_NOTIFICATION) && (msg.msg_flags & MSG_EOR)
  1137. && (ret < outl));
  1138. if (ret > 0 && !(msg.msg_flags & MSG_EOR)) {
  1139. /* Partial message read, this should never happen! */
  1140. /*
  1141. * The buffer was too small, this means the peer sent a message
  1142. * that was larger than allowed.
  1143. */
  1144. if (ret == outl)
  1145. return -1;
  1146. /*
  1147. * Test if socket buffer can handle max record size (2^14 + 2048
  1148. * + 13)
  1149. */
  1150. optlen = (socklen_t) sizeof(int);
  1151. ret = getsockopt(b->num, SOL_SOCKET, SO_RCVBUF, &optval, &optlen);
  1152. if (ret >= 0)
  1153. OPENSSL_assert(optval >= 18445);
  1154. /*
  1155. * Test if SCTP doesn't partially deliver below max record size
  1156. * (2^14 + 2048 + 13)
  1157. */
  1158. optlen = (socklen_t) sizeof(int);
  1159. ret =
  1160. getsockopt(b->num, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT,
  1161. &optval, &optlen);
  1162. if (ret >= 0)
  1163. OPENSSL_assert(optval >= 18445);
  1164. /*
  1165. * Partially delivered notification??? Probably a bug....
  1166. */
  1167. OPENSSL_assert(!(msg.msg_flags & MSG_NOTIFICATION));
  1168. /*
  1169. * Everything seems ok till now, so it's most likely a message
  1170. * dropped by PR-SCTP.
  1171. */
  1172. memset(out, 0, outl);
  1173. BIO_set_retry_read(b);
  1174. return -1;
  1175. }
  1176. BIO_clear_retry_flags(b);
  1177. if (ret < 0) {
  1178. if (BIO_dgram_should_retry(ret)) {
  1179. BIO_set_retry_read(b);
  1180. data->_errno = get_last_socket_error();
  1181. }
  1182. }
  1183. /* Test if peer uses SCTP-AUTH before continuing */
  1184. if (!data->peer_auth_tested) {
  1185. int ii, auth_data = 0, auth_forward = 0;
  1186. unsigned char *p;
  1187. struct sctp_authchunks *authchunks;
  1188. optlen =
  1189. (socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t));
  1190. authchunks = OPENSSL_malloc(optlen);
  1191. if (!authchunks) {
  1192. BIOerr(BIO_F_DGRAM_SCTP_READ, ERR_R_MALLOC_FAILURE);
  1193. return -1;
  1194. }
  1195. memset(authchunks, 0, sizeof(optlen));
  1196. ii = getsockopt(b->num, IPPROTO_SCTP, SCTP_PEER_AUTH_CHUNKS,
  1197. authchunks, &optlen);
  1198. if (ii >= 0)
  1199. for (p = (unsigned char *)authchunks->gauth_chunks;
  1200. p < (unsigned char *)authchunks + optlen;
  1201. p += sizeof(uint8_t)) {
  1202. if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE)
  1203. auth_data = 1;
  1204. if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE)
  1205. auth_forward = 1;
  1206. }
  1207. OPENSSL_free(authchunks);
  1208. if (!auth_data || !auth_forward) {
  1209. BIOerr(BIO_F_DGRAM_SCTP_READ, BIO_R_CONNECT_ERROR);
  1210. return -1;
  1211. }
  1212. data->peer_auth_tested = 1;
  1213. }
  1214. }
  1215. return (ret);
  1216. }
  1217. static int dgram_sctp_write(BIO *b, const char *in, int inl)
  1218. {
  1219. int ret;
  1220. bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
  1221. struct bio_dgram_sctp_sndinfo *sinfo = &(data->sndinfo);
  1222. struct bio_dgram_sctp_prinfo *pinfo = &(data->prinfo);
  1223. struct bio_dgram_sctp_sndinfo handshake_sinfo;
  1224. struct iovec iov[1];
  1225. struct msghdr msg;
  1226. struct cmsghdr *cmsg;
  1227. # if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
  1228. char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo)) +
  1229. CMSG_SPACE(sizeof(struct sctp_prinfo))];
  1230. struct sctp_sndinfo *sndinfo;
  1231. struct sctp_prinfo *prinfo;
  1232. # else
  1233. char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
  1234. struct sctp_sndrcvinfo *sndrcvinfo;
  1235. # endif
  1236. clear_socket_error();
  1237. /*
  1238. * If we're send anything else than application data, disable all user
  1239. * parameters and flags.
  1240. */
  1241. if (in[0] != 23) {
  1242. memset(&handshake_sinfo, 0x00, sizeof(struct bio_dgram_sctp_sndinfo));
  1243. # ifdef SCTP_SACK_IMMEDIATELY
  1244. handshake_sinfo.snd_flags = SCTP_SACK_IMMEDIATELY;
  1245. # endif
  1246. sinfo = &handshake_sinfo;
  1247. }
  1248. /*
  1249. * If we have to send a shutdown alert message and the socket is not dry
  1250. * yet, we have to save it and send it as soon as the socket gets dry.
  1251. */
  1252. if (data->save_shutdown && !BIO_dgram_sctp_wait_for_dry(b)) {
  1253. char *tmp;
  1254. data->saved_message.bio = b;
  1255. if (!(tmp = OPENSSL_malloc(inl))) {
  1256. BIOerr(BIO_F_DGRAM_SCTP_WRITE, ERR_R_MALLOC_FAILURE);
  1257. return -1;
  1258. }
  1259. if (data->saved_message.data)
  1260. OPENSSL_free(data->saved_message.data);
  1261. data->saved_message.data = tmp;
  1262. memcpy(data->saved_message.data, in, inl);
  1263. data->saved_message.length = inl;
  1264. return inl;
  1265. }
  1266. iov[0].iov_base = (char *)in;
  1267. iov[0].iov_len = inl;
  1268. msg.msg_name = NULL;
  1269. msg.msg_namelen = 0;
  1270. msg.msg_iov = iov;
  1271. msg.msg_iovlen = 1;
  1272. msg.msg_control = (caddr_t) cmsgbuf;
  1273. msg.msg_controllen = 0;
  1274. msg.msg_flags = 0;
  1275. # if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
  1276. cmsg = (struct cmsghdr *)cmsgbuf;
  1277. cmsg->cmsg_level = IPPROTO_SCTP;
  1278. cmsg->cmsg_type = SCTP_SNDINFO;
  1279. cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndinfo));
  1280. sndinfo = (struct sctp_sndinfo *)CMSG_DATA(cmsg);
  1281. memset(sndinfo, 0, sizeof(struct sctp_sndinfo));
  1282. sndinfo->snd_sid = sinfo->snd_sid;
  1283. sndinfo->snd_flags = sinfo->snd_flags;
  1284. sndinfo->snd_ppid = sinfo->snd_ppid;
  1285. sndinfo->snd_context = sinfo->snd_context;
  1286. msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndinfo));
  1287. cmsg =
  1288. (struct cmsghdr *)&cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo))];
  1289. cmsg->cmsg_level = IPPROTO_SCTP;
  1290. cmsg->cmsg_type = SCTP_PRINFO;
  1291. cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_prinfo));
  1292. prinfo = (struct sctp_prinfo *)CMSG_DATA(cmsg);
  1293. memset(prinfo, 0, sizeof(struct sctp_prinfo));
  1294. prinfo->pr_policy = pinfo->pr_policy;
  1295. prinfo->pr_value = pinfo->pr_value;
  1296. msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_prinfo));
  1297. # else
  1298. cmsg = (struct cmsghdr *)cmsgbuf;
  1299. cmsg->cmsg_level = IPPROTO_SCTP;
  1300. cmsg->cmsg_type = SCTP_SNDRCV;
  1301. cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
  1302. sndrcvinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
  1303. memset(sndrcvinfo, 0, sizeof(struct sctp_sndrcvinfo));
  1304. sndrcvinfo->sinfo_stream = sinfo->snd_sid;
  1305. sndrcvinfo->sinfo_flags = sinfo->snd_flags;
  1306. # ifdef __FreeBSD__
  1307. sndrcvinfo->sinfo_flags |= pinfo->pr_policy;
  1308. # endif
  1309. sndrcvinfo->sinfo_ppid = sinfo->snd_ppid;
  1310. sndrcvinfo->sinfo_context = sinfo->snd_context;
  1311. sndrcvinfo->sinfo_timetolive = pinfo->pr_value;
  1312. msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndrcvinfo));
  1313. # endif
  1314. ret = sendmsg(b->num, &msg, 0);
  1315. BIO_clear_retry_flags(b);
  1316. if (ret <= 0) {
  1317. if (BIO_dgram_should_retry(ret)) {
  1318. BIO_set_retry_write(b);
  1319. data->_errno = get_last_socket_error();
  1320. }
  1321. }
  1322. return (ret);
  1323. }
  1324. static long dgram_sctp_ctrl(BIO *b, int cmd, long num, void *ptr)
  1325. {
  1326. long ret = 1;
  1327. bio_dgram_sctp_data *data = NULL;
  1328. socklen_t sockopt_len = 0;
  1329. struct sctp_authkeyid authkeyid;
  1330. struct sctp_authkey *authkey = NULL;
  1331. data = (bio_dgram_sctp_data *) b->ptr;
  1332. switch (cmd) {
  1333. case BIO_CTRL_DGRAM_QUERY_MTU:
  1334. /*
  1335. * Set to maximum (2^14) and ignore user input to enable transport
  1336. * protocol fragmentation. Returns always 2^14.
  1337. */
  1338. data->mtu = 16384;
  1339. ret = data->mtu;
  1340. break;
  1341. case BIO_CTRL_DGRAM_SET_MTU:
  1342. /*
  1343. * Set to maximum (2^14) and ignore input to enable transport
  1344. * protocol fragmentation. Returns always 2^14.
  1345. */
  1346. data->mtu = 16384;
  1347. ret = data->mtu;
  1348. break;
  1349. case BIO_CTRL_DGRAM_SET_CONNECTED:
  1350. case BIO_CTRL_DGRAM_CONNECT:
  1351. /* Returns always -1. */
  1352. ret = -1;
  1353. break;
  1354. case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
  1355. /*
  1356. * SCTP doesn't need the DTLS timer Returns always 1.
  1357. */
  1358. break;
  1359. case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD:
  1360. /*
  1361. * We allow transport protocol fragmentation so this is irrelevant
  1362. */
  1363. ret = 0;
  1364. break;
  1365. case BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE:
  1366. if (num > 0)
  1367. data->in_handshake = 1;
  1368. else
  1369. data->in_handshake = 0;
  1370. ret =
  1371. setsockopt(b->num, IPPROTO_SCTP, SCTP_NODELAY,
  1372. &data->in_handshake, sizeof(int));
  1373. break;
  1374. case BIO_CTRL_DGRAM_SCTP_ADD_AUTH_KEY:
  1375. /*
  1376. * New shared key for SCTP AUTH. Returns 0 on success, -1 otherwise.
  1377. */
  1378. /* Get active key */
  1379. sockopt_len = sizeof(struct sctp_authkeyid);
  1380. ret =
  1381. getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid,
  1382. &sockopt_len);
  1383. if (ret < 0)
  1384. break;
  1385. /* Add new key */
  1386. sockopt_len = sizeof(struct sctp_authkey) + 64 * sizeof(uint8_t);
  1387. authkey = OPENSSL_malloc(sockopt_len);
  1388. if (authkey == NULL) {
  1389. ret = -1;
  1390. break;
  1391. }
  1392. memset(authkey, 0x00, sockopt_len);
  1393. authkey->sca_keynumber = authkeyid.scact_keynumber + 1;
  1394. # ifndef __FreeBSD__
  1395. /*
  1396. * This field is missing in FreeBSD 8.2 and earlier, and FreeBSD 8.3
  1397. * and higher work without it.
  1398. */
  1399. authkey->sca_keylength = 64;
  1400. # endif
  1401. memcpy(&authkey->sca_key[0], ptr, 64 * sizeof(uint8_t));
  1402. ret =
  1403. setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_KEY, authkey,
  1404. sockopt_len);
  1405. OPENSSL_free(authkey);
  1406. authkey = NULL;
  1407. if (ret < 0)
  1408. break;
  1409. /* Reset active key */
  1410. ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
  1411. &authkeyid, sizeof(struct sctp_authkeyid));
  1412. if (ret < 0)
  1413. break;
  1414. break;
  1415. case BIO_CTRL_DGRAM_SCTP_NEXT_AUTH_KEY:
  1416. /* Returns 0 on success, -1 otherwise. */
  1417. /* Get active key */
  1418. sockopt_len = sizeof(struct sctp_authkeyid);
  1419. ret =
  1420. getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid,
  1421. &sockopt_len);
  1422. if (ret < 0)
  1423. break;
  1424. /* Set active key */
  1425. authkeyid.scact_keynumber = authkeyid.scact_keynumber + 1;
  1426. ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
  1427. &authkeyid, sizeof(struct sctp_authkeyid));
  1428. if (ret < 0)
  1429. break;
  1430. /*
  1431. * CCS has been sent, so remember that and fall through to check if
  1432. * we need to deactivate an old key
  1433. */
  1434. data->ccs_sent = 1;
  1435. case BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD:
  1436. /* Returns 0 on success, -1 otherwise. */
  1437. /*
  1438. * Has this command really been called or is this just a
  1439. * fall-through?
  1440. */
  1441. if (cmd == BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD)
  1442. data->ccs_rcvd = 1;
  1443. /*
  1444. * CSS has been both, received and sent, so deactivate an old key
  1445. */
  1446. if (data->ccs_rcvd == 1 && data->ccs_sent == 1) {
  1447. /* Get active key */
  1448. sockopt_len = sizeof(struct sctp_authkeyid);
  1449. ret =
  1450. getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
  1451. &authkeyid, &sockopt_len);
  1452. if (ret < 0)
  1453. break;
  1454. /*
  1455. * Deactivate key or delete second last key if
  1456. * SCTP_AUTHENTICATION_EVENT is not available.
  1457. */
  1458. authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1;
  1459. # ifdef SCTP_AUTH_DEACTIVATE_KEY
  1460. sockopt_len = sizeof(struct sctp_authkeyid);
  1461. ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DEACTIVATE_KEY,
  1462. &authkeyid, sockopt_len);
  1463. if (ret < 0)
  1464. break;
  1465. # endif
  1466. # ifndef SCTP_AUTHENTICATION_EVENT
  1467. if (authkeyid.scact_keynumber > 0) {
  1468. authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1;
  1469. ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY,
  1470. &authkeyid, sizeof(struct sctp_authkeyid));
  1471. if (ret < 0)
  1472. break;
  1473. }
  1474. # endif
  1475. data->ccs_rcvd = 0;
  1476. data->ccs_sent = 0;
  1477. }
  1478. break;
  1479. case BIO_CTRL_DGRAM_SCTP_GET_SNDINFO:
  1480. /* Returns the size of the copied struct. */
  1481. if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo))
  1482. num = sizeof(struct bio_dgram_sctp_sndinfo);
  1483. memcpy(ptr, &(data->sndinfo), num);
  1484. ret = num;
  1485. break;
  1486. case BIO_CTRL_DGRAM_SCTP_SET_SNDINFO:
  1487. /* Returns the size of the copied struct. */
  1488. if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo))
  1489. num = sizeof(struct bio_dgram_sctp_sndinfo);
  1490. memcpy(&(data->sndinfo), ptr, num);
  1491. break;
  1492. case BIO_CTRL_DGRAM_SCTP_GET_RCVINFO:
  1493. /* Returns the size of the copied struct. */
  1494. if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo))
  1495. num = sizeof(struct bio_dgram_sctp_rcvinfo);
  1496. memcpy(ptr, &data->rcvinfo, num);
  1497. ret = num;
  1498. break;
  1499. case BIO_CTRL_DGRAM_SCTP_SET_RCVINFO:
  1500. /* Returns the size of the copied struct. */
  1501. if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo))
  1502. num = sizeof(struct bio_dgram_sctp_rcvinfo);
  1503. memcpy(&(data->rcvinfo), ptr, num);
  1504. break;
  1505. case BIO_CTRL_DGRAM_SCTP_GET_PRINFO:
  1506. /* Returns the size of the copied struct. */
  1507. if (num > (long)sizeof(struct bio_dgram_sctp_prinfo))
  1508. num = sizeof(struct bio_dgram_sctp_prinfo);
  1509. memcpy(ptr, &(data->prinfo), num);
  1510. ret = num;
  1511. break;
  1512. case BIO_CTRL_DGRAM_SCTP_SET_PRINFO:
  1513. /* Returns the size of the copied struct. */
  1514. if (num > (long)sizeof(struct bio_dgram_sctp_prinfo))
  1515. num = sizeof(struct bio_dgram_sctp_prinfo);
  1516. memcpy(&(data->prinfo), ptr, num);
  1517. break;
  1518. case BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN:
  1519. /* Returns always 1. */
  1520. if (num > 0)
  1521. data->save_shutdown = 1;
  1522. else
  1523. data->save_shutdown = 0;
  1524. break;
  1525. default:
  1526. /*
  1527. * Pass to default ctrl function to process SCTP unspecific commands
  1528. */
  1529. ret = dgram_ctrl(b, cmd, num, ptr);
  1530. break;
  1531. }
  1532. return (ret);
  1533. }
  1534. int BIO_dgram_sctp_notification_cb(BIO *b,
  1535. void (*handle_notifications) (BIO *bio,
  1536. void
  1537. *context,
  1538. void *buf),
  1539. void *context)
  1540. {
  1541. bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
  1542. if (handle_notifications != NULL) {
  1543. data->handle_notifications = handle_notifications;
  1544. data->notification_context = context;
  1545. } else
  1546. return -1;
  1547. return 0;
  1548. }
  1549. int BIO_dgram_sctp_wait_for_dry(BIO *b)
  1550. {
  1551. int is_dry = 0;
  1552. int n, sockflags, ret;
  1553. union sctp_notification snp;
  1554. struct msghdr msg;
  1555. struct iovec iov;
  1556. # ifdef SCTP_EVENT
  1557. struct sctp_event event;
  1558. # else
  1559. struct sctp_event_subscribe event;
  1560. socklen_t eventsize;
  1561. # endif
  1562. bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
  1563. /* set sender dry event */
  1564. # ifdef SCTP_EVENT
  1565. memset(&event, 0, sizeof(struct sctp_event));
  1566. event.se_assoc_id = 0;
  1567. event.se_type = SCTP_SENDER_DRY_EVENT;
  1568. event.se_on = 1;
  1569. ret =
  1570. setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
  1571. sizeof(struct sctp_event));
  1572. # else
  1573. eventsize = sizeof(struct sctp_event_subscribe);
  1574. ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize);
  1575. if (ret < 0)
  1576. return -1;
  1577. event.sctp_sender_dry_event = 1;
  1578. ret =
  1579. setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
  1580. sizeof(struct sctp_event_subscribe));
  1581. # endif
  1582. if (ret < 0)
  1583. return -1;
  1584. /* peek for notification */
  1585. memset(&snp, 0x00, sizeof(union sctp_notification));
  1586. iov.iov_base = (char *)&snp;
  1587. iov.iov_len = sizeof(union sctp_notification);
  1588. msg.msg_name = NULL;
  1589. msg.msg_namelen = 0;
  1590. msg.msg_iov = &iov;
  1591. msg.msg_iovlen = 1;
  1592. msg.msg_control = NULL;
  1593. msg.msg_controllen = 0;
  1594. msg.msg_flags = 0;
  1595. n = recvmsg(b->num, &msg, MSG_PEEK);
  1596. if (n <= 0) {
  1597. if ((n < 0) && (get_last_socket_error() != EAGAIN)
  1598. && (get_last_socket_error() != EWOULDBLOCK))
  1599. return -1;
  1600. else
  1601. return 0;
  1602. }
  1603. /* if we find a notification, process it and try again if necessary */
  1604. while (msg.msg_flags & MSG_NOTIFICATION) {
  1605. memset(&snp, 0x00, sizeof(union sctp_notification));
  1606. iov.iov_base = (char *)&snp;
  1607. iov.iov_len = sizeof(union sctp_notification);
  1608. msg.msg_name = NULL;
  1609. msg.msg_namelen = 0;
  1610. msg.msg_iov = &iov;
  1611. msg.msg_iovlen = 1;
  1612. msg.msg_control = NULL;
  1613. msg.msg_controllen = 0;
  1614. msg.msg_flags = 0;
  1615. n = recvmsg(b->num, &msg, 0);
  1616. if (n <= 0) {
  1617. if ((n < 0) && (get_last_socket_error() != EAGAIN)
  1618. && (get_last_socket_error() != EWOULDBLOCK))
  1619. return -1;
  1620. else
  1621. return is_dry;
  1622. }
  1623. if (snp.sn_header.sn_type == SCTP_SENDER_DRY_EVENT) {
  1624. is_dry = 1;
  1625. /* disable sender dry event */
  1626. # ifdef SCTP_EVENT
  1627. memset(&event, 0, sizeof(struct sctp_event));
  1628. event.se_assoc_id = 0;
  1629. event.se_type = SCTP_SENDER_DRY_EVENT;
  1630. event.se_on = 0;
  1631. ret =
  1632. setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
  1633. sizeof(struct sctp_event));
  1634. # else
  1635. eventsize = (socklen_t) sizeof(struct sctp_event_subscribe);
  1636. ret =
  1637. getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
  1638. &eventsize);
  1639. if (ret < 0)
  1640. return -1;
  1641. event.sctp_sender_dry_event = 0;
  1642. ret =
  1643. setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
  1644. sizeof(struct sctp_event_subscribe));
  1645. # endif
  1646. if (ret < 0)
  1647. return -1;
  1648. }
  1649. # ifdef SCTP_AUTHENTICATION_EVENT
  1650. if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
  1651. dgram_sctp_handle_auth_free_key_event(b, &snp);
  1652. # endif
  1653. if (data->handle_notifications != NULL)
  1654. data->handle_notifications(b, data->notification_context,
  1655. (void *)&snp);
  1656. /* found notification, peek again */
  1657. memset(&snp, 0x00, sizeof(union sctp_notification));
  1658. iov.iov_base = (char *)&snp;
  1659. iov.iov_len = sizeof(union sctp_notification);
  1660. msg.msg_name = NULL;
  1661. msg.msg_namelen = 0;
  1662. msg.msg_iov = &iov;
  1663. msg.msg_iovlen = 1;
  1664. msg.msg_control = NULL;
  1665. msg.msg_controllen = 0;
  1666. msg.msg_flags = 0;
  1667. /* if we have seen the dry already, don't wait */
  1668. if (is_dry) {
  1669. sockflags = fcntl(b->num, F_GETFL, 0);
  1670. fcntl(b->num, F_SETFL, O_NONBLOCK);
  1671. }
  1672. n = recvmsg(b->num, &msg, MSG_PEEK);
  1673. if (is_dry) {
  1674. fcntl(b->num, F_SETFL, sockflags);
  1675. }
  1676. if (n <= 0) {
  1677. if ((n < 0) && (get_last_socket_error() != EAGAIN)
  1678. && (get_last_socket_error() != EWOULDBLOCK))
  1679. return -1;
  1680. else
  1681. return is_dry;
  1682. }
  1683. }
  1684. /* read anything else */
  1685. return is_dry;
  1686. }
  1687. int BIO_dgram_sctp_msg_waiting(BIO *b)
  1688. {
  1689. int n, sockflags;
  1690. union sctp_notification snp;
  1691. struct msghdr msg;
  1692. struct iovec iov;
  1693. bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
  1694. /* Check if there are any messages waiting to be read */
  1695. do {
  1696. memset(&snp, 0x00, sizeof(union sctp_notification));
  1697. iov.iov_base = (char *)&snp;
  1698. iov.iov_len = sizeof(union sctp_notification);
  1699. msg.msg_name = NULL;
  1700. msg.msg_namelen = 0;
  1701. msg.msg_iov = &iov;
  1702. msg.msg_iovlen = 1;
  1703. msg.msg_control = NULL;
  1704. msg.msg_controllen = 0;
  1705. msg.msg_flags = 0;
  1706. sockflags = fcntl(b->num, F_GETFL, 0);
  1707. fcntl(b->num, F_SETFL, O_NONBLOCK);
  1708. n = recvmsg(b->num, &msg, MSG_PEEK);
  1709. fcntl(b->num, F_SETFL, sockflags);
  1710. /* if notification, process and try again */
  1711. if (n > 0 && (msg.msg_flags & MSG_NOTIFICATION)) {
  1712. # ifdef SCTP_AUTHENTICATION_EVENT
  1713. if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
  1714. dgram_sctp_handle_auth_free_key_event(b, &snp);
  1715. # endif
  1716. memset(&snp, 0x00, sizeof(union sctp_notification));
  1717. iov.iov_base = (char *)&snp;
  1718. iov.iov_len = sizeof(union sctp_notification);
  1719. msg.msg_name = NULL;
  1720. msg.msg_namelen = 0;
  1721. msg.msg_iov = &iov;
  1722. msg.msg_iovlen = 1;
  1723. msg.msg_control = NULL;
  1724. msg.msg_controllen = 0;
  1725. msg.msg_flags = 0;
  1726. n = recvmsg(b->num, &msg, 0);
  1727. if (data->handle_notifications != NULL)
  1728. data->handle_notifications(b, data->notification_context,
  1729. (void *)&snp);
  1730. }
  1731. } while (n > 0 && (msg.msg_flags & MSG_NOTIFICATION));
  1732. /* Return 1 if there is a message to be read, return 0 otherwise. */
  1733. if (n > 0)
  1734. return 1;
  1735. else
  1736. return 0;
  1737. }
  1738. static int dgram_sctp_puts(BIO *bp, const char *str)
  1739. {
  1740. int n, ret;
  1741. n = strlen(str);
  1742. ret = dgram_sctp_write(bp, str, n);
  1743. return (ret);
  1744. }
  1745. # endif
  1746. static int BIO_dgram_should_retry(int i)
  1747. {
  1748. int err;
  1749. if ((i == 0) || (i == -1)) {
  1750. err = get_last_socket_error();
  1751. # if defined(OPENSSL_SYS_WINDOWS)
  1752. /*
  1753. * If the socket return value (i) is -1 and err is unexpectedly 0 at
  1754. * this point, the error code was overwritten by another system call
  1755. * before this error handling is called.
  1756. */
  1757. # endif
  1758. return (BIO_dgram_non_fatal_error(err));
  1759. }
  1760. return (0);
  1761. }
  1762. int BIO_dgram_non_fatal_error(int err)
  1763. {
  1764. switch (err) {
  1765. # if defined(OPENSSL_SYS_WINDOWS)
  1766. # if defined(WSAEWOULDBLOCK)
  1767. case WSAEWOULDBLOCK:
  1768. # endif
  1769. # if 0 /* This appears to always be an error */
  1770. # if defined(WSAENOTCONN)
  1771. case WSAENOTCONN:
  1772. # endif
  1773. # endif
  1774. # endif
  1775. # ifdef EWOULDBLOCK
  1776. # ifdef WSAEWOULDBLOCK
  1777. # if WSAEWOULDBLOCK != EWOULDBLOCK
  1778. case EWOULDBLOCK:
  1779. # endif
  1780. # else
  1781. case EWOULDBLOCK:
  1782. # endif
  1783. # endif
  1784. # ifdef EINTR
  1785. case EINTR:
  1786. # endif
  1787. # ifdef EAGAIN
  1788. # if EWOULDBLOCK != EAGAIN
  1789. case EAGAIN:
  1790. # endif
  1791. # endif
  1792. # ifdef EPROTO
  1793. case EPROTO:
  1794. # endif
  1795. # ifdef EINPROGRESS
  1796. case EINPROGRESS:
  1797. # endif
  1798. # ifdef EALREADY
  1799. case EALREADY:
  1800. # endif
  1801. return (1);
  1802. /* break; */
  1803. default:
  1804. break;
  1805. }
  1806. return (0);
  1807. }
  1808. static void get_current_time(struct timeval *t)
  1809. {
  1810. # ifdef OPENSSL_SYS_WIN32
  1811. struct _timeb tb;
  1812. _ftime(&tb);
  1813. t->tv_sec = (long)tb.time;
  1814. t->tv_usec = (long)tb.millitm * 1000;
  1815. # elif defined(OPENSSL_SYS_VMS)
  1816. struct timeb tb;
  1817. ftime(&tb);
  1818. t->tv_sec = (long)tb.time;
  1819. t->tv_usec = (long)tb.millitm * 1000;
  1820. # else
  1821. gettimeofday(t, NULL);
  1822. # endif
  1823. }
  1824. #endif