jpake.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507
  1. #include "jpake.h"
  2. #include <openssl/crypto.h>
  3. #include <openssl/sha.h>
  4. #include <openssl/err.h>
  5. #include <memory.h>
  6. /*
  7. * In the definition, (xa, xb, xc, xd) are Alice's (x1, x2, x3, x4) or
  8. * Bob's (x3, x4, x1, x2). If you see what I mean.
  9. */
  10. typedef struct {
  11. char *name; /* Must be unique */
  12. char *peer_name;
  13. BIGNUM *p;
  14. BIGNUM *g;
  15. BIGNUM *q;
  16. BIGNUM *gxc; /* Alice's g^{x3} or Bob's g^{x1} */
  17. BIGNUM *gxd; /* Alice's g^{x4} or Bob's g^{x2} */
  18. } JPAKE_CTX_PUBLIC;
  19. struct JPAKE_CTX {
  20. JPAKE_CTX_PUBLIC p;
  21. BIGNUM *secret; /* The shared secret */
  22. BN_CTX *ctx;
  23. BIGNUM *xa; /* Alice's x1 or Bob's x3 */
  24. BIGNUM *xb; /* Alice's x2 or Bob's x4 */
  25. BIGNUM *key; /* The calculated (shared) key */
  26. };
  27. static void JPAKE_ZKP_init(JPAKE_ZKP *zkp)
  28. {
  29. zkp->gr = BN_new();
  30. zkp->b = BN_new();
  31. }
  32. static void JPAKE_ZKP_release(JPAKE_ZKP *zkp)
  33. {
  34. BN_free(zkp->b);
  35. BN_free(zkp->gr);
  36. }
  37. /* Two birds with one stone - make the global name as expected */
  38. #define JPAKE_STEP_PART_init JPAKE_STEP2_init
  39. #define JPAKE_STEP_PART_release JPAKE_STEP2_release
  40. void JPAKE_STEP_PART_init(JPAKE_STEP_PART *p)
  41. {
  42. p->gx = BN_new();
  43. JPAKE_ZKP_init(&p->zkpx);
  44. }
  45. void JPAKE_STEP_PART_release(JPAKE_STEP_PART *p)
  46. {
  47. JPAKE_ZKP_release(&p->zkpx);
  48. BN_free(p->gx);
  49. }
  50. void JPAKE_STEP1_init(JPAKE_STEP1 *s1)
  51. {
  52. JPAKE_STEP_PART_init(&s1->p1);
  53. JPAKE_STEP_PART_init(&s1->p2);
  54. }
  55. void JPAKE_STEP1_release(JPAKE_STEP1 *s1)
  56. {
  57. JPAKE_STEP_PART_release(&s1->p2);
  58. JPAKE_STEP_PART_release(&s1->p1);
  59. }
  60. static void JPAKE_CTX_init(JPAKE_CTX *ctx, const char *name,
  61. const char *peer_name, const BIGNUM *p,
  62. const BIGNUM *g, const BIGNUM *q,
  63. const BIGNUM *secret)
  64. {
  65. ctx->p.name = OPENSSL_strdup(name);
  66. ctx->p.peer_name = OPENSSL_strdup(peer_name);
  67. ctx->p.p = BN_dup(p);
  68. ctx->p.g = BN_dup(g);
  69. ctx->p.q = BN_dup(q);
  70. ctx->secret = BN_dup(secret);
  71. ctx->p.gxc = BN_new();
  72. ctx->p.gxd = BN_new();
  73. ctx->xa = BN_new();
  74. ctx->xb = BN_new();
  75. ctx->key = BN_new();
  76. ctx->ctx = BN_CTX_new();
  77. }
  78. static void JPAKE_CTX_release(JPAKE_CTX *ctx)
  79. {
  80. BN_CTX_free(ctx->ctx);
  81. BN_clear_free(ctx->key);
  82. BN_clear_free(ctx->xb);
  83. BN_clear_free(ctx->xa);
  84. BN_free(ctx->p.gxd);
  85. BN_free(ctx->p.gxc);
  86. BN_clear_free(ctx->secret);
  87. BN_free(ctx->p.q);
  88. BN_free(ctx->p.g);
  89. BN_free(ctx->p.p);
  90. OPENSSL_free(ctx->p.peer_name);
  91. OPENSSL_free(ctx->p.name);
  92. memset(ctx, '\0', sizeof *ctx);
  93. }
  94. JPAKE_CTX *JPAKE_CTX_new(const char *name, const char *peer_name,
  95. const BIGNUM *p, const BIGNUM *g, const BIGNUM *q,
  96. const BIGNUM *secret)
  97. {
  98. JPAKE_CTX *ctx = OPENSSL_malloc(sizeof *ctx);
  99. JPAKE_CTX_init(ctx, name, peer_name, p, g, q, secret);
  100. return ctx;
  101. }
  102. void JPAKE_CTX_free(JPAKE_CTX *ctx)
  103. {
  104. JPAKE_CTX_release(ctx);
  105. OPENSSL_free(ctx);
  106. }
  107. static void hashlength(SHA_CTX *sha, size_t l)
  108. {
  109. unsigned char b[2];
  110. OPENSSL_assert(l <= 0xffff);
  111. b[0] = l >> 8;
  112. b[1] = l & 0xff;
  113. SHA1_Update(sha, b, 2);
  114. }
  115. static void hashstring(SHA_CTX *sha, const char *string)
  116. {
  117. size_t l = strlen(string);
  118. hashlength(sha, l);
  119. SHA1_Update(sha, string, l);
  120. }
  121. static void hashbn(SHA_CTX *sha, const BIGNUM *bn)
  122. {
  123. size_t l = BN_num_bytes(bn);
  124. unsigned char *bin = OPENSSL_malloc(l);
  125. hashlength(sha, l);
  126. BN_bn2bin(bn, bin);
  127. SHA1_Update(sha, bin, l);
  128. OPENSSL_free(bin);
  129. }
  130. /* h=hash(g, g^r, g^x, name) */
  131. static void zkp_hash(BIGNUM *h, const BIGNUM *zkpg, const JPAKE_STEP_PART *p,
  132. const char *proof_name)
  133. {
  134. unsigned char md[SHA_DIGEST_LENGTH];
  135. SHA_CTX sha;
  136. /*
  137. * XXX: hash should not allow moving of the boundaries - Java code
  138. * is flawed in this respect. Length encoding seems simplest.
  139. */
  140. SHA1_Init(&sha);
  141. hashbn(&sha, zkpg);
  142. OPENSSL_assert(!BN_is_zero(p->zkpx.gr));
  143. hashbn(&sha, p->zkpx.gr);
  144. hashbn(&sha, p->gx);
  145. hashstring(&sha, proof_name);
  146. SHA1_Final(md, &sha);
  147. BN_bin2bn(md, SHA_DIGEST_LENGTH, h);
  148. }
  149. /*
  150. * Prove knowledge of x
  151. * Note that p->gx has already been calculated
  152. */
  153. static void generate_zkp(JPAKE_STEP_PART *p, const BIGNUM *x,
  154. const BIGNUM *zkpg, JPAKE_CTX *ctx)
  155. {
  156. BIGNUM *r = BN_new();
  157. BIGNUM *h = BN_new();
  158. BIGNUM *t = BN_new();
  159. /*-
  160. * r in [0,q)
  161. * XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform
  162. */
  163. BN_rand_range(r, ctx->p.q);
  164. /* g^r */
  165. BN_mod_exp(p->zkpx.gr, zkpg, r, ctx->p.p, ctx->ctx);
  166. /* h=hash... */
  167. zkp_hash(h, zkpg, p, ctx->p.name);
  168. /* b = r - x*h */
  169. BN_mod_mul(t, x, h, ctx->p.q, ctx->ctx);
  170. BN_mod_sub(p->zkpx.b, r, t, ctx->p.q, ctx->ctx);
  171. /* cleanup */
  172. BN_free(t);
  173. BN_free(h);
  174. BN_free(r);
  175. }
  176. static int verify_zkp(const JPAKE_STEP_PART *p, const BIGNUM *zkpg,
  177. JPAKE_CTX *ctx)
  178. {
  179. BIGNUM *h = BN_new();
  180. BIGNUM *t1 = BN_new();
  181. BIGNUM *t2 = BN_new();
  182. BIGNUM *t3 = BN_new();
  183. int ret = 0;
  184. zkp_hash(h, zkpg, p, ctx->p.peer_name);
  185. /* t1 = g^b */
  186. BN_mod_exp(t1, zkpg, p->zkpx.b, ctx->p.p, ctx->ctx);
  187. /* t2 = (g^x)^h = g^{hx} */
  188. BN_mod_exp(t2, p->gx, h, ctx->p.p, ctx->ctx);
  189. /* t3 = t1 * t2 = g^{hx} * g^b = g^{hx+b} = g^r (allegedly) */
  190. BN_mod_mul(t3, t1, t2, ctx->p.p, ctx->ctx);
  191. /* verify t3 == g^r */
  192. if (BN_cmp(t3, p->zkpx.gr) == 0)
  193. ret = 1;
  194. else
  195. JPAKEerr(JPAKE_F_VERIFY_ZKP, JPAKE_R_ZKP_VERIFY_FAILED);
  196. /* cleanup */
  197. BN_free(t3);
  198. BN_free(t2);
  199. BN_free(t1);
  200. BN_free(h);
  201. return ret;
  202. }
  203. static void generate_step_part(JPAKE_STEP_PART *p, const BIGNUM *x,
  204. const BIGNUM *g, JPAKE_CTX *ctx)
  205. {
  206. BN_mod_exp(p->gx, g, x, ctx->p.p, ctx->ctx);
  207. generate_zkp(p, x, g, ctx);
  208. }
  209. /* Generate each party's random numbers. xa is in [0, q), xb is in [1, q). */
  210. static void genrand(JPAKE_CTX *ctx)
  211. {
  212. BIGNUM *qm1;
  213. /* xa in [0, q) */
  214. BN_rand_range(ctx->xa, ctx->p.q);
  215. /* q-1 */
  216. qm1 = BN_new();
  217. BN_copy(qm1, ctx->p.q);
  218. BN_sub_word(qm1, 1);
  219. /* ... and xb in [0, q-1) */
  220. BN_rand_range(ctx->xb, qm1);
  221. /* [1, q) */
  222. BN_add_word(ctx->xb, 1);
  223. /* cleanup */
  224. BN_free(qm1);
  225. }
  226. int JPAKE_STEP1_generate(JPAKE_STEP1 *send, JPAKE_CTX *ctx)
  227. {
  228. genrand(ctx);
  229. generate_step_part(&send->p1, ctx->xa, ctx->p.g, ctx);
  230. generate_step_part(&send->p2, ctx->xb, ctx->p.g, ctx);
  231. return 1;
  232. }
  233. /* g^x is a legal value */
  234. static int is_legal(const BIGNUM *gx, const JPAKE_CTX *ctx)
  235. {
  236. BIGNUM *t;
  237. int res;
  238. if (BN_is_negative(gx) || BN_is_zero(gx) || BN_cmp(gx, ctx->p.p) >= 0)
  239. return 0;
  240. t = BN_new();
  241. BN_mod_exp(t, gx, ctx->p.q, ctx->p.p, ctx->ctx);
  242. res = BN_is_one(t);
  243. BN_free(t);
  244. return res;
  245. }
  246. int JPAKE_STEP1_process(JPAKE_CTX *ctx, const JPAKE_STEP1 *received)
  247. {
  248. if (!is_legal(received->p1.gx, ctx)) {
  249. JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS,
  250. JPAKE_R_G_TO_THE_X3_IS_NOT_LEGAL);
  251. return 0;
  252. }
  253. if (!is_legal(received->p2.gx, ctx)) {
  254. JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS,
  255. JPAKE_R_G_TO_THE_X4_IS_NOT_LEGAL);
  256. return 0;
  257. }
  258. /* verify their ZKP(xc) */
  259. if (!verify_zkp(&received->p1, ctx->p.g, ctx)) {
  260. JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X3_FAILED);
  261. return 0;
  262. }
  263. /* verify their ZKP(xd) */
  264. if (!verify_zkp(&received->p2, ctx->p.g, ctx)) {
  265. JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X4_FAILED);
  266. return 0;
  267. }
  268. /* g^xd != 1 */
  269. if (BN_is_one(received->p2.gx)) {
  270. JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_G_TO_THE_X4_IS_ONE);
  271. return 0;
  272. }
  273. /* Save the bits we need for later */
  274. BN_copy(ctx->p.gxc, received->p1.gx);
  275. BN_copy(ctx->p.gxd, received->p2.gx);
  276. return 1;
  277. }
  278. int JPAKE_STEP2_generate(JPAKE_STEP2 *send, JPAKE_CTX *ctx)
  279. {
  280. BIGNUM *t1 = BN_new();
  281. BIGNUM *t2 = BN_new();
  282. /*-
  283. * X = g^{(xa + xc + xd) * xb * s}
  284. * t1 = g^xa
  285. */
  286. BN_mod_exp(t1, ctx->p.g, ctx->xa, ctx->p.p, ctx->ctx);
  287. /* t2 = t1 * g^{xc} = g^{xa} * g^{xc} = g^{xa + xc} */
  288. BN_mod_mul(t2, t1, ctx->p.gxc, ctx->p.p, ctx->ctx);
  289. /* t1 = t2 * g^{xd} = g^{xa + xc + xd} */
  290. BN_mod_mul(t1, t2, ctx->p.gxd, ctx->p.p, ctx->ctx);
  291. /* t2 = xb * s */
  292. BN_mod_mul(t2, ctx->xb, ctx->secret, ctx->p.q, ctx->ctx);
  293. /*-
  294. * ZKP(xb * s)
  295. * XXX: this is kinda funky, because we're using
  296. *
  297. * g' = g^{xa + xc + xd}
  298. *
  299. * as the generator, which means X is g'^{xb * s}
  300. * X = t1^{t2} = t1^{xb * s} = g^{(xa + xc + xd) * xb * s}
  301. */
  302. generate_step_part(send, t2, t1, ctx);
  303. /* cleanup */
  304. BN_free(t1);
  305. BN_free(t2);
  306. return 1;
  307. }
  308. /* gx = g^{xc + xa + xb} * xd * s */
  309. static int compute_key(JPAKE_CTX *ctx, const BIGNUM *gx)
  310. {
  311. BIGNUM *t1 = BN_new();
  312. BIGNUM *t2 = BN_new();
  313. BIGNUM *t3 = BN_new();
  314. /*-
  315. * K = (gx/g^{xb * xd * s})^{xb}
  316. * = (g^{(xc + xa + xb) * xd * s - xb * xd *s})^{xb}
  317. * = (g^{(xa + xc) * xd * s})^{xb}
  318. * = g^{(xa + xc) * xb * xd * s}
  319. * [which is the same regardless of who calculates it]
  320. */
  321. /* t1 = (g^{xd})^{xb} = g^{xb * xd} */
  322. BN_mod_exp(t1, ctx->p.gxd, ctx->xb, ctx->p.p, ctx->ctx);
  323. /* t2 = -s = q-s */
  324. BN_sub(t2, ctx->p.q, ctx->secret);
  325. /* t3 = t1^t2 = g^{-xb * xd * s} */
  326. BN_mod_exp(t3, t1, t2, ctx->p.p, ctx->ctx);
  327. /* t1 = gx * t3 = X/g^{xb * xd * s} */
  328. BN_mod_mul(t1, gx, t3, ctx->p.p, ctx->ctx);
  329. /* K = t1^{xb} */
  330. BN_mod_exp(ctx->key, t1, ctx->xb, ctx->p.p, ctx->ctx);
  331. /* cleanup */
  332. BN_free(t3);
  333. BN_free(t2);
  334. BN_free(t1);
  335. return 1;
  336. }
  337. int JPAKE_STEP2_process(JPAKE_CTX *ctx, const JPAKE_STEP2 *received)
  338. {
  339. BIGNUM *t1 = BN_new();
  340. BIGNUM *t2 = BN_new();
  341. int ret = 0;
  342. /*-
  343. * g' = g^{xc + xa + xb} [from our POV]
  344. * t1 = xa + xb
  345. */
  346. BN_mod_add(t1, ctx->xa, ctx->xb, ctx->p.q, ctx->ctx);
  347. /* t2 = g^{t1} = g^{xa+xb} */
  348. BN_mod_exp(t2, ctx->p.g, t1, ctx->p.p, ctx->ctx);
  349. /* t1 = g^{xc} * t2 = g^{xc + xa + xb} */
  350. BN_mod_mul(t1, ctx->p.gxc, t2, ctx->p.p, ctx->ctx);
  351. if (verify_zkp(received, t1, ctx))
  352. ret = 1;
  353. else
  354. JPAKEerr(JPAKE_F_JPAKE_STEP2_PROCESS, JPAKE_R_VERIFY_B_FAILED);
  355. compute_key(ctx, received->gx);
  356. /* cleanup */
  357. BN_free(t2);
  358. BN_free(t1);
  359. return ret;
  360. }
  361. static void quickhashbn(unsigned char *md, const BIGNUM *bn)
  362. {
  363. SHA_CTX sha;
  364. SHA1_Init(&sha);
  365. hashbn(&sha, bn);
  366. SHA1_Final(md, &sha);
  367. }
  368. void JPAKE_STEP3A_init(JPAKE_STEP3A *s3a)
  369. {
  370. }
  371. int JPAKE_STEP3A_generate(JPAKE_STEP3A *send, JPAKE_CTX *ctx)
  372. {
  373. quickhashbn(send->hhk, ctx->key);
  374. SHA1(send->hhk, sizeof send->hhk, send->hhk);
  375. return 1;
  376. }
  377. int JPAKE_STEP3A_process(JPAKE_CTX *ctx, const JPAKE_STEP3A *received)
  378. {
  379. unsigned char hhk[SHA_DIGEST_LENGTH];
  380. quickhashbn(hhk, ctx->key);
  381. SHA1(hhk, sizeof hhk, hhk);
  382. if (memcmp(hhk, received->hhk, sizeof hhk)) {
  383. JPAKEerr(JPAKE_F_JPAKE_STEP3A_PROCESS,
  384. JPAKE_R_HASH_OF_HASH_OF_KEY_MISMATCH);
  385. return 0;
  386. }
  387. return 1;
  388. }
  389. void JPAKE_STEP3A_release(JPAKE_STEP3A *s3a)
  390. {
  391. }
  392. void JPAKE_STEP3B_init(JPAKE_STEP3B *s3b)
  393. {
  394. }
  395. int JPAKE_STEP3B_generate(JPAKE_STEP3B *send, JPAKE_CTX *ctx)
  396. {
  397. quickhashbn(send->hk, ctx->key);
  398. return 1;
  399. }
  400. int JPAKE_STEP3B_process(JPAKE_CTX *ctx, const JPAKE_STEP3B *received)
  401. {
  402. unsigned char hk[SHA_DIGEST_LENGTH];
  403. quickhashbn(hk, ctx->key);
  404. if (memcmp(hk, received->hk, sizeof hk)) {
  405. JPAKEerr(JPAKE_F_JPAKE_STEP3B_PROCESS, JPAKE_R_HASH_OF_KEY_MISMATCH);
  406. return 0;
  407. }
  408. return 1;
  409. }
  410. void JPAKE_STEP3B_release(JPAKE_STEP3B *s3b)
  411. {
  412. }
  413. const BIGNUM *JPAKE_get_shared_key(JPAKE_CTX *ctx)
  414. {
  415. return ctx->key;
  416. }