ghash-x86_64.pl 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806
  1. #!/usr/bin/env perl
  2. #
  3. # ====================================================================
  4. # Written by Andy Polyakov <[email protected]> for the OpenSSL
  5. # project. The module is, however, dual licensed under OpenSSL and
  6. # CRYPTOGAMS licenses depending on where you obtain it. For further
  7. # details see http://www.openssl.org/~appro/cryptogams/.
  8. # ====================================================================
  9. #
  10. # March, June 2010
  11. #
  12. # The module implements "4-bit" GCM GHASH function and underlying
  13. # single multiplication operation in GF(2^128). "4-bit" means that
  14. # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
  15. # function features so called "528B" variant utilizing additional
  16. # 256+16 bytes of per-key storage [+512 bytes shared table].
  17. # Performance results are for this streamed GHASH subroutine and are
  18. # expressed in cycles per processed byte, less is better:
  19. #
  20. # gcc 3.4.x(*) assembler
  21. #
  22. # P4 28.6 14.0 +100%
  23. # Opteron 19.3 7.7 +150%
  24. # Core2 17.8 8.1(**) +120%
  25. #
  26. # (*) comparison is not completely fair, because C results are
  27. # for vanilla "256B" implementation, while assembler results
  28. # are for "528B";-)
  29. # (**) it's mystery [to me] why Core2 result is not same as for
  30. # Opteron;
  31. # May 2010
  32. #
  33. # Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
  34. # See ghash-x86.pl for background information and details about coding
  35. # techniques.
  36. #
  37. # Special thanks to David Woodhouse <[email protected]> for
  38. # providing access to a Westmere-based system on behalf of Intel
  39. # Open Source Technology Centre.
  40. $flavour = shift;
  41. $output = shift;
  42. if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
  43. $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
  44. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
  45. ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
  46. ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
  47. die "can't locate x86_64-xlate.pl";
  48. open OUT,"| \"$^X\" $xlate $flavour $output";
  49. *STDOUT=*OUT;
  50. # common register layout
  51. $nlo="%rax";
  52. $nhi="%rbx";
  53. $Zlo="%r8";
  54. $Zhi="%r9";
  55. $tmp="%r10";
  56. $rem_4bit = "%r11";
  57. $Xi="%rdi";
  58. $Htbl="%rsi";
  59. # per-function register layout
  60. $cnt="%rcx";
  61. $rem="%rdx";
  62. sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or
  63. $r =~ s/%[er]([sd]i)/%\1l/ or
  64. $r =~ s/%[er](bp)/%\1l/ or
  65. $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; }
  66. sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
  67. { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
  68. my $arg = pop;
  69. $arg = "\$$arg" if ($arg*1 eq $arg);
  70. $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
  71. }
  72. { my $N;
  73. sub loop() {
  74. my $inp = shift;
  75. $N++;
  76. $code.=<<___;
  77. xor $nlo,$nlo
  78. xor $nhi,$nhi
  79. mov `&LB("$Zlo")`,`&LB("$nlo")`
  80. mov `&LB("$Zlo")`,`&LB("$nhi")`
  81. shl \$4,`&LB("$nlo")`
  82. mov \$14,$cnt
  83. mov 8($Htbl,$nlo),$Zlo
  84. mov ($Htbl,$nlo),$Zhi
  85. and \$0xf0,`&LB("$nhi")`
  86. mov $Zlo,$rem
  87. jmp .Loop$N
  88. .align 16
  89. .Loop$N:
  90. shr \$4,$Zlo
  91. and \$0xf,$rem
  92. mov $Zhi,$tmp
  93. mov ($inp,$cnt),`&LB("$nlo")`
  94. shr \$4,$Zhi
  95. xor 8($Htbl,$nhi),$Zlo
  96. shl \$60,$tmp
  97. xor ($Htbl,$nhi),$Zhi
  98. mov `&LB("$nlo")`,`&LB("$nhi")`
  99. xor ($rem_4bit,$rem,8),$Zhi
  100. mov $Zlo,$rem
  101. shl \$4,`&LB("$nlo")`
  102. xor $tmp,$Zlo
  103. dec $cnt
  104. js .Lbreak$N
  105. shr \$4,$Zlo
  106. and \$0xf,$rem
  107. mov $Zhi,$tmp
  108. shr \$4,$Zhi
  109. xor 8($Htbl,$nlo),$Zlo
  110. shl \$60,$tmp
  111. xor ($Htbl,$nlo),$Zhi
  112. and \$0xf0,`&LB("$nhi")`
  113. xor ($rem_4bit,$rem,8),$Zhi
  114. mov $Zlo,$rem
  115. xor $tmp,$Zlo
  116. jmp .Loop$N
  117. .align 16
  118. .Lbreak$N:
  119. shr \$4,$Zlo
  120. and \$0xf,$rem
  121. mov $Zhi,$tmp
  122. shr \$4,$Zhi
  123. xor 8($Htbl,$nlo),$Zlo
  124. shl \$60,$tmp
  125. xor ($Htbl,$nlo),$Zhi
  126. and \$0xf0,`&LB("$nhi")`
  127. xor ($rem_4bit,$rem,8),$Zhi
  128. mov $Zlo,$rem
  129. xor $tmp,$Zlo
  130. shr \$4,$Zlo
  131. and \$0xf,$rem
  132. mov $Zhi,$tmp
  133. shr \$4,$Zhi
  134. xor 8($Htbl,$nhi),$Zlo
  135. shl \$60,$tmp
  136. xor ($Htbl,$nhi),$Zhi
  137. xor $tmp,$Zlo
  138. xor ($rem_4bit,$rem,8),$Zhi
  139. bswap $Zlo
  140. bswap $Zhi
  141. ___
  142. }}
  143. $code=<<___;
  144. .text
  145. .globl gcm_gmult_4bit
  146. .type gcm_gmult_4bit,\@function,2
  147. .align 16
  148. gcm_gmult_4bit:
  149. push %rbx
  150. push %rbp # %rbp and %r12 are pushed exclusively in
  151. push %r12 # order to reuse Win64 exception handler...
  152. .Lgmult_prologue:
  153. movzb 15($Xi),$Zlo
  154. lea .Lrem_4bit(%rip),$rem_4bit
  155. ___
  156. &loop ($Xi);
  157. $code.=<<___;
  158. mov $Zlo,8($Xi)
  159. mov $Zhi,($Xi)
  160. mov 16(%rsp),%rbx
  161. lea 24(%rsp),%rsp
  162. .Lgmult_epilogue:
  163. ret
  164. .size gcm_gmult_4bit,.-gcm_gmult_4bit
  165. ___
  166. # per-function register layout
  167. $inp="%rdx";
  168. $len="%rcx";
  169. $rem_8bit=$rem_4bit;
  170. $code.=<<___;
  171. .globl gcm_ghash_4bit
  172. .type gcm_ghash_4bit,\@function,4
  173. .align 16
  174. gcm_ghash_4bit:
  175. push %rbx
  176. push %rbp
  177. push %r12
  178. push %r13
  179. push %r14
  180. push %r15
  181. sub \$280,%rsp
  182. .Lghash_prologue:
  183. mov $inp,%r14 # reassign couple of args
  184. mov $len,%r15
  185. ___
  186. { my $inp="%r14";
  187. my $dat="%edx";
  188. my $len="%r15";
  189. my @nhi=("%ebx","%ecx");
  190. my @rem=("%r12","%r13");
  191. my $Hshr4="%rbp";
  192. &sub ($Htbl,-128); # size optimization
  193. &lea ($Hshr4,"16+128(%rsp)");
  194. { my @lo =($nlo,$nhi);
  195. my @hi =($Zlo,$Zhi);
  196. &xor ($dat,$dat);
  197. for ($i=0,$j=-2;$i<18;$i++,$j++) {
  198. &mov ("$j(%rsp)",&LB($dat)) if ($i>1);
  199. &or ($lo[0],$tmp) if ($i>1);
  200. &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17);
  201. &shr ($lo[1],4) if ($i>0 && $i<17);
  202. &mov ($tmp,$hi[1]) if ($i>0 && $i<17);
  203. &shr ($hi[1],4) if ($i>0 && $i<17);
  204. &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1);
  205. &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16);
  206. &shl (&LB($dat),4) if ($i>0 && $i<17);
  207. &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1);
  208. &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16);
  209. &shl ($tmp,60) if ($i>0 && $i<17);
  210. push (@lo,shift(@lo));
  211. push (@hi,shift(@hi));
  212. }
  213. }
  214. &add ($Htbl,-128);
  215. &mov ($Zlo,"8($Xi)");
  216. &mov ($Zhi,"0($Xi)");
  217. &add ($len,$inp); # pointer to the end of data
  218. &lea ($rem_8bit,".Lrem_8bit(%rip)");
  219. &jmp (".Louter_loop");
  220. $code.=".align 16\n.Louter_loop:\n";
  221. &xor ($Zhi,"($inp)");
  222. &mov ("%rdx","8($inp)");
  223. &lea ($inp,"16($inp)");
  224. &xor ("%rdx",$Zlo);
  225. &mov ("($Xi)",$Zhi);
  226. &mov ("8($Xi)","%rdx");
  227. &shr ("%rdx",32);
  228. &xor ($nlo,$nlo);
  229. &rol ($dat,8);
  230. &mov (&LB($nlo),&LB($dat));
  231. &movz ($nhi[0],&LB($dat));
  232. &shl (&LB($nlo),4);
  233. &shr ($nhi[0],4);
  234. for ($j=11,$i=0;$i<15;$i++) {
  235. &rol ($dat,8);
  236. &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0);
  237. &xor ($Zhi,"($Htbl,$nlo)") if ($i>0);
  238. &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0);
  239. &mov ($Zhi,"($Htbl,$nlo)") if ($i==0);
  240. &mov (&LB($nlo),&LB($dat));
  241. &xor ($Zlo,$tmp) if ($i>0);
  242. &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0);
  243. &movz ($nhi[1],&LB($dat));
  244. &shl (&LB($nlo),4);
  245. &movzb ($rem[0],"(%rsp,$nhi[0])");
  246. &shr ($nhi[1],4) if ($i<14);
  247. &and ($nhi[1],0xf0) if ($i==14);
  248. &shl ($rem[1],48) if ($i>0);
  249. &xor ($rem[0],$Zlo);
  250. &mov ($tmp,$Zhi);
  251. &xor ($Zhi,$rem[1]) if ($i>0);
  252. &shr ($Zlo,8);
  253. &movz ($rem[0],&LB($rem[0]));
  254. &mov ($dat,"$j($Xi)") if (--$j%4==0);
  255. &shr ($Zhi,8);
  256. &xor ($Zlo,"-128($Hshr4,$nhi[0],8)");
  257. &shl ($tmp,56);
  258. &xor ($Zhi,"($Hshr4,$nhi[0],8)");
  259. unshift (@nhi,pop(@nhi)); # "rotate" registers
  260. unshift (@rem,pop(@rem));
  261. }
  262. &movzw ($rem[1],"($rem_8bit,$rem[1],2)");
  263. &xor ($Zlo,"8($Htbl,$nlo)");
  264. &xor ($Zhi,"($Htbl,$nlo)");
  265. &shl ($rem[1],48);
  266. &xor ($Zlo,$tmp);
  267. &xor ($Zhi,$rem[1]);
  268. &movz ($rem[0],&LB($Zlo));
  269. &shr ($Zlo,4);
  270. &mov ($tmp,$Zhi);
  271. &shl (&LB($rem[0]),4);
  272. &shr ($Zhi,4);
  273. &xor ($Zlo,"8($Htbl,$nhi[0])");
  274. &movzw ($rem[0],"($rem_8bit,$rem[0],2)");
  275. &shl ($tmp,60);
  276. &xor ($Zhi,"($Htbl,$nhi[0])");
  277. &xor ($Zlo,$tmp);
  278. &shl ($rem[0],48);
  279. &bswap ($Zlo);
  280. &xor ($Zhi,$rem[0]);
  281. &bswap ($Zhi);
  282. &cmp ($inp,$len);
  283. &jb (".Louter_loop");
  284. }
  285. $code.=<<___;
  286. mov $Zlo,8($Xi)
  287. mov $Zhi,($Xi)
  288. lea 280(%rsp),%rsi
  289. mov 0(%rsi),%r15
  290. mov 8(%rsi),%r14
  291. mov 16(%rsi),%r13
  292. mov 24(%rsi),%r12
  293. mov 32(%rsi),%rbp
  294. mov 40(%rsi),%rbx
  295. lea 48(%rsi),%rsp
  296. .Lghash_epilogue:
  297. ret
  298. .size gcm_ghash_4bit,.-gcm_ghash_4bit
  299. ___
  300. ######################################################################
  301. # PCLMULQDQ version.
  302. @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
  303. ("%rdi","%rsi","%rdx","%rcx"); # Unix order
  304. ($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2";
  305. ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
  306. sub clmul64x64_T2 { # minimal register pressure
  307. my ($Xhi,$Xi,$Hkey,$modulo)=@_;
  308. $code.=<<___ if (!defined($modulo));
  309. movdqa $Xi,$Xhi #
  310. pshufd \$0b01001110,$Xi,$T1
  311. pshufd \$0b01001110,$Hkey,$T2
  312. pxor $Xi,$T1 #
  313. pxor $Hkey,$T2
  314. ___
  315. $code.=<<___;
  316. pclmulqdq \$0x00,$Hkey,$Xi #######
  317. pclmulqdq \$0x11,$Hkey,$Xhi #######
  318. pclmulqdq \$0x00,$T2,$T1 #######
  319. pxor $Xi,$T1 #
  320. pxor $Xhi,$T1 #
  321. movdqa $T1,$T2 #
  322. psrldq \$8,$T1
  323. pslldq \$8,$T2 #
  324. pxor $T1,$Xhi
  325. pxor $T2,$Xi #
  326. ___
  327. }
  328. sub reduction_alg9 { # 17/13 times faster than Intel version
  329. my ($Xhi,$Xi) = @_;
  330. $code.=<<___;
  331. # 1st phase
  332. movdqa $Xi,$T1 #
  333. psllq \$1,$Xi
  334. pxor $T1,$Xi #
  335. psllq \$5,$Xi #
  336. pxor $T1,$Xi #
  337. psllq \$57,$Xi #
  338. movdqa $Xi,$T2 #
  339. pslldq \$8,$Xi
  340. psrldq \$8,$T2 #
  341. pxor $T1,$Xi
  342. pxor $T2,$Xhi #
  343. # 2nd phase
  344. movdqa $Xi,$T2
  345. psrlq \$5,$Xi
  346. pxor $T2,$Xi #
  347. psrlq \$1,$Xi #
  348. pxor $T2,$Xi #
  349. pxor $Xhi,$T2
  350. psrlq \$1,$Xi #
  351. pxor $T2,$Xi #
  352. ___
  353. }
  354. { my ($Htbl,$Xip)=@_4args;
  355. $code.=<<___;
  356. .globl gcm_init_clmul
  357. .type gcm_init_clmul,\@abi-omnipotent
  358. .align 16
  359. gcm_init_clmul:
  360. movdqu ($Xip),$Hkey
  361. pshufd \$0b01001110,$Hkey,$Hkey # dword swap
  362. # <<1 twist
  363. pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
  364. movdqa $Hkey,$T1
  365. psllq \$1,$Hkey
  366. pxor $T3,$T3 #
  367. psrlq \$63,$T1
  368. pcmpgtd $T2,$T3 # broadcast carry bit
  369. pslldq \$8,$T1
  370. por $T1,$Hkey # H<<=1
  371. # magic reduction
  372. pand .L0x1c2_polynomial(%rip),$T3
  373. pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial
  374. # calculate H^2
  375. movdqa $Hkey,$Xi
  376. ___
  377. &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
  378. &reduction_alg9 ($Xhi,$Xi);
  379. $code.=<<___;
  380. movdqu $Hkey,($Htbl) # save H
  381. movdqu $Xi,16($Htbl) # save H^2
  382. ret
  383. .size gcm_init_clmul,.-gcm_init_clmul
  384. ___
  385. }
  386. { my ($Xip,$Htbl)=@_4args;
  387. $code.=<<___;
  388. .globl gcm_gmult_clmul
  389. .type gcm_gmult_clmul,\@abi-omnipotent
  390. .align 16
  391. gcm_gmult_clmul:
  392. movdqu ($Xip),$Xi
  393. movdqa .Lbswap_mask(%rip),$T3
  394. movdqu ($Htbl),$Hkey
  395. pshufb $T3,$Xi
  396. ___
  397. &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
  398. &reduction_alg9 ($Xhi,$Xi);
  399. $code.=<<___;
  400. pshufb $T3,$Xi
  401. movdqu $Xi,($Xip)
  402. ret
  403. .size gcm_gmult_clmul,.-gcm_gmult_clmul
  404. ___
  405. }
  406. { my ($Xip,$Htbl,$inp,$len)=@_4args;
  407. my $Xn="%xmm6";
  408. my $Xhn="%xmm7";
  409. my $Hkey2="%xmm8";
  410. my $T1n="%xmm9";
  411. my $T2n="%xmm10";
  412. $code.=<<___;
  413. .globl gcm_ghash_clmul
  414. .type gcm_ghash_clmul,\@abi-omnipotent
  415. .align 16
  416. gcm_ghash_clmul:
  417. ___
  418. $code.=<<___ if ($win64);
  419. .LSEH_begin_gcm_ghash_clmul:
  420. # I can't trust assembler to use specific encoding:-(
  421. .byte 0x48,0x83,0xec,0x58 #sub \$0x58,%rsp
  422. .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
  423. .byte 0x0f,0x29,0x7c,0x24,0x10 #movdqa %xmm7,0x10(%rsp)
  424. .byte 0x44,0x0f,0x29,0x44,0x24,0x20 #movaps %xmm8,0x20(%rsp)
  425. .byte 0x44,0x0f,0x29,0x4c,0x24,0x30 #movaps %xmm9,0x30(%rsp)
  426. .byte 0x44,0x0f,0x29,0x54,0x24,0x40 #movaps %xmm10,0x40(%rsp)
  427. ___
  428. $code.=<<___;
  429. movdqa .Lbswap_mask(%rip),$T3
  430. movdqu ($Xip),$Xi
  431. movdqu ($Htbl),$Hkey
  432. pshufb $T3,$Xi
  433. sub \$0x10,$len
  434. jz .Lodd_tail
  435. movdqu 16($Htbl),$Hkey2
  436. #######
  437. # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
  438. # [(H*Ii+1) + (H*Xi+1)] mod P =
  439. # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
  440. #
  441. movdqu ($inp),$T1 # Ii
  442. movdqu 16($inp),$Xn # Ii+1
  443. pshufb $T3,$T1
  444. pshufb $T3,$Xn
  445. pxor $T1,$Xi # Ii+Xi
  446. ___
  447. &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1
  448. $code.=<<___;
  449. movdqa $Xi,$Xhi #
  450. pshufd \$0b01001110,$Xi,$T1
  451. pshufd \$0b01001110,$Hkey2,$T2
  452. pxor $Xi,$T1 #
  453. pxor $Hkey2,$T2
  454. lea 32($inp),$inp # i+=2
  455. sub \$0x20,$len
  456. jbe .Leven_tail
  457. .Lmod_loop:
  458. ___
  459. &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi)
  460. $code.=<<___;
  461. movdqu ($inp),$T1 # Ii
  462. pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
  463. pxor $Xhn,$Xhi
  464. movdqu 16($inp),$Xn # Ii+1
  465. pshufb $T3,$T1
  466. pshufb $T3,$Xn
  467. movdqa $Xn,$Xhn #
  468. pshufd \$0b01001110,$Xn,$T1n
  469. pshufd \$0b01001110,$Hkey,$T2n
  470. pxor $Xn,$T1n #
  471. pxor $Hkey,$T2n
  472. pxor $T1,$Xhi # "Ii+Xi", consume early
  473. movdqa $Xi,$T1 # 1st phase
  474. psllq \$1,$Xi
  475. pxor $T1,$Xi #
  476. psllq \$5,$Xi #
  477. pxor $T1,$Xi #
  478. pclmulqdq \$0x00,$Hkey,$Xn #######
  479. psllq \$57,$Xi #
  480. movdqa $Xi,$T2 #
  481. pslldq \$8,$Xi
  482. psrldq \$8,$T2 #
  483. pxor $T1,$Xi
  484. pxor $T2,$Xhi #
  485. pclmulqdq \$0x11,$Hkey,$Xhn #######
  486. movdqa $Xi,$T2 # 2nd phase
  487. psrlq \$5,$Xi
  488. pxor $T2,$Xi #
  489. psrlq \$1,$Xi #
  490. pxor $T2,$Xi #
  491. pxor $Xhi,$T2
  492. psrlq \$1,$Xi #
  493. pxor $T2,$Xi #
  494. pclmulqdq \$0x00,$T2n,$T1n #######
  495. movdqa $Xi,$Xhi #
  496. pshufd \$0b01001110,$Xi,$T1
  497. pshufd \$0b01001110,$Hkey2,$T2
  498. pxor $Xi,$T1 #
  499. pxor $Hkey2,$T2
  500. pxor $Xn,$T1n #
  501. pxor $Xhn,$T1n #
  502. movdqa $T1n,$T2n #
  503. psrldq \$8,$T1n
  504. pslldq \$8,$T2n #
  505. pxor $T1n,$Xhn
  506. pxor $T2n,$Xn #
  507. lea 32($inp),$inp
  508. sub \$0x20,$len
  509. ja .Lmod_loop
  510. .Leven_tail:
  511. ___
  512. &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi)
  513. $code.=<<___;
  514. pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
  515. pxor $Xhn,$Xhi
  516. ___
  517. &reduction_alg9 ($Xhi,$Xi);
  518. $code.=<<___;
  519. test $len,$len
  520. jnz .Ldone
  521. .Lodd_tail:
  522. movdqu ($inp),$T1 # Ii
  523. pshufb $T3,$T1
  524. pxor $T1,$Xi # Ii+Xi
  525. ___
  526. &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
  527. &reduction_alg9 ($Xhi,$Xi);
  528. $code.=<<___;
  529. .Ldone:
  530. pshufb $T3,$Xi
  531. movdqu $Xi,($Xip)
  532. ___
  533. $code.=<<___ if ($win64);
  534. movaps (%rsp),%xmm6
  535. movaps 0x10(%rsp),%xmm7
  536. movaps 0x20(%rsp),%xmm8
  537. movaps 0x30(%rsp),%xmm9
  538. movaps 0x40(%rsp),%xmm10
  539. add \$0x58,%rsp
  540. ___
  541. $code.=<<___;
  542. ret
  543. .LSEH_end_gcm_ghash_clmul:
  544. .size gcm_ghash_clmul,.-gcm_ghash_clmul
  545. ___
  546. }
  547. $code.=<<___;
  548. .align 64
  549. .Lbswap_mask:
  550. .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
  551. .L0x1c2_polynomial:
  552. .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
  553. .align 64
  554. .type .Lrem_4bit,\@object
  555. .Lrem_4bit:
  556. .long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
  557. .long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
  558. .long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
  559. .long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
  560. .type .Lrem_8bit,\@object
  561. .Lrem_8bit:
  562. .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
  563. .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
  564. .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
  565. .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
  566. .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
  567. .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
  568. .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
  569. .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
  570. .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
  571. .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
  572. .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
  573. .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
  574. .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
  575. .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
  576. .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
  577. .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
  578. .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
  579. .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
  580. .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
  581. .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
  582. .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
  583. .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
  584. .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
  585. .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
  586. .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
  587. .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
  588. .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
  589. .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
  590. .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
  591. .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
  592. .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
  593. .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
  594. .asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
  595. .align 64
  596. ___
  597. # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
  598. # CONTEXT *context,DISPATCHER_CONTEXT *disp)
  599. if ($win64) {
  600. $rec="%rcx";
  601. $frame="%rdx";
  602. $context="%r8";
  603. $disp="%r9";
  604. $code.=<<___;
  605. .extern __imp_RtlVirtualUnwind
  606. .type se_handler,\@abi-omnipotent
  607. .align 16
  608. se_handler:
  609. push %rsi
  610. push %rdi
  611. push %rbx
  612. push %rbp
  613. push %r12
  614. push %r13
  615. push %r14
  616. push %r15
  617. pushfq
  618. sub \$64,%rsp
  619. mov 120($context),%rax # pull context->Rax
  620. mov 248($context),%rbx # pull context->Rip
  621. mov 8($disp),%rsi # disp->ImageBase
  622. mov 56($disp),%r11 # disp->HandlerData
  623. mov 0(%r11),%r10d # HandlerData[0]
  624. lea (%rsi,%r10),%r10 # prologue label
  625. cmp %r10,%rbx # context->Rip<prologue label
  626. jb .Lin_prologue
  627. mov 152($context),%rax # pull context->Rsp
  628. mov 4(%r11),%r10d # HandlerData[1]
  629. lea (%rsi,%r10),%r10 # epilogue label
  630. cmp %r10,%rbx # context->Rip>=epilogue label
  631. jae .Lin_prologue
  632. lea 24(%rax),%rax # adjust "rsp"
  633. mov -8(%rax),%rbx
  634. mov -16(%rax),%rbp
  635. mov -24(%rax),%r12
  636. mov %rbx,144($context) # restore context->Rbx
  637. mov %rbp,160($context) # restore context->Rbp
  638. mov %r12,216($context) # restore context->R12
  639. .Lin_prologue:
  640. mov 8(%rax),%rdi
  641. mov 16(%rax),%rsi
  642. mov %rax,152($context) # restore context->Rsp
  643. mov %rsi,168($context) # restore context->Rsi
  644. mov %rdi,176($context) # restore context->Rdi
  645. mov 40($disp),%rdi # disp->ContextRecord
  646. mov $context,%rsi # context
  647. mov \$`1232/8`,%ecx # sizeof(CONTEXT)
  648. .long 0xa548f3fc # cld; rep movsq
  649. mov $disp,%rsi
  650. xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
  651. mov 8(%rsi),%rdx # arg2, disp->ImageBase
  652. mov 0(%rsi),%r8 # arg3, disp->ControlPc
  653. mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
  654. mov 40(%rsi),%r10 # disp->ContextRecord
  655. lea 56(%rsi),%r11 # &disp->HandlerData
  656. lea 24(%rsi),%r12 # &disp->EstablisherFrame
  657. mov %r10,32(%rsp) # arg5
  658. mov %r11,40(%rsp) # arg6
  659. mov %r12,48(%rsp) # arg7
  660. mov %rcx,56(%rsp) # arg8, (NULL)
  661. call *__imp_RtlVirtualUnwind(%rip)
  662. mov \$1,%eax # ExceptionContinueSearch
  663. add \$64,%rsp
  664. popfq
  665. pop %r15
  666. pop %r14
  667. pop %r13
  668. pop %r12
  669. pop %rbp
  670. pop %rbx
  671. pop %rdi
  672. pop %rsi
  673. ret
  674. .size se_handler,.-se_handler
  675. .section .pdata
  676. .align 4
  677. .rva .LSEH_begin_gcm_gmult_4bit
  678. .rva .LSEH_end_gcm_gmult_4bit
  679. .rva .LSEH_info_gcm_gmult_4bit
  680. .rva .LSEH_begin_gcm_ghash_4bit
  681. .rva .LSEH_end_gcm_ghash_4bit
  682. .rva .LSEH_info_gcm_ghash_4bit
  683. .rva .LSEH_begin_gcm_ghash_clmul
  684. .rva .LSEH_end_gcm_ghash_clmul
  685. .rva .LSEH_info_gcm_ghash_clmul
  686. .section .xdata
  687. .align 8
  688. .LSEH_info_gcm_gmult_4bit:
  689. .byte 9,0,0,0
  690. .rva se_handler
  691. .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData
  692. .LSEH_info_gcm_ghash_4bit:
  693. .byte 9,0,0,0
  694. .rva se_handler
  695. .rva .Lghash_prologue,.Lghash_epilogue # HandlerData
  696. .LSEH_info_gcm_ghash_clmul:
  697. .byte 0x01,0x1f,0x0b,0x00
  698. .byte 0x1f,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10
  699. .byte 0x19,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9
  700. .byte 0x13,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8
  701. .byte 0x0d,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7
  702. .byte 0x08,0x68,0x00,0x00 #movaps (rsp),xmm6
  703. .byte 0x04,0xa2,0x00,0x00 #sub rsp,0x58
  704. ___
  705. }
  706. $code =~ s/\`([^\`]*)\`/eval($1)/gem;
  707. print $code;
  708. close STDOUT;