|
@@ -0,0 +1,222 @@
|
|
|
|
|
+Advanced materials {#advMaterials}
|
|
|
|
|
+===============
|
|
|
|
|
+[TOC]
|
|
|
|
|
+
|
|
|
|
|
+We have already talked about how to create materials, assign them parameters and bind them to a **Renderable** component. In this section we'll show an advanced way to assign material parameters, how to use materials for rendering directly (without using **Renderable** component) and how to create your own shaders without the use of BSL.
|
|
|
|
|
+
|
|
|
|
|
+# Material parameters {#advMaterials_a}
|
|
|
|
|
+Previously we have shown to how to set **Material** parameters by calling methods like @ref bs::Material::setTexture "Material::setTexture()", @ref bs::Material::setFloat "Material::setFloat()", @ref bs::Material::setColor "Material::setColor()", @ref bs::Material::setVec4 "Material::setVec4()" and similar.
|
|
|
|
|
+
|
|
|
|
|
+As an alternative you can also set materials through material handles. Once a material handle is retrieved it allows you to set material parameters much more efficiently than by calling the methods above directly.
|
|
|
|
|
+
|
|
|
|
|
+To retrieve the handles call any of the following methods, depending on material parameter type:
|
|
|
|
|
+ - @ref bs::ct::Material::getParamTexture "ct::Material::getParamTexture()" - Outputs a @ref bs::TMaterialParamTexture<Core> "MaterialParamTexture" handle that can be used for reading & writing the parameter value.
|
|
|
|
|
+ - @ref bs::ct::Material::getParamLoadStoreTexture "ct::Material::getParamLoadStoreTexture()" - Outputs a @ref bs::TMaterialParamLoadStoreTexture<Core> "MaterialParamLoadStoreTexture" handle that can be used for reading & writing the parameter value.
|
|
|
|
|
+ - @ref bs::ct::Material::getParamBuffer "ct::Material::getParamBuffer()" - Outputs a @ref bs::TMaterialParamBuffer<Core> "MaterialParamBuffer" handle that can be used for reading & writing the parameter value.
|
|
|
|
|
+ - @ref bs::ct::Material::getParamSamplerState "ct::Material::getParamSamplerState()" - Outputs a @ref bs::TMaterialParamSampState<Core> "MaterialParamSampState" handle that can be used for reading & writing the parameter value.
|
|
|
|
|
+ - @ref bs::ct::Material::getParamFloat "ct::Material::getParamFloat()" - Outputs a @ref bs::TMaterialDataParam<T, Core> "MaterialParamFloat" handle that can be used for reading & writing the parameter value.
|
|
|
|
|
+ - @ref bs::ct::Material::getParamVec2 "ct::Material::getParamVec2()" - Outputs a @ref bs::TMaterialDataParam<T, Core> "MaterialParamVec2" handle that can be used for reading & writing the parameter value.
|
|
|
|
|
+ - @ref bs::ct::Material::getParamVec3 "ct::Material::getParamVec3()" - Outputs a @ref bs::TMaterialDataParam<T, Core> "MaterialParamVec3" handle that can be used for reading & writing the parameter value.
|
|
|
|
|
+ - @ref bs::ct::Material::getParamVec4 "ct::Material::getParamVec4()" - Outputs a @ref bs::TMaterialDataParam<T, Core> "MaterialParamVec4" handle that can be used for reading & writing the parameter value.
|
|
|
|
|
+ - @ref bs::ct::Material::getParamColor "ct::Material::getParamColor()" - Outputs a @ref bs::TMaterialDataParam<T, Core> "MaterialParamColor" handle that can be used for reading & writing the parameter value.
|
|
|
|
|
+ - @ref bs::ct::Material::getParamMat3 "ct::Material::getParamMat3()" - Outputs a @ref bs::TMaterialDataParam<T, Core> "MaterialParamMat3" handle that can be used for reading & writing the parameter value.
|
|
|
|
|
+ - @ref bs::ct::Material::getParamMat4 "ct::Material::getParamMat4()" - Outputs a @ref bs::TMaterialDataParam<T, Core> "MaterialParamMat4" handle that can be used for reading & writing the parameter value.
|
|
|
|
|
+
|
|
|
|
|
+Handles provide **set()** and **get()** methods that can be used for writing and reading the parameter values.
|
|
|
|
|
+
|
|
|
|
|
+~~~~~~~~~~~~~{.cpp}
|
|
|
|
|
+HMaterial material = ...;
|
|
|
|
|
+
|
|
|
|
|
+MaterialParamMat4 myMatParam;
|
|
|
|
|
+MaterialParamTexture myTextureParam;
|
|
|
|
|
+
|
|
|
|
|
+material->getParamMat4("vertProjMatrix", myMatParam);
|
|
|
|
|
+material->getParamTexture("mainTexture", myTextureParam);
|
|
|
|
|
+
|
|
|
|
|
+Matrix4 viewProjMat = ...;
|
|
|
|
|
+SPtr<Texture> someTexture = ...;
|
|
|
|
|
+
|
|
|
|
|
+myVectorParam.set(viewProjMat);
|
|
|
|
|
+myTextureParam.set(someTexture);
|
|
|
|
|
+~~~~~~~~~~~~~
|
|
|
|
|
+
|
|
|
|
|
+Material handles are very similar as **GpuParams** handles we talked about earlier. There are two major differences:
|
|
|
|
|
+ - **GpuParams** handles will only set the parameter value for a specific **GpuProgram**, while material handles will set the values for all **GpuProgram**%s that map to that handle.
|
|
|
|
|
+ - **GpuProgram** parameters are retrieved directly from program source code, while **Material** parameters need to be explicitly defined in the **Shader** (shown below). **Material** parameters always map to one or multiple **GpuProgram** parameters.
|
|
|
|
|
+
|
|
|
|
|
+# Creating a shader manaully {#advMaterials_b}
|
|
|
|
|
+So far when we wanted to create a shader we would create a BSL file which would then be imported, creating a @ref bs::Shader "Shader". But you can also create shaders manually by explicitly providing HLSL/GLSL code for **GpuProgram**%s and non-programmable states.
|
|
|
|
|
+
|
|
|
|
|
+Each shader definition contains two things:
|
|
|
|
|
+ - A list of parameters, with a mapping of each parameter to one or multiple variables in a GPU program
|
|
|
|
|
+ - One or multiple @ref bs::Technique "Technique"%s. Each technique is essentially a fully fledged shader of its own. Techniques are chosen by the renderer depending on the context. For example some techniques only support the DirectX backend, while others only the Vulkan backend.
|
|
|
|
|
+ - Each technique contains one or multiple @ref bs::Pass "Pass"%es. A pass is a set of GPU programs and non-programmable states. When rendering using a certain technique each pass will be executed one after another. This allows you to render objects that require more complex rendering that requires multiple separate steps - althrough in practice most techniques have only a single pass.
|
|
|
|
|
+
|
|
|
|
|
+To summarize, the relationship between materials, shaders, techniques and passes is:
|
|
|
|
|
+ - **Material** [contains one]-> **Shader** [contains one or multiple]-> **Technique** [contains one or multiple]-> **Pass**
|
|
|
|
|
+
|
|
|
|
|
+## Creating a pass {#advMaterials_b_a}
|
|
|
|
|
+A **Pass** can be created by filling out a @ref bs::PASS_DESC "PASS_DESC" descriptor and passing it to @ref bs::Pass::create "Pass::create()" method. **PASS_DESC** is fairly simple and it expects a set of GPU programs and non-programmable states.
|
|
|
|
|
+
|
|
|
|
|
+~~~~~~~~~~~~~{.cpp}
|
|
|
|
|
+SPtr<GpuProgram> vertexProg = ...;
|
|
|
|
|
+SPtr<GpuProgram> fragmentProg = ...;
|
|
|
|
|
+
|
|
|
|
|
+SPtr<BlendState> blendState = ...;
|
|
|
|
|
+
|
|
|
|
|
+// Create a pass with a vertex and fragment program, and a non-default blend state
|
|
|
|
|
+PASS_DESC desc;
|
|
|
|
|
+desc.vertexProgram = vertexProg;
|
|
|
|
|
+desc.fragmentProg = fragmentProg;
|
|
|
|
|
+desc.blendState = blendState;
|
|
|
|
|
+
|
|
|
|
|
+SPtr<Pass> pass = Pass::create(desc);
|
|
|
|
|
+~~~~~~~~~~~~~
|
|
|
|
|
+
|
|
|
|
|
+GPU programs and non-programmable states are created as described in the low-level rendering API manual.
|
|
|
|
|
+
|
|
|
|
|
+## Creating a technique {#advMaterials_b_b}
|
|
|
|
|
+Now that we know how to create a pass, we can use one or multiple passes to initialize a **Technique**. A technique is just a container for one or multiple passes.
|
|
|
|
|
+
|
|
|
|
|
+To create a technique call @ref bs::Technique::create "Technique::create()" and provide it with:
|
|
|
|
|
+ - Shading language name - This should be "HLSL" or "GLSL". The engine will not use this technique unless this language is supported by the current render API.
|
|
|
|
|
+ - Renderer name - In case you are using a non-default renderer, and the technique only works on it. Otherwise use the built-in variable `RendererAny`
|
|
|
|
|
+ - Array containing one or multiple passes
|
|
|
|
|
+
|
|
|
|
|
+For example:
|
|
|
|
|
+~~~~~~~~~~~~~{.cpp}
|
|
|
|
|
+SPtr<Pass> pass = ...;
|
|
|
|
|
+
|
|
|
|
|
+// Create a technique that uses HLSL and supports any renderer, with a single pass
|
|
|
|
|
+SPtr<Technique> technique = Technique::create("HLSL", RendererAny, { pass });
|
|
|
|
|
+~~~~~~~~~~~~~
|
|
|
|
|
+
|
|
|
|
|
+## Creating a shader {#materials_b_c}
|
|
|
|
|
+Now that we have a technique we can create the shader by calling @ref bs::Shader::create "Shader::create()", which expects a list of techniques, name of the shader and a @ref bs::TSHADER_DESC<T> "SHADER_DESC" structure as input.
|
|
|
|
|
+
|
|
|
|
|
+@ref bs::TSHADER_DESC<T> "SHADER_DESC" allows you to specify a set of optional parameters to control how the shader rendering works:
|
|
|
|
|
+ - @ref bs::TSHADER_DESC<T>::queueSortType "SHADER_DESC::queueSortType" - Controls how should objects rendered with this shader be sorted. Either front to back, back to front, or without sorting. This property can be used for the active renderer to properly render objects, as certain effects (like transparency) require their objects to be rendered in a specific order.
|
|
|
|
|
+ - @ref bs::TSHADER_DESC<T>::queuePriority "SHADER_DESC::queuePriority" - Controls at what point should objects rendered with this shader be rendered relative to other objects. Objects with higher priority will be rendered before ones with lower priority, and sorting due to **SHADER_DESC::queueSortType** will never sort outside of priority groups. This can allow you to render a certain type of objects before all others (e.g. all opaque objects should be rendered before transparent ones).
|
|
|
|
|
+ - @ref bs::TSHADER_DESC<T>::separablePasses "SHADER_DESC::separablePasses" - An optimization hint to the renderer that can improve performance when turned on. Only relevant if the shader has techniques with multiple passes. When true the renderer will not necessarily execute passes right after another, but might render other objects in-between passes. This can reduce state switching as multiple objects can be rendered with a single pass, but is only relevant for algorithms that can handle such a process (most can't).
|
|
|
|
|
+
|
|
|
|
|
+~~~~~~~~~~~~~{.cpp}
|
|
|
|
|
+SPtr<Technique> technique = ...;
|
|
|
|
|
+
|
|
|
|
|
+SHADER_DESC desc;
|
|
|
|
|
+desc.queueSortType = QueueSortType::None;
|
|
|
|
|
+desc.queuePriority = 0;
|
|
|
|
|
+desc.separablePasses = false;
|
|
|
|
|
+
|
|
|
|
|
+SPtr<Shader> shader = Shader::create("MyShader", desc, { technique });
|
|
|
|
|
+~~~~~~~~~~~~~
|
|
|
|
|
+
|
|
|
|
|
+## Shader parameters {#materials_b_d}
|
|
|
|
|
+Shader parameters allow you to change values of parameters in GPU programs through the **Material** interface. They are similar to GPU program parameters described earlier, but they set the values on all GPU programs on all passes in the active technique, instead of doing so only on a single GPU program. Additionally they also support renderer semantics (see below).
|
|
|
|
|
+
|
|
|
|
|
+To create the parameter interface you must populate the **SHADER_DESC** structure by calling one of the @ref bs::TSHADER_DESC<T>::addParameter "SHADER_DESC::addParameter()" overloads.
|
|
|
|
|
+
|
|
|
|
|
+Parameters come in two variants:
|
|
|
|
|
+ - Data - These are primitive types like float, int or bool. This includes their vector and array variants. Check @ref bs::GpuParamDataType "GpuParamDataType" for a list of all data parameter types.
|
|
|
|
|
+ - Object - These are object types like texture, buffer or sampler state. Check @ref bs::GpuParamObjectType "GpuParamObjectType" for a list of all object parameter types.
|
|
|
|
|
+
|
|
|
|
|
+For each parameter you must specify:
|
|
|
|
|
+ - Its name. This will be the name accessible through **Material**. It can be anything you like, as long as it is unique.
|
|
|
|
|
+ - Name of the GPU variable it maps to. This must be a variable defined in source code of one or multiple GPU programs used in the shader (across all techniques/passes).
|
|
|
|
|
+ - Type of the GPU variable, as described above.
|
|
|
|
|
+
|
|
|
|
|
+~~~~~~~~~~~~~{.cpp}
|
|
|
|
|
+// Extended example from above
|
|
|
|
|
+SPtr<Technique> technique = ...;
|
|
|
|
|
+
|
|
|
|
|
+SHADER_DESC desc;
|
|
|
|
|
+desc.queueSortType = QueueSortType::None;
|
|
|
|
|
+desc.queuePriority = 0;
|
|
|
|
|
+desc.separablePasses = false;
|
|
|
|
|
+
|
|
|
|
|
+// Add a 4x4 transform matrix data parameter
|
|
|
|
|
+desc.addParameter("WorldTfrm", "WorldTfrm", GPDT_MATRIX_4X4);
|
|
|
|
|
+
|
|
|
|
|
+// Add a texture parameter
|
|
|
|
|
+desc.addParameter("AlbedoTex", "AlbedoTex", GPOT_TEXTURE2D);
|
|
|
|
|
+
|
|
|
|
|
+SPtr<Shader> shader = Shader::create("MyShader", desc, { technique });
|
|
|
|
|
+~~~~~~~~~~~~~
|
|
|
|
|
+
|
|
|
|
|
+### Advanced parameters {#materials_b_d_a}
|
|
|
|
|
+**SHADER_DESC::addParameter** also supports two additional arguments we didn't touch on in the previous section: renderer semantic and default value.
|
|
|
|
|
+
|
|
|
|
|
+Renderer semantic allows you to give the parameter a unique tag that can be recognized by the active renderer. The renderer can then use these semantics to automatically assign values to them while rendering. For example the "WVP" semantic might notify the renderer to populate this parameter with the world-view-projection matrix. This way the user is not responsible for setting such parameters manually. The actual semantics supported depend on the active renderer. If provided and renderer doesn't support a semantic, it will be ignored. We'll talk more on how to access semantics in the renderer manual.
|
|
|
|
|
+
|
|
|
|
|
+The parameter default value allows you to provide a value that will be used for initializing the parameter when a **Material** is initially constructed. For data parameters the default value is a provided as a raw block of memory, and for object parameters it can be a reference to a **Texture** or a **SamplerState**.
|
|
|
|
|
+
|
|
|
|
|
+~~~~~~~~~~~~~{.cpp}
|
|
|
|
|
+// An extended example from above with semantics and default values:
|
|
|
|
|
+SPtr<Technique> technique = ...;
|
|
|
|
|
+
|
|
|
|
|
+SHADER_DESC desc;
|
|
|
|
|
+desc.queueSortType = QueueSortType::None;
|
|
|
|
|
+desc.queuePriority = 0;
|
|
|
|
|
+desc.separablePasses = false;
|
|
|
|
|
+
|
|
|
|
|
+// Add a 4x4 transform matrix data parameter with a "W" semantic and identity matrix as default
|
|
|
|
|
+desc.addParameter("WorldTfrm", "WorldTfrm", GPDT_MATRIX_4X4, "W", 1, 0, &Matrix4::Identity);
|
|
|
|
|
+
|
|
|
|
|
+// Add a texture parameter with an "Albedo" semantic and a white texture as default
|
|
|
|
|
+desc.addParameter("AlbedoTex", "AlbedoTex", GPOT_TEXTURE2D, Texture::White, "Albedo");
|
|
|
|
|
+
|
|
|
|
|
+HShader shader = Shader::create("MyShader", desc, { technique });
|
|
|
|
|
+~~~~~~~~~~~~~
|
|
|
|
|
+
|
|
|
|
|
+# Manually rendering using the material {#materials_c}
|
|
|
|
|
+In an earlier manual we have shown how to render using a **Material** by attaching it to a **Renderable** component and letting the renderer do the rest. You can however render using the material completely manually, using the low-level rendering API.
|
|
|
|
|
+
|
|
|
|
|
+Material is a **CoreObject** which means it also has a core-thread interface accessible through @ref bs::Material::getCore() "Material::getCore()". The interface is the same as the non-core interface we have described so far.
|
|
|
|
|
+
|
|
|
|
|
+## Binding material {#materials_c_a}
|
|
|
|
|
+**Material** cannot be bound directly to the low level rendering API. You must instead manually retrieve a pipeline state for one of its passes.
|
|
|
|
|
+
|
|
|
|
|
+You can retrieve a specific pass from a material by calling @ref bs::Material::getPass() "Material::getPass()". The method expects an index of a technique and an index of a pass. To get the number of supported techniques call @ref bs::Material::getNumTechniques() "Material::getNumTechniques()", and to get the number of passes for a specific technique call @ref bs::Material::getNumPasses() "Material::getNumPasses()" with a specific technique index.
|
|
|
|
|
+
|
|
|
|
|
+Once you have a **Pass** you can retrieve from it either a **GraphicsPipelineState** or a **ComputePipelineState** by calling @ref bs::Pass::getGraphicsPipelineState() "Pass::getGraphicsPipelineState()" and @ref bs::Pass::getComputePipelineState() "Pass::getComputePipelineState()", respectively. Those can then be bound for rendering as shown in the low level rendering API manual.
|
|
|
|
|
+
|
|
|
|
|
+~~~~~~~~~~~~~{.cpp}
|
|
|
|
|
+SPtr<Material> material = ...;
|
|
|
|
|
+
|
|
|
|
|
+int passIdx = 0;
|
|
|
|
|
+int techniqueIdx = 0;
|
|
|
|
|
+SPtr<Pass> pass = material->getPass(passIdx, techniqueIdx);
|
|
|
|
|
+
|
|
|
|
|
+RenderAPI& rapi = RenderAPI::instance();
|
|
|
|
|
+rapi.setGraphicsPipeline(pass->getGraphicsPipelineState());
|
|
|
|
|
+~~~~~~~~~~~~~
|
|
|
|
|
+
|
|
|
|
|
+Alternatively you can use the helper methods @ref bs::ct::RendererUtility::setPass "RendererUtility::setPass()" or @ref bs::ct::RendererUtility::setComputePass "RendererUtility::setComputePass()".
|
|
|
|
|
+
|
|
|
|
|
+## Binding material parameters {#materials_c_b}
|
|
|
|
|
+In order to bind material parameters we need to somehow get access to a **GpuParams** object from the material. This is done through an intermediate class @ref bs::GpuParamsSet "GpuParamsSet", created by a call to @ref bs::Material::createParamsSet() "Material::createParamsSet()", which as a parameter takes a technique index.
|
|
|
|
|
+
|
|
|
|
|
+**GpuParams** for a specific pass can then be retrieved by calling @ref bs::GpuParamsSet::getGpuParams() "GpuParamsSet::getGpuParams()" with the pass index. They can then be bound as described in the low level render API manual.
|
|
|
|
|
+
|
|
|
|
|
+~~~~~~~~~~~~~{.cpp}
|
|
|
|
|
+SPtr<Material> material = ...;
|
|
|
|
|
+
|
|
|
|
|
+int passIdx = 0;
|
|
|
|
|
+int techniqueIdx = 0;
|
|
|
|
|
+SPtr<GpuParamsSet> paramsSet = material->createParamsSet(techniqueIdx);
|
|
|
|
|
+
|
|
|
|
|
+RenderAPI& rapi = RenderAPI::instance();
|
|
|
|
|
+rapi.setGpuParams(paramsSet->getGpuParams(passIdx));
|
|
|
|
|
+~~~~~~~~~~~~~
|
|
|
|
|
+
|
|
|
|
|
+Note that creation of a **GpuParamsSet** object is expensive, and the intent is that it will be created once (or just a few times) per material. **GpuParamsSet** contains a completely separate storage from the **Material** it was created from, therefore whenever material parameters are updated you must transfer its contents into **GpuParams** by calling @ref bs::GpuParamsSet::update() "GpuParamsSet::update()".
|
|
|
|
|
+
|
|
|
|
|
+~~~~~~~~~~~~~{.cpp}
|
|
|
|
|
+SPtr<GpuParamsSet> paramsSet = material->createParamsSet(techniqueIdx);
|
|
|
|
|
+
|
|
|
|
|
+// ...update some parameters on the material...
|
|
|
|
|
+
|
|
|
|
|
+// Transfer the updated data
|
|
|
|
|
+paramsSet->update(material);
|
|
|
|
|
+~~~~~~~~~~~~~
|
|
|
|
|
+
|
|
|
|
|
+Once both the material's pipeline state and parameters are bound, you can then proceed to render as normally, as described in the low-level rendering manual.
|