Browse Source

Feature: Added better memory allocation model for Vulkan

BearishSun 8 năm trước cách đây
mục cha
commit
207aa0e53e

+ 76 - 38
Source/BansheeVulkanRenderAPI/BsVulkanDevice.cpp

@@ -6,10 +6,13 @@
 #include "Managers/BsVulkanDescriptorManager.h"
 #include "Managers/BsVulkanDescriptorManager.h"
 #include "Managers/BsVulkanQueryManager.h"
 #include "Managers/BsVulkanQueryManager.h"
 
 
+#define VMA_IMPLEMENTATION
+#include "ThirdParty/vk_mem_alloc.h"
+
 namespace bs { namespace ct
 namespace bs { namespace ct
 {
 {
 	VulkanDevice::VulkanDevice(VkPhysicalDevice device, UINT32 deviceIdx)
 	VulkanDevice::VulkanDevice(VkPhysicalDevice device, UINT32 deviceIdx)
-		:mPhysicalDevice(device), mLogicalDevice(nullptr), mIsPrimary(false), mDeviceIdx(deviceIdx), mQueueInfos()
+		: mPhysicalDevice(device), mLogicalDevice(nullptr), mIsPrimary(false), mDeviceIdx(deviceIdx), mQueueInfos()
 	{
 	{
 		// Set to default
 		// Set to default
 		for (UINT32 i = 0; i < GQT_COUNT; i++)
 		for (UINT32 i = 0; i < GQT_COUNT; i++)
@@ -77,13 +80,40 @@ namespace bs { namespace ct
 			}
 			}
 		}
 		}
 
 
-		// Create logical device
-		const char* extensions[] = { 
-			VK_KHR_SWAPCHAIN_EXTENSION_NAME,
-			VK_KHR_MAINTENANCE1_EXTENSION_NAME,
-			VK_KHR_MAINTENANCE2_EXTENSION_NAME
-		};
-		uint32_t numExtensions = sizeof(extensions) / sizeof(extensions[0]);
+		// Set up extensions
+		const char* extensions[5];
+		uint32_t numExtensions = 0;
+
+		extensions[numExtensions++] = VK_KHR_SWAPCHAIN_EXTENSION_NAME;
+		extensions[numExtensions++] = VK_KHR_MAINTENANCE1_EXTENSION_NAME;
+		extensions[numExtensions++] = VK_KHR_MAINTENANCE2_EXTENSION_NAME;
+
+		// Enumerate supported extensions
+		bool dedicatedAllocExt = false;
+		bool getMemReqExt = false;
+
+		uint32_t numAvailableExtensions = 0;
+		vkEnumerateDeviceExtensionProperties(device, nullptr, &numAvailableExtensions, nullptr);
+		if (numAvailableExtensions > 0)
+		{
+			Vector<VkExtensionProperties> availableExtensions(numAvailableExtensions);
+			if (vkEnumerateDeviceExtensionProperties(device, nullptr, &numAvailableExtensions, availableExtensions.data()) == VK_SUCCESS)
+			{
+				for (auto entry : extensions)
+				{
+					if(entry == VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME)
+					{
+						extensions[numExtensions++] = VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME;
+						dedicatedAllocExt = true;
+					}
+					else if(entry == VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME)
+					{
+						extensions[numExtensions++] = VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME;
+						getMemReqExt = true;
+					}
+				}
+			}
+		}
 
 
 		VkDeviceCreateInfo deviceInfo;
 		VkDeviceCreateInfo deviceInfo;
 		deviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
 		deviceInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
@@ -113,6 +143,17 @@ namespace bs { namespace ct
 			}
 			}
 		}
 		}
 
 
+		// Set up the memory allocator
+		VmaAllocatorCreateInfo allocatorCI = {};
+		allocatorCI.physicalDevice = device;
+		allocatorCI.device = mLogicalDevice;
+		allocatorCI.pAllocationCallbacks = gVulkanAllocator;
+
+		if(dedicatedAllocExt && getMemReqExt)
+			allocatorCI.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
+
+		vmaCreateAllocator(&allocatorCI, &mAllocator);
+
 		// Create pools/managers
 		// Create pools/managers
 		mCommandBufferPool = bs_new<VulkanCmdBufferPool>(*this);
 		mCommandBufferPool = bs_new<VulkanCmdBufferPool>(*this);
 		mQueryPool = bs_new<VulkanQueryPool>(*this);
 		mQueryPool = bs_new<VulkanQueryPool>(*this);
@@ -141,6 +182,7 @@ namespace bs { namespace ct
 		// Needs to happen after query pool & command buffer pool shutdown, to ensure their resources are destroyed
 		// Needs to happen after query pool & command buffer pool shutdown, to ensure their resources are destroyed
 		bs_delete(mResourceManager);
 		bs_delete(mResourceManager);
 		
 		
+		vmaDestroyAllocator(mAllocator);
 		vkDestroyDevice(mLogicalDevice, gVulkanAllocator);
 		vkDestroyDevice(mLogicalDevice, gVulkanAllocator);
 	}
 	}
 
 
@@ -263,54 +305,50 @@ namespace bs { namespace ct
 		return output;
 		return output;
 	}
 	}
 
 
-	VkDeviceMemory VulkanDevice::allocateMemory(VkImage image, VkMemoryPropertyFlags flags)
+	VmaAllocation VulkanDevice::allocateMemory(VkImage image, VkMemoryPropertyFlags flags)
 	{
 	{
-		VkMemoryRequirements memReq;
-		vkGetImageMemoryRequirements(mLogicalDevice, image, &memReq);
+		VmaAllocationCreateInfo allocCI = {};
+		allocCI.requiredFlags = flags;
 
 
-		VkDeviceMemory memory = allocateMemory(memReq, flags);
+		VmaAllocationInfo allocInfo;
+		VmaAllocation allocation;
+		VkResult result = vmaAllocateMemoryForImage(mAllocator, image, &allocCI, &allocation, &allocInfo);
+		assert(result == VK_SUCCESS);
 
 
-		VkResult result = vkBindImageMemory(mLogicalDevice, image, memory, 0);
+		result = vkBindImageMemory(mLogicalDevice, image, allocInfo.deviceMemory, allocInfo.offset);
 		assert(result == VK_SUCCESS);
 		assert(result == VK_SUCCESS);
 
 
-		return memory;
+		return allocation;
 	}
 	}
 
 
-	VkDeviceMemory VulkanDevice::allocateMemory(VkBuffer buffer, VkMemoryPropertyFlags flags)
+	VmaAllocation VulkanDevice::allocateMemory(VkBuffer buffer, VkMemoryPropertyFlags flags)
 	{
 	{
-		VkMemoryRequirements memReq;
-		vkGetBufferMemoryRequirements(mLogicalDevice, buffer, &memReq);
+		VmaAllocationCreateInfo allocCI = {};
+		allocCI.requiredFlags = flags;
 
 
-		VkDeviceMemory memory = allocateMemory(memReq, flags);
+		VmaAllocationInfo allocInfo;
+		VmaAllocation memory;
+		VkResult result = vmaAllocateMemoryForBuffer(mAllocator, buffer, &allocCI, &memory, &allocInfo);
+		assert(result == VK_SUCCESS);
 
 
-		VkResult result = vkBindBufferMemory(mLogicalDevice, buffer, memory, 0);
+		result = vkBindBufferMemory(mLogicalDevice, buffer, allocInfo.deviceMemory, allocInfo.offset);
 		assert(result == VK_SUCCESS);
 		assert(result == VK_SUCCESS);
 
 
 		return memory;
 		return memory;
 	}
 	}
 
 
-	VkDeviceMemory VulkanDevice::allocateMemory(const VkMemoryRequirements& reqs, VkMemoryPropertyFlags flags)
+	void VulkanDevice::freeMemory(VmaAllocation allocation)
 	{
 	{
-		VkMemoryAllocateInfo allocateInfo;
-		allocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
-		allocateInfo.pNext = nullptr;
-		allocateInfo.memoryTypeIndex = findMemoryType(reqs.memoryTypeBits, flags);
-		allocateInfo.allocationSize = reqs.size;
-
-		if (allocateInfo.memoryTypeIndex == (UINT32)-1)
-			return VK_NULL_HANDLE;
-
-		VkDeviceMemory memory;
-
-		VkResult result = vkAllocateMemory(mLogicalDevice, &allocateInfo, gVulkanAllocator, &memory);
-		assert(result == VK_SUCCESS);
-
-		return memory;
+		vmaFreeMemory(mAllocator, allocation);
 	}
 	}
 
 
-	void VulkanDevice::freeMemory(VkDeviceMemory memory)
+	void VulkanDevice::getAllocationInfo(VmaAllocation allocation, VkDeviceMemory& memory, VkDeviceSize& offset)
 	{
 	{
-		vkFreeMemory(mLogicalDevice, memory, gVulkanAllocator);
+		VmaAllocationInfo allocInfo;
+		vmaGetAllocationInfo(mAllocator, allocation, &allocInfo);
+
+		memory = allocInfo.deviceMemory;
+		offset = allocInfo.offset;
 	}
 	}
 
 
 	uint32_t VulkanDevice::findMemoryType(uint32_t requirementBits, VkMemoryPropertyFlags wantedFlags)
 	uint32_t VulkanDevice::findMemoryType(uint32_t requirementBits, VkMemoryPropertyFlags wantedFlags)
@@ -326,4 +364,4 @@ namespace bs { namespace ct
 
 
 		return -1;
 		return -1;
 	}
 	}
-}}
+}}

+ 7 - 9
Source/BansheeVulkanRenderAPI/BsVulkanDevice.h

@@ -88,22 +88,19 @@ namespace bs { namespace ct
 		 * Allocates memory for the provided image, and binds it to the image. Returns null if it cannot find memory
 		 * Allocates memory for the provided image, and binds it to the image. Returns null if it cannot find memory
 		 * with the specified flags.
 		 * with the specified flags.
 		 */
 		 */
-		VkDeviceMemory allocateMemory(VkImage image, VkMemoryPropertyFlags flags);
+		VmaAllocation allocateMemory(VkImage image, VkMemoryPropertyFlags flags);
 
 
 		/** 
 		/** 
 		 * Allocates memory for the provided buffer, and binds it to the buffer. Returns null if it cannot find memory
 		 * Allocates memory for the provided buffer, and binds it to the buffer. Returns null if it cannot find memory
 		 * with the specified flags.
 		 * with the specified flags.
 		 */
 		 */
-		VkDeviceMemory allocateMemory(VkBuffer buffer, VkMemoryPropertyFlags flags);
-
-		/** 
-		 * Allocates a block of memory according to the provided memory requirements. Returns null if it cannot find memory
-		 * with the specified flags. 
-		 */
-		VkDeviceMemory allocateMemory(const VkMemoryRequirements& reqs, VkMemoryPropertyFlags flags);
+		VmaAllocation allocateMemory(VkBuffer buffer, VkMemoryPropertyFlags flags);
 
 
 		/** Frees a previously allocated block of memory. */
 		/** Frees a previously allocated block of memory. */
-		void freeMemory(VkDeviceMemory memory);
+		void freeMemory(VmaAllocation allocation);
+
+		/** Returns the device memory block and offset into the block for a specific memory allocation. */
+		void getAllocationInfo(VmaAllocation allocation, VkDeviceMemory& memory, VkDeviceSize& offset);
 
 
 	private:
 	private:
 		friend class VulkanRenderAPI;
 		friend class VulkanRenderAPI;
@@ -123,6 +120,7 @@ namespace bs { namespace ct
 		VulkanQueryPool* mQueryPool;
 		VulkanQueryPool* mQueryPool;
 		VulkanDescriptorManager* mDescriptorManager;
 		VulkanDescriptorManager* mDescriptorManager;
 		VulkanResourceManager* mResourceManager;
 		VulkanResourceManager* mResourceManager;
+		VmaAllocator mAllocator;
 
 
 		VkPhysicalDeviceProperties mDeviceProperties;
 		VkPhysicalDeviceProperties mDeviceProperties;
 		VkPhysicalDeviceFeatures mDeviceFeatures;
 		VkPhysicalDeviceFeatures mDeviceFeatures;

+ 15 - 12
Source/BansheeVulkanRenderAPI/BsVulkanHardwareBuffer.cpp

@@ -10,9 +10,9 @@
 
 
 namespace bs { namespace ct
 namespace bs { namespace ct
 {
 {
-	VulkanBuffer::VulkanBuffer(VulkanResourceManager* owner, VkBuffer buffer, VkBufferView view, VkDeviceMemory memory,
+	VulkanBuffer::VulkanBuffer(VulkanResourceManager* owner, VkBuffer buffer, VkBufferView view, VmaAllocation allocation,
 							   UINT32 rowPitch, UINT32 slicePitch)
 							   UINT32 rowPitch, UINT32 slicePitch)
-		: VulkanResource(owner, false), mBuffer(buffer), mView(view), mMemory(memory), mRowPitch(rowPitch)
+		: VulkanResource(owner, false), mBuffer(buffer), mView(view), mAllocation(allocation), mRowPitch(rowPitch)
 	{
 	{
 		if (rowPitch != 0)
 		if (rowPitch != 0)
 			mSliceHeight = slicePitch / rowPitch;
 			mSliceHeight = slicePitch / rowPitch;
@@ -28,15 +28,19 @@ namespace bs { namespace ct
 			vkDestroyBufferView(device.getLogical(), mView, gVulkanAllocator);
 			vkDestroyBufferView(device.getLogical(), mView, gVulkanAllocator);
 
 
 		vkDestroyBuffer(device.getLogical(), mBuffer, gVulkanAllocator);
 		vkDestroyBuffer(device.getLogical(), mBuffer, gVulkanAllocator);
-		device.freeMemory(mMemory);
+		device.freeMemory(mAllocation);
 	}
 	}
 
 
 	UINT8* VulkanBuffer::map(VkDeviceSize offset, VkDeviceSize length) const
 	UINT8* VulkanBuffer::map(VkDeviceSize offset, VkDeviceSize length) const
 	{
 	{
 		VulkanDevice& device = mOwner->getDevice();
 		VulkanDevice& device = mOwner->getDevice();
 
 
+		VkDeviceMemory memory;
+		VkDeviceSize memoryOffset;
+		device.getAllocationInfo(mAllocation, memory, memoryOffset);
+
 		UINT8* data;
 		UINT8* data;
-		VkResult result = vkMapMemory(device.getLogical(), mMemory, offset, length, 0, (void**)&data);
+		VkResult result = vkMapMemory(device.getLogical(), memory, memoryOffset + offset, length, 0, (void**)&data);
 		assert(result == VK_SUCCESS);
 		assert(result == VK_SUCCESS);
 
 
 		return data;
 		return data;
@@ -46,7 +50,11 @@ namespace bs { namespace ct
 	{
 	{
 		VulkanDevice& device = mOwner->getDevice();
 		VulkanDevice& device = mOwner->getDevice();
 
 
-		vkUnmapMemory(device.getLogical(), mMemory);
+		VkDeviceMemory memory;
+		VkDeviceSize memoryOffset;
+		device.getAllocationInfo(mAllocation, memory, memoryOffset);
+
+		vkUnmapMemory(device.getLogical(), memory);
 	}
 	}
 
 
 	void VulkanBuffer::copy(VulkanCmdBuffer* cb, VulkanBuffer* destination, VkDeviceSize srcOffset,
 	void VulkanBuffer::copy(VulkanCmdBuffer* cb, VulkanBuffer* destination, VkDeviceSize srcOffset,
@@ -182,12 +190,7 @@ namespace bs { namespace ct
 		VkResult result = vkCreateBuffer(vkDevice, &mBufferCI, gVulkanAllocator, &buffer);
 		VkResult result = vkCreateBuffer(vkDevice, &mBufferCI, gVulkanAllocator, &buffer);
 		assert(result == VK_SUCCESS);
 		assert(result == VK_SUCCESS);
 
 
-		VkMemoryRequirements memReqs;
-		vkGetBufferMemoryRequirements(vkDevice, buffer, &memReqs);
-
-		VkDeviceMemory memory = device.allocateMemory(memReqs, flags);
-		result = vkBindBufferMemory(vkDevice, buffer, memory, 0);
-		assert(result == VK_SUCCESS);
+		VmaAllocation allocation = device.allocateMemory(buffer, flags);
 
 
 		VkBufferView view;
 		VkBufferView view;
 		if (mRequiresView && !staging)
 		if (mRequiresView && !staging)
@@ -201,7 +204,7 @@ namespace bs { namespace ct
 			view = VK_NULL_HANDLE;
 			view = VK_NULL_HANDLE;
 
 
 		mBufferCI.usage = usage; // Restore original usage
 		mBufferCI.usage = usage; // Restore original usage
-		return device.getResourceManager().create<VulkanBuffer>(buffer, view, memory);
+		return device.getResourceManager().create<VulkanBuffer>(buffer, view, allocation);
 	}
 	}
 
 
 	void* VulkanHardwareBuffer::map(UINT32 offset, UINT32 length, GpuLockOptions options, UINT32 deviceIdx, UINT32 queueIdx)
 	void* VulkanHardwareBuffer::map(UINT32 offset, UINT32 length, GpuLockOptions options, UINT32 deviceIdx, UINT32 queueIdx)

+ 3 - 3
Source/BansheeVulkanRenderAPI/BsVulkanHardwareBuffer.h

@@ -20,11 +20,11 @@ namespace bs { namespace ct
 		 * @param[in]	owner		Manager that takes care of tracking and releasing of this object.
 		 * @param[in]	owner		Manager that takes care of tracking and releasing of this object.
 		 * @param[in]	buffer		Actual low-level Vulkan buffer handle.
 		 * @param[in]	buffer		Actual low-level Vulkan buffer handle.
 		 * @param[in]	view		Optional handle to the buffer view.
 		 * @param[in]	view		Optional handle to the buffer view.
-		 * @param[in]	memory		Memory mapped to the buffer.
+		 * @param[in]	allocation	Information about memory mapped to the buffer.
 		 * @param[in]	rowPitch	If buffer maps to an image sub-resource, length of a single row (in elements).
 		 * @param[in]	rowPitch	If buffer maps to an image sub-resource, length of a single row (in elements).
 		 * @param[in]	slicePitch	If buffer maps to an image sub-resource, size of a single 2D surface (in elements).
 		 * @param[in]	slicePitch	If buffer maps to an image sub-resource, size of a single 2D surface (in elements).
 		 */
 		 */
-		VulkanBuffer(VulkanResourceManager* owner, VkBuffer buffer, VkBufferView view, VkDeviceMemory memory, 
+		VulkanBuffer(VulkanResourceManager* owner, VkBuffer buffer, VkBufferView view, VmaAllocation allocation, 
 			UINT32 rowPitch = 0, UINT32 slicePitch = 0);
 			UINT32 rowPitch = 0, UINT32 slicePitch = 0);
 		~VulkanBuffer();
 		~VulkanBuffer();
 
 
@@ -80,7 +80,7 @@ namespace bs { namespace ct
 	private:
 	private:
 		VkBuffer mBuffer;
 		VkBuffer mBuffer;
 		VkBufferView mView;
 		VkBufferView mView;
-		VkDeviceMemory mMemory;
+		VmaAllocation mAllocation;
 
 
 		UINT32 mRowPitch;
 		UINT32 mRowPitch;
 		UINT32 mSliceHeight;
 		UINT32 mSliceHeight;

+ 2 - 0
Source/BansheeVulkanRenderAPI/BsVulkanPrerequisites.h

@@ -23,6 +23,8 @@
 #include "vulkan/vulkan.h"
 #include "vulkan/vulkan.h"
 #undef None // Conflicting define from Xlib
 #undef None // Conflicting define from Xlib
 
 
+#include "ThirdParty/vk_mem_alloc.h"
+
 /** @addtogroup Plugins
 /** @addtogroup Plugins
  *  @{
  *  @{
  */
  */

+ 2 - 2
Source/BansheeVulkanRenderAPI/BsVulkanSwapChain.cpp

@@ -135,7 +135,7 @@ namespace bs { namespace ct
 		imageDesc.layout = VK_IMAGE_LAYOUT_UNDEFINED;
 		imageDesc.layout = VK_IMAGE_LAYOUT_UNDEFINED;
 		imageDesc.numFaces = 1;
 		imageDesc.numFaces = 1;
 		imageDesc.numMipLevels = 1;
 		imageDesc.numMipLevels = 1;
-		imageDesc.memory = VK_NULL_HANDLE;
+		imageDesc.allocation = VK_NULL_HANDLE;
 
 
 		mSurfaces.resize(numImages);
 		mSurfaces.resize(numImages);
 		for (UINT32 i = 0; i < numImages; i++)
 		for (UINT32 i = 0; i < numImages; i++)
@@ -177,7 +177,7 @@ namespace bs { namespace ct
 			imageDesc.image = depthStencilImage;
 			imageDesc.image = depthStencilImage;
 			imageDesc.usage = TU_DEPTHSTENCIL;
 			imageDesc.usage = TU_DEPTHSTENCIL;
 			imageDesc.format = depthFormat;
 			imageDesc.format = depthFormat;
-			imageDesc.memory = mDevice->allocateMemory(depthStencilImage, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
+			imageDesc.allocation = mDevice->allocateMemory(depthStencilImage, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
 
 
 			mDepthStencilImage = resManager.create<VulkanImage>(imageDesc, true);
 			mDepthStencilImage = resManager.create<VulkanImage>(imageDesc, true);
 		}
 		}

+ 27 - 26
Source/BansheeVulkanRenderAPI/BsVulkanTexture.cpp

@@ -12,11 +12,11 @@
 
 
 namespace bs { namespace ct
 namespace bs { namespace ct
 {
 {
-	VULKAN_IMAGE_DESC createDesc(VkImage image, VkDeviceMemory memory, VkImageLayout layout, const TextureProperties& props)
+	VULKAN_IMAGE_DESC createDesc(VkImage image, VmaAllocation allocation, VkImageLayout layout, const TextureProperties& props)
 	{
 	{
 		VULKAN_IMAGE_DESC desc;
 		VULKAN_IMAGE_DESC desc;
 		desc.image = image;
 		desc.image = image;
-		desc.memory = memory;
+		desc.allocation = allocation;
 		desc.type = props.getTextureType();
 		desc.type = props.getTextureType();
 		desc.format = VulkanUtility::getPixelFormat(props.getFormat(), props.isHardwareGammaEnabled());
 		desc.format = VulkanUtility::getPixelFormat(props.getFormat(), props.isHardwareGammaEnabled());
 		desc.numFaces = props.getNumFaces();
 		desc.numFaces = props.getNumFaces();
@@ -27,14 +27,15 @@ namespace bs { namespace ct
 		return desc;
 		return desc;
 	}
 	}
 
 
-	VulkanImage::VulkanImage(VulkanResourceManager* owner, VkImage image, VkDeviceMemory memory, VkImageLayout layout,
+	VulkanImage::VulkanImage(VulkanResourceManager* owner, VkImage image, VmaAllocation allocation, VkImageLayout layout,
 							 const TextureProperties& props, bool ownsImage)
 							 const TextureProperties& props, bool ownsImage)
-		: VulkanImage(owner, createDesc(image, memory, layout, props), ownsImage)
+		: VulkanImage(owner, createDesc(image, allocation, layout, props), ownsImage)
 	{ }
 	{ }
 
 
 	VulkanImage::VulkanImage(VulkanResourceManager* owner, const VULKAN_IMAGE_DESC& desc, bool ownsImage)
 	VulkanImage::VulkanImage(VulkanResourceManager* owner, const VULKAN_IMAGE_DESC& desc, bool ownsImage)
-		: VulkanResource(owner, false), mImage(desc.image), mMemory(desc.memory), mFramebufferMainView(VK_NULL_HANDLE)
-		, mUsage(desc.usage), mOwnsImage(ownsImage), mNumFaces(desc.numFaces), mNumMipLevels(desc.numMipLevels)
+		: VulkanResource(owner, false), mImage(desc.image), mAllocation(desc.allocation)
+		, mFramebufferMainView(VK_NULL_HANDLE), mUsage(desc.usage), mOwnsImage(ownsImage), mNumFaces(desc.numFaces)
+		, mNumMipLevels(desc.numMipLevels)
 	{
 	{
 		mImageViewCI.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
 		mImageViewCI.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
 		mImageViewCI.pNext = nullptr;
 		mImageViewCI.pNext = nullptr;
@@ -116,7 +117,7 @@ namespace bs { namespace ct
 		if (mOwnsImage)
 		if (mOwnsImage)
 		{
 		{
 			vkDestroyImage(vkDevice, mImage, gVulkanAllocator);
 			vkDestroyImage(vkDevice, mImage, gVulkanAllocator);
-			device.freeMemory(mMemory);
+			device.freeMemory(mAllocation);
 		}
 		}
 	}
 	}
 
 
@@ -295,8 +296,12 @@ namespace bs { namespace ct
 		output.setRowPitch((UINT32)layout.rowPitch);
 		output.setRowPitch((UINT32)layout.rowPitch);
 		output.setSlicePitch((UINT32)layout.depthPitch);
 		output.setSlicePitch((UINT32)layout.depthPitch);
 
 
+		VkDeviceMemory memory;
+		VkDeviceSize memoryOffset;
+		device.getAllocationInfo(mAllocation, memory, memoryOffset);
+
 		UINT8* data;
 		UINT8* data;
-		VkResult result = vkMapMemory(device.getLogical(), mMemory, layout.offset, layout.size, 0, (void**)&data);
+		VkResult result = vkMapMemory(device.getLogical(), memory, memoryOffset + layout.offset, layout.size, 0, (void**)&data);
 		assert(result == VK_SUCCESS);
 		assert(result == VK_SUCCESS);
 
 
 		output.setExternalBuffer(data);
 		output.setExternalBuffer(data);
@@ -306,8 +311,12 @@ namespace bs { namespace ct
 	{
 	{
 		VulkanDevice& device = mOwner->getDevice();
 		VulkanDevice& device = mOwner->getDevice();
 
 
+		VkDeviceMemory memory;
+		VkDeviceSize memoryOffset;
+		device.getAllocationInfo(mAllocation, memory, memoryOffset);
+
 		UINT8* data;
 		UINT8* data;
-		VkResult result = vkMapMemory(device.getLogical(), mMemory, offset, size, 0, (void**)&data);
+		VkResult result = vkMapMemory(device.getLogical(), memory, memoryOffset + offset, size, 0, (void**)&data);
 		assert(result == VK_SUCCESS);
 		assert(result == VK_SUCCESS);
 
 
 		return data;
 		return data;
@@ -317,7 +326,11 @@ namespace bs { namespace ct
 	{
 	{
 		VulkanDevice& device = mOwner->getDevice();
 		VulkanDevice& device = mOwner->getDevice();
 
 
-		vkUnmapMemory(device.getLogical(), mMemory);
+		VkDeviceMemory memory;
+		VkDeviceSize memoryOffset;
+		device.getAllocationInfo(mAllocation, memory, memoryOffset);
+
+		vkUnmapMemory(device.getLogical(), memory);
 	}
 	}
 
 
 	void VulkanImage::copy(VulkanTransferBuffer* cb, VulkanBuffer* destination, const VkExtent3D& extent,
 	void VulkanImage::copy(VulkanTransferBuffer* cb, VulkanBuffer* destination, const VkExtent3D& extent,
@@ -708,14 +721,8 @@ namespace bs { namespace ct
 		VkResult result = vkCreateImage(vkDevice, &mImageCI, gVulkanAllocator, &image);
 		VkResult result = vkCreateImage(vkDevice, &mImageCI, gVulkanAllocator, &image);
 		assert(result == VK_SUCCESS);
 		assert(result == VK_SUCCESS);
 
 
-		VkMemoryRequirements memReqs;
-		vkGetImageMemoryRequirements(vkDevice, image, &memReqs);
-
-		VkDeviceMemory memory = device.allocateMemory(memReqs, flags);
-		result = vkBindImageMemory(vkDevice, image, memory, 0);
-		assert(result == VK_SUCCESS);
-
-		return device.getResourceManager().create<VulkanImage>(image, memory, mImageCI.initialLayout, getProperties());
+		VmaAllocation allocation = device.allocateMemory(image, flags);
+		return device.getResourceManager().create<VulkanImage>(image, allocation, mImageCI.initialLayout, getProperties());
 	}
 	}
 
 
 	VulkanBuffer* VulkanTexture::createStaging(VulkanDevice& device, const PixelData& pixelData, bool readable)
 	VulkanBuffer* VulkanTexture::createStaging(VulkanDevice& device, const PixelData& pixelData, bool readable)
@@ -739,18 +746,12 @@ namespace bs { namespace ct
 		VkResult result = vkCreateBuffer(vkDevice, &bufferCI, gVulkanAllocator, &buffer);
 		VkResult result = vkCreateBuffer(vkDevice, &bufferCI, gVulkanAllocator, &buffer);
 		assert(result == VK_SUCCESS);
 		assert(result == VK_SUCCESS);
 
 
-		VkMemoryRequirements memReqs;
-		vkGetBufferMemoryRequirements(vkDevice, buffer, &memReqs);
-
 		VkMemoryPropertyFlags flags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
 		VkMemoryPropertyFlags flags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
-
-		VkDeviceMemory memory = device.allocateMemory(memReqs, flags);
-		result = vkBindBufferMemory(vkDevice, buffer, memory, 0);
-		assert(result == VK_SUCCESS);
+		VmaAllocation allocation = device.allocateMemory(buffer, flags);
 
 
 		VkBufferView view = VK_NULL_HANDLE;
 		VkBufferView view = VK_NULL_HANDLE;
 
 
-		return device.getResourceManager().create<VulkanBuffer>(buffer, view, memory,
+		return device.getResourceManager().create<VulkanBuffer>(buffer, view, allocation,
 			pixelData.getRowPitch(), pixelData.getSlicePitch());
 			pixelData.getRowPitch(), pixelData.getSlicePitch());
 	}
 	}
 
 

+ 4 - 4
Source/BansheeVulkanRenderAPI/BsVulkanTexture.h

@@ -18,7 +18,7 @@ namespace bs { namespace ct
 	struct VULKAN_IMAGE_DESC
 	struct VULKAN_IMAGE_DESC
 	{
 	{
 		VkImage image; /**< Internal Vulkan image object */
 		VkImage image; /**< Internal Vulkan image object */
-		VkDeviceMemory memory; /**< Memory bound to the image. */
+		VmaAllocation allocation; /** Information about the memory allocated for this image. */
 		VkImageLayout layout; /**< Initial layout of the image. */
 		VkImageLayout layout; /**< Initial layout of the image. */
 		TextureType type; /**< Type of the image. */
 		TextureType type; /**< Type of the image. */
 		VkFormat format; /**< Pixel format of the image. */
 		VkFormat format; /**< Pixel format of the image. */
@@ -34,13 +34,13 @@ namespace bs { namespace ct
 		/**
 		/**
 		 * @param[in]	owner		Resource manager that keeps track of lifetime of this resource.
 		 * @param[in]	owner		Resource manager that keeps track of lifetime of this resource.
 		 * @param[in]	image		Internal image Vulkan object.
 		 * @param[in]	image		Internal image Vulkan object.
-		 * @param[in]	memory		Memory bound to the image.
+		 * @param[in]	allocation	Information about the memory bound to the image.
 		 * @param[in]	layout		Initial layout of the image.
 		 * @param[in]	layout		Initial layout of the image.
 		 * @param[in]	props		Properties describing the image.
 		 * @param[in]	props		Properties describing the image.
 		 * @param[in]	ownsImage	If true, this object will take care of releasing the image and its memory, otherwise
 		 * @param[in]	ownsImage	If true, this object will take care of releasing the image and its memory, otherwise
 		 *							it is expected they will be released externally.
 		 *							it is expected they will be released externally.
 		 */
 		 */
-		VulkanImage(VulkanResourceManager* owner, VkImage image, VkDeviceMemory memory, VkImageLayout layout,
+		VulkanImage(VulkanResourceManager* owner, VkImage image, VmaAllocation allocation, VkImageLayout layout,
 					const TextureProperties& props, bool ownsImage = true);
 					const TextureProperties& props, bool ownsImage = true);
 
 
 		/**
 		/**
@@ -148,7 +148,7 @@ namespace bs { namespace ct
 		};
 		};
 
 
 		VkImage mImage;
 		VkImage mImage;
-		VkDeviceMemory mMemory;
+		VmaAllocation mAllocation;
 		VkImageView mMainView;
 		VkImageView mMainView;
 		VkImageView mFramebufferMainView;
 		VkImageView mFramebufferMainView;
 		INT32 mUsage;
 		INT32 mUsage;

+ 8513 - 0
Source/BansheeVulkanRenderAPI/ThirdParty/vk_mem_alloc.h

@@ -0,0 +1,8513 @@
+//
+// Copyright (c) 2017 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+//
+
+#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
+#define AMD_VULKAN_MEMORY_ALLOCATOR_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** \mainpage Vulkan Memory Allocator
+
+<b>Version 2.0.0-alpha.6</b> (2017-11-13)
+
+Copyright (c) 2017 Advanced Micro Devices, Inc. All rights reserved. \n
+License: MIT
+
+Documentation of all members: vk_mem_alloc.h
+
+Table of contents:
+
+- User guide
+  - \subpage quick_start
+  - \subpage choosing_memory_type
+  - \subpage memory_mapping
+  - \subpage custom_memory_pools
+  - \subpage defragmentation
+  - \subpage lost_allocations
+  - \subpage allocation_annotation
+- \subpage configuration
+  - \subpage vk_khr_dedicated_allocation
+- \subpage thread_safety
+
+See also:
+
+- [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
+- [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/)
+
+
+
+
+\page quick_start Quick start
+
+\section project_setup Project setup
+
+In your project code:
+
+-# Include "vk_mem_alloc.h" file wherever you want to use the library.
+-# In exacly one C++ file define following macro before include to build library
+   implementation.
+
+\code
+#define VMA_IMPLEMENTATION
+#include "vk_mem_alloc.h"
+\endcode
+
+\section initialization Initialization
+
+At program startup:
+
+-# Initialize Vulkan to have `VkPhysicalDevice` and `VkDevice` object.
+-# Fill VmaAllocatorCreateInfo structure and create `VmaAllocator` object by
+   calling vmaCreateAllocator().
+
+\code
+VmaAllocatorCreateInfo allocatorInfo = {};
+allocatorInfo.physicalDevice = physicalDevice;
+allocatorInfo.device = device;
+
+VmaAllocator allocator;
+vmaCreateAllocator(&allocatorInfo, &allocator);
+\endcode
+
+\section resource_allocation Resource allocation
+
+When you want to create a buffer or image:
+
+-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.
+-# Fill VmaAllocationCreateInfo structure.
+-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory
+   already allocated and bound to it.
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufferInfo.size = 65536;
+bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+Don't forget to destroy your objects when no longer needed:
+
+\code
+vmaDestroyBuffer(allocator, buffer, allocation);
+vmaDestroyAllocator(allocator);
+\endcode
+
+
+\page choosing_memory_type Choosing memory type
+
+Physical devices in Vulkan support various combinations of memory heaps and
+types. Help with choosing correct and optimal memory type for your specific
+resource is one of the key features of this library. You can use it by filling
+appropriate members of VmaAllocationCreateInfo structure, as described below.
+You can also combine multiple methods.
+
+-# If you just want to find memory type index that meets your requirements, you
+   can use function vmaFindMemoryTypeIndex().
+-# If you want to allocate a region of device memory without association with any
+   specific image or buffer, you can use function vmaAllocateMemory(). Usage of
+   this function is not recommended and usually not needed.
+-# If you already have a buffer or an image created, you want to allocate memory
+   for it and then you will bind it yourself, you can use function
+   vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().
+-# If you want to create a buffer or an image, allocate memory for it and bind
+   them together, all in one call, you can use function vmaCreateBuffer(),
+   vmaCreateImage(). This is the recommended way to use this library.
+
+When using 3. or 4., the library internally queries Vulkan for memory types
+supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)
+and uses only one of these types.
+
+If no memory type can be found that meets all the requirements, these functions
+return `VK_ERROR_FEATURE_NOT_PRESENT`.
+
+You can leave VmaAllocationCreateInfo structure completely filled with zeros.
+It means no requirements are specified for memory type.
+It is valid, although not very useful.
+
+\section choosing_memory_type_usage Usage
+
+The easiest way to specify memory requirements is to fill member
+VmaAllocationCreateInfo::usage using one of the values of enum `VmaMemoryUsage`.
+It defines high level, common usage types.
+
+For example, if you want to create a uniform buffer that will be filled using
+transfer only once or infrequently and used for rendering every frame, you can
+do it using following code:
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufferInfo.size = 65536;
+bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+\section choosing_memory_type_required_preferred_flags Required and preferred flags
+
+You can specify more detailed requirements by filling members
+VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags
+with a combination of bits from enum `VkMemoryPropertyFlags`. For example,
+if you want to create a buffer that will be persistently mapped on host (so it
+must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,
+use following code:
+
+\code
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+A memory type is chosen that has all the required flags and as many preferred
+flags set as possible.
+
+If you use VmaAllocationCreateInfo::usage, it is just internally converted to
+a set of required and preferred flags.
+
+\section choosing_memory_type_explicit_memory_types Explicit memory types
+
+If you inspected memory types available on the physical device and you have
+a preference for memory types that you want to use, you can fill member
+VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set
+means that a memory type with that index is allowed to be used for the
+allocation. Special value 0, just like UINT32_MAX, means there are no
+restrictions to memory type index.
+
+Please note that this member is NOT just a memory type index.
+Still you can use it to choose just one, specific memory type.
+For example, if you already determined that your buffer should be created in
+memory type 2, use following code:
+
+\code
+uint32_t memoryTypeIndex = 2;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.memoryTypeBits = 1u << memoryTypeIndex;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+\section choosing_memory_type_custom_memory_pools Custom memory pools
+
+If you allocate from custom memory pool, all the ways of specifying memory
+requirements described above are not applicable and the aforementioned members
+of VmaAllocationCreateInfo structure are ignored. Memory type is selected
+explicitly when creating the pool and then used to make all the allocations from
+that pool. For further details, see \ref custom_memory_pools.
+
+
+\page memory_mapping Memory mapping
+
+\section persistently_mapped_memory Persistently mapped memory
+
+If you need to map memory on host, it may happen that two allocations are
+assigned to the same `VkDeviceMemory` block, so if you map them both at the same
+time, it will cause error because mapping single memory block multiple times is
+illegal in Vulkan.
+
+TODO update this...
+
+It is safer, more convenient and more efficient to use special feature designed
+for that: persistently mapped memory. Allocations made with
+`VMA_ALLOCATION_CREATE_MAPPED_BIT` flag set in
+VmaAllocationCreateInfo::flags are returned from device memory
+blocks that stay mapped all the time, so you can just access CPU pointer to it.
+VmaAllocationInfo::pMappedData pointer is already offseted to the beginning of
+particular allocation. Example:
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = 1024;
+bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+// Buffer is immediately mapped. You can access its memory.
+memcpy(allocInfo.pMappedData, myData, 1024);
+\endcode
+
+Memory in Vulkan doesn't need to be unmapped before using it e.g. for transfers,
+but if you are not sure whether it's `HOST_COHERENT` (here is surely is because
+it's created with `VMA_MEMORY_USAGE_CPU_ONLY`), you should check it. If it's
+not, you should call `vkInvalidateMappedMemoryRanges()` before reading and
+`vkFlushMappedMemoryRanges()` after writing to mapped memory on CPU. Example:
+
+\code
+VkMemoryPropertyFlags memFlags;
+vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags);
+if((memFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) == 0)
+{
+    VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
+    memRange.memory = allocInfo.deviceMemory;
+    memRange.offset = allocInfo.offset;
+    memRange.size   = allocInfo.size;
+    vkFlushMappedMemoryRanges(device, 1, &memRange);
+}
+\endcode
+
+\section amd_perf_note Note on performance
+
+There is a situation that you should be careful about. It happens only if all of
+following conditions are met:
+
+-# You use AMD GPU.
+-# You use the memory type that is both `DEVICE_LOCAL` and `HOST_VISIBLE`
+   (used when you specify `VMA_MEMORY_USAGE_CPU_TO_GPU`).
+-# Operating system is Windows 7 or 8.x (Windows 10 is not affected because it
+   uses WDDM2).
+
+Then whenever a `VkDeviceMemory` block allocated from this memory type is mapped
+for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this
+block is migrated by WDDM to system RAM, which degrades performance. It doesn't
+matter if that particular memory block is actually used by the command buffer
+being submitted.
+
+To avoid this problem, either make sure to unmap all allocations made from this
+memory type before your Submit and Present, or use `VMA_MEMORY_USAGE_GPU_ONLY`
+and transfer from a staging buffer in `VMA_MEMORY_USAGE_CPU_ONLY`, which can
+safely stay mapped all the time.
+
+\page custom_memory_pools Custom memory pools
+
+The library automatically creates and manages default memory pool for each
+memory type available on the device. A pool contains a number of
+`VkDeviceMemory` blocks. You can create custom pool and allocate memory out of
+it. It can be useful if you want to:
+
+- Keep certain kind of allocations separate from others.
+- Enforce particular size of Vulkan memory blocks.
+- Limit maximum amount of Vulkan memory allocated for that pool.
+
+To use custom memory pools:
+
+-# Fill VmaPoolCreateInfo structure.
+-# Call vmaCreatePool() to obtain `VmaPool` handle.
+-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.
+   You don't need to specify any other parameters of this structure, like usage.
+
+Example:
+
+\code
+// Create a pool that could have at most 2 blocks, 128 MB each.
+VmaPoolCreateInfo poolCreateInfo = {};
+poolCreateInfo.memoryTypeIndex = ...
+poolCreateInfo.blockSize = 128ull * 1024 * 1024;
+poolCreateInfo.maxBlockCount = 2;
+
+VmaPool pool;
+vmaCreatePool(allocator, &poolCreateInfo, &pool);
+
+// Allocate a buffer out of it.
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = 1024;
+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.pool = pool;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+\endcode
+
+You have to free all allocations made from this pool before destroying it.
+
+\code
+vmaDestroyBuffer(allocator, buf, alloc);
+vmaDestroyPool(allocator, pool);
+\endcode
+
+\page defragmentation Defragmentation
+
+Interleaved allocations and deallocations of many objects of varying size can
+cause fragmentation, which can lead to a situation where the library is unable
+to find a continuous range of free memory for a new allocation despite there is
+enough free space, just scattered across many small free ranges between existing
+allocations.
+
+To mitigate this problem, you can use vmaDefragment(). Given set of allocations,
+this function can move them to compact used memory, ensure more continuous free
+space and possibly also free some `VkDeviceMemory`. It can work only on
+allocations made from memory type that is `HOST_VISIBLE`. Allocations are
+modified to point to the new `VkDeviceMemory` and offset. Data in this memory is
+also `memmove`-ed to the new place. However, if you have images or buffers bound
+to these allocations (and you certainly do), you need to destroy, recreate, and
+bind them to the new place in memory.
+
+For further details and example code, see documentation of function
+vmaDefragment().
+
+\page lost_allocations Lost allocations
+
+If your game oversubscribes video memory, if may work OK in previous-generation
+graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically
+paged to system RAM. In Vulkan you can't do it because when you run out of
+memory, an allocation just fails. If you have more data (e.g. textures) that can
+fit into VRAM and you don't need it all at once, you may want to upload them to
+GPU on demand and "push out" ones that are not used for a long time to make room
+for the new ones, effectively using VRAM (or a cartain memory pool) as a form of
+cache. Vulkan Memory Allocator can help you with that by supporting a concept of
+"lost allocations".
+
+To create an allocation that can become lost, include `VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT`
+flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to
+such allocation in every new frame, you need to query it if it's not lost. To
+check it: call vmaGetAllocationInfo() and see if VmaAllocationInfo::deviceMemory
+is not `VK_NULL_HANDLE`. If the allocation is lost, you should not use it or
+buffer/image bound to it. You mustn't forget to destroy this allocation and this
+buffer/image.
+
+To create an allocation that can make some other allocations lost to make room
+for it, use `VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT` flag. You will
+usually use both flags `VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT` and
+`VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT` at the same time.
+
+Warning! Current implementation uses quite naive, brute force algorithm,
+which can make allocation calls that use `VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT`
+flag quite slow. A new, more optimal algorithm and data structure to speed this
+up is planned for the future.
+
+<b>When interleaving creation of new allocations with usage of existing ones,
+how do you make sure that an allocation won't become lost while it's used in the
+current frame?</b>
+
+It is ensured because vmaGetAllocationInfo() not only returns allocation
+parameters and checks whether it's not lost, but when it's not, it also
+atomically marks it as used in the current frame, which makes it impossible to
+become lost in that frame. It uses lockless algorithm, so it works fast and
+doesn't involve locking any internal mutex.
+
+<b>What if my allocation may still be in use by the GPU when it's rendering a
+previous frame while I already submit new frame on the CPU?</b>
+
+You can make sure that allocations "touched" by vmaGetAllocationInfo() will not
+become lost for a number of additional frames back from the current one by
+specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default
+memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool).
+
+<b>How do you inform the library when new frame starts?</b>
+
+You need to call function vmaSetCurrentFrameIndex().
+
+Example code:
+
+\code
+struct MyBuffer
+{
+    VkBuffer m_Buf = nullptr;
+    VmaAllocation m_Alloc = nullptr;
+
+    // Called when the buffer is really needed in the current frame.
+    void EnsureBuffer();
+};
+
+void MyBuffer::EnsureBuffer()
+{
+    // Buffer has been created.
+    if(m_Buf != VK_NULL_HANDLE)
+    {
+        // Check if its allocation is not lost + mark it as used in current frame.
+        VmaAllocationInfo allocInfo;
+        vmaGetAllocationInfo(allocator, m_Alloc, &allocInfo);
+        if(allocInfo.deviceMemory != VK_NULL_HANDLE)
+        {
+            // It's all OK - safe to use m_Buf.
+            return;
+        }
+    }
+
+    // Buffer not yet exists or lost - destroy and recreate it.
+
+    vmaDestroyBuffer(allocator, m_Buf, m_Alloc);
+
+    VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+    bufCreateInfo.size = 1024;
+    bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+    VmaAllocationCreateInfo allocCreateInfo = {};
+    allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+    allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |
+        VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
+
+    vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr);
+}
+\endcode
+
+When using lost allocations, you may see some Vulkan validation layer warnings
+about overlapping regions of memory bound to different kinds of buffers and
+images. This is still valid as long as you implement proper handling of lost
+allocations (like in the example above) and don't use them.
+
+The library uses following algorithm for allocation, in order:
+
+-# Try to find free range of memory in existing blocks.
+-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.
+-# If failed, try to create such block with size/2 and size/4.
+-# If failed and `VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT` flag was
+   specified, try to find space in existing blocks, possilby making some other
+   allocations lost.
+-# If failed, try to allocate separate `VkDeviceMemory` for this allocation,
+   just like when you use `VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT`.
+-# If failed, choose other memory type that meets the requirements specified in
+   VmaAllocationCreateInfo and go to point 1.
+-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+
+
+\page allocation_annotation Allocation names and user data
+
+\section allocation_user_data Allocation user data
+
+You can annotate allocations with your own information, e.g. for debugging purposes.
+To do that, fill VmaAllocationCreateInfo::pUserData field when creating
+an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer,
+some handle, index, key, ordinal number or any other value that would associate
+the allocation with your custom metadata.
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+// Fill bufferInfo...
+
+MyBufferMetadata* pMetadata = CreateBufferMetadata();
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+allocCreateInfo.pUserData = pMetadata;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr);
+\endcode
+
+The pointer may be later retrieved as VmaAllocationInfo::pUserData:
+
+\code
+VmaAllocationInfo allocInfo;
+vmaGetAllocationInfo(allocator, allocation, &allocInfo);
+MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;
+\endcode
+
+It can also be changed using function vmaSetAllocationUserData().
+
+Values of (non-zero) allocations' `pUserData` are printed in JSON report created by
+vmaBuildStatsString(), in hexadecimal form.
+
+\section allocation_names Allocation names
+
+There is alternative mode available where `pUserData` pointer is used to point to
+a null-terminated string, giving a name to the allocation. To use this mode,
+set `VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT` flag in VmaAllocationCreateInfo::flags.
+Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to
+vmaSetAllocationUserData() must be either null or pointer to a null-terminated string.
+The library creates internal copy of the string, so the pointer you pass doesn't need
+to be valid for whole lifetime of the allocation. You can free it after the call.
+
+\code
+VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
+// Fill imageInfo...
+
+std::string imageName = "Texture: ";
+imageName += fileName;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT;
+allocCreateInfo.pUserData = imageName.c_str();
+
+VkImage image;
+VmaAllocation allocation;
+vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr);
+\endcode
+
+The value of `pUserData` pointer of the allocation will be different than the one
+you passed when setting allocation's name - pointing to a buffer managed
+internally that holds copy of the string.
+
+\code
+VmaAllocationInfo allocInfo;
+vmaGetAllocationInfo(allocator, allocation, &allocInfo);
+const char* imageName = (const char*)allocInfo.pUserData;
+printf("Image name: %s\n", imageName);
+\endcode
+
+That string is also printed in JSON report created by vmaBuildStatsString().
+
+\page configuration Configuration
+
+Please check "CONFIGURATION SECTION" in the code to find macros that you can define
+before each include of this file or change directly in this file to provide
+your own implementation of basic facilities like assert, `min()` and `max()` functions,
+mutex etc. C++ STL is used by default, but changing these allows you to get rid
+of any STL usage if you want, as many game developers tend to do.
+
+\section config_Vulkan_functions Pointers to Vulkan functions
+
+The library uses Vulkan functions straight from the `vulkan.h` header by default.
+If you want to provide your own pointers to these functions, e.g. fetched using
+`vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`:
+
+-# Define `VMA_STATIC_VULKAN_FUNCTIONS 0`.
+-# Provide valid pointers through VmaAllocatorCreateInfo::pVulkanFunctions.
+
+\section custom_memory_allocator Custom host memory allocator
+
+If you use custom allocator for CPU memory rather than default operator `new`
+and `delete` from C++, you can make this library using your allocator as well
+by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These
+functions will be passed to Vulkan, as well as used by the library itself to
+make any CPU-side allocations.
+
+\section allocation_callbacks Device memory allocation callbacks
+
+The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.
+You can setup callbacks to be informed about these calls, e.g. for the purpose
+of gathering some statistics. To do it, fill optional member
+VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
+
+\section heap_memory_limit Device heap memory limit
+
+If you want to test how your program behaves with limited amount of Vulkan device
+memory available without switching your graphics card to one that really has
+smaller VRAM, you can use a feature of this library intended for this purpose.
+To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.
+
+
+
+\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation
+
+VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve
+performance on some GPUs. It augments Vulkan API with possibility to query
+driver whether it prefers particular buffer or image to have its own, dedicated
+allocation (separate `VkDeviceMemory` block) for better efficiency - to be able
+to do some internal optimizations.
+
+The extension is supported by this library. It will be used automatically when
+enabled. To enable it:
+
+1 . When creating Vulkan device, check if following 2 device extensions are
+supported (call `vkEnumerateDeviceExtensionProperties()`).
+If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).
+
+- VK_KHR_get_memory_requirements2
+- VK_KHR_dedicated_allocation
+
+If you enabled these extensions:
+
+2 . Use `VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT` flag when creating
+your `VmaAllocator` to inform the library that you enabled required extensions
+and you want the library to use them.
+
+\code
+allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
+
+vmaCreateAllocator(&allocatorInfo, &allocator);
+\endcode
+
+That's all. The extension will be automatically used whenever you create a
+buffer using vmaCreateBuffer() or image using vmaCreateImage().
+
+When using the extension together with Vulkan Validation Layer, you will receive
+warnings like this:
+
+    vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer.
+
+It is OK, you should just ignore it. It happens because you use function
+`vkGetBufferMemoryRequirements2KHR()` instead of standard
+`vkGetBufferMemoryRequirements()`, while the validation layer seems to be
+unaware of it.
+
+To learn more about this extension, see:
+
+- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html#VK_KHR_dedicated_allocation)
+- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)
+
+
+
+\page thread_safety Thread safety
+
+- The library has no global state, so separate `VmaAllocator` objects can be used
+  independently. 
+- By default, all calls to functions that take `VmaAllocator` as first parameter
+  are safe to call from multiple threads simultaneously because they are
+  synchronized internally when needed.
+- When the allocator is created with `VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT`
+  flag, calls to functions that take such `VmaAllocator` object must be
+  synchronized externally.
+- Access to a `VmaAllocation` object must be externally synchronized. For example,
+  you must not call vmaGetAllocationInfo() and vmaMapMemory() from different
+  threads at the same time if you pass the same `VmaAllocation` object to these
+  functions.
+
+*/
+
+#include <vulkan/vulkan.h>
+
+VK_DEFINE_HANDLE(VmaAllocator)
+
+/// Callback function called after successful vkAllocateMemory.
+typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)(
+    VmaAllocator      allocator,
+    uint32_t          memoryType,
+    VkDeviceMemory    memory,
+    VkDeviceSize      size);
+/// Callback function called before vkFreeMemory.
+typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)(
+    VmaAllocator      allocator,
+    uint32_t          memoryType,
+    VkDeviceMemory    memory,
+    VkDeviceSize      size);
+
+/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
+
+Provided for informative purpose, e.g. to gather statistics about number of
+allocations or total amount of memory allocated in Vulkan.
+
+Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
+*/
+typedef struct VmaDeviceMemoryCallbacks {
+    /// Optional, can be null.
+    PFN_vmaAllocateDeviceMemoryFunction pfnAllocate;
+    /// Optional, can be null.
+    PFN_vmaFreeDeviceMemoryFunction pfnFree;
+} VmaDeviceMemoryCallbacks;
+
+/// Flags for created VmaAllocator.
+typedef enum VmaAllocatorCreateFlagBits {
+    /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
+
+    Using this flag may increase performance because internal mutexes are not used.
+    */
+    VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
+    /** \brief Enables usage of VK_KHR_dedicated_allocation extension.
+
+    Using this extenion will automatically allocate dedicated blocks of memory for
+    some buffers and images instead of suballocating place for them out of bigger
+    memory blocks (as if you explicitly used VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
+    flag) when it is recommended by the driver. It may improve performance on some
+    GPUs.
+
+    You may set this flag only if you found out that following device extensions are
+    supported, you enabled them while creating Vulkan device passed as
+    VmaAllocatorCreateInfo::device, and you want them to be used internally by this
+    library:
+
+    - VK_KHR_get_memory_requirements2
+    - VK_KHR_dedicated_allocation
+
+When this flag is set, you can experience following warnings reported by Vulkan
+validation layer. You can ignore them.
+
+> vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
+    */
+    VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
+
+    VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaAllocatorCreateFlagBits;
+typedef VkFlags VmaAllocatorCreateFlags;
+
+/** \brief Pointers to some Vulkan functions - a subset used by the library.
+
+Used in VmaAllocatorCreateInfo::pVulkanFunctions.
+*/
+typedef struct VmaVulkanFunctions {
+    PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
+    PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
+    PFN_vkAllocateMemory vkAllocateMemory;
+    PFN_vkFreeMemory vkFreeMemory;
+    PFN_vkMapMemory vkMapMemory;
+    PFN_vkUnmapMemory vkUnmapMemory;
+    PFN_vkBindBufferMemory vkBindBufferMemory;
+    PFN_vkBindImageMemory vkBindImageMemory;
+    PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
+    PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
+    PFN_vkCreateBuffer vkCreateBuffer;
+    PFN_vkDestroyBuffer vkDestroyBuffer;
+    PFN_vkCreateImage vkCreateImage;
+    PFN_vkDestroyImage vkDestroyImage;
+    PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR;
+    PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR;
+} VmaVulkanFunctions;
+
+/// Description of a Allocator to be created.
+typedef struct VmaAllocatorCreateInfo
+{
+    /// Flags for created allocator. Use VmaAllocatorCreateFlagBits enum.
+    VmaAllocatorCreateFlags flags;
+    /// Vulkan physical device.
+    /** It must be valid throughout whole lifetime of created allocator. */
+    VkPhysicalDevice physicalDevice;
+    /// Vulkan device.
+    /** It must be valid throughout whole lifetime of created allocator. */
+    VkDevice device;
+    /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps.
+    /** Set to 0 to use default, which is currently 256 MB. */
+    VkDeviceSize preferredLargeHeapBlockSize;
+    /// Preferred size of a single `VkDeviceMemory` block to be allocated from small heaps <= 512 MB.
+    /** Set to 0 to use default, which is currently 64 MB. */
+    VkDeviceSize preferredSmallHeapBlockSize;
+    /// Custom CPU memory allocation callbacks.
+    /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
+    const VkAllocationCallbacks* pAllocationCallbacks;
+    /// Informative callbacks for vkAllocateMemory, vkFreeMemory.
+    /** Optional, can be null. */
+    const VmaDeviceMemoryCallbacks* pDeviceMemoryCallbacks;
+    /** \brief Maximum number of additional frames that are in use at the same time as current frame.
+
+    This value is used only when you make allocations with
+    VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
+    lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
+
+    For example, if you double-buffer your command buffers, so resources used for
+    rendering in previous frame may still be in use by the GPU at the moment you
+    allocate resources needed for the current frame, set this value to 1.
+
+    If you want to allow any allocations other than used in the current frame to
+    become lost, set this value to 0.
+    */
+    uint32_t frameInUseCount;
+    /** \brief Either NULL or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
+
+    If not NULL, it must be a pointer to an array of
+    `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
+    maximum number of bytes that can be allocated out of particular Vulkan memory
+    heap.
+
+    Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
+    heap. This is also the default in case of `pHeapSizeLimit` = NULL.
+
+    If there is a limit defined for a heap:
+
+    - If user tries to allocate more memory from that heap using this allocator,
+      the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+    - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
+      value of this limit will be reported instead when using vmaGetMemoryProperties().
+
+    Warning! Using this feature may not be equivalent to installing a GPU with
+    smaller amount of memory, because graphics driver doesn't necessary fail new
+    allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
+    exceeded. It may return success and just silently migrate some device memory
+    blocks to system RAM.
+    */
+    const VkDeviceSize* pHeapSizeLimit;
+    /** \brief Pointers to Vulkan functions. Can be null if you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1`.
+
+    If you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1` in configuration section,
+    you can pass null as this member, because the library will fetch pointers to
+    Vulkan functions internally in a static way, like:
+
+        vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
+
+    Fill this member if you want to provide your own pointers to Vulkan functions,
+    e.g. fetched using `vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`.
+    */
+    const VmaVulkanFunctions* pVulkanFunctions;
+} VmaAllocatorCreateInfo;
+
+/// Creates Allocator object.
+VkResult vmaCreateAllocator(
+    const VmaAllocatorCreateInfo* pCreateInfo,
+    VmaAllocator* pAllocator);
+
+/// Destroys allocator object.
+void vmaDestroyAllocator(
+    VmaAllocator allocator);
+
+/**
+PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
+You can access it here, without fetching it again on your own.
+*/
+void vmaGetPhysicalDeviceProperties(
+    VmaAllocator allocator,
+    const VkPhysicalDeviceProperties** ppPhysicalDeviceProperties);
+
+/**
+PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
+You can access it here, without fetching it again on your own.
+*/
+void vmaGetMemoryProperties(
+    VmaAllocator allocator,
+    const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties);
+
+/**
+\brief Given Memory Type Index, returns Property Flags of this memory type.
+
+This is just a convenience function. Same information can be obtained using
+vmaGetMemoryProperties().
+*/
+void vmaGetMemoryTypeProperties(
+    VmaAllocator allocator,
+    uint32_t memoryTypeIndex,
+    VkMemoryPropertyFlags* pFlags);
+
+/** \brief Sets index of the current frame.
+
+This function must be used if you make allocations with
+`VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT` and
+`VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT` flags to inform the allocator
+when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot
+become lost in the current frame.
+*/
+void vmaSetCurrentFrameIndex(
+    VmaAllocator allocator,
+    uint32_t frameIndex);
+
+/** \brief Calculated statistics of memory usage in entire allocator.
+*/
+typedef struct VmaStatInfo
+{
+    /// Number of `VkDeviceMemory` Vulkan memory blocks allocated.
+    uint32_t blockCount;
+    /// Number of `VmaAllocation` allocation objects allocated.
+    uint32_t allocationCount;
+    /// Number of free ranges of memory between allocations.
+    uint32_t unusedRangeCount;
+    /// Total number of bytes occupied by all allocations.
+    VkDeviceSize usedBytes;
+    /// Total number of bytes occupied by unused ranges.
+    VkDeviceSize unusedBytes;
+    VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax;
+    VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax;
+} VmaStatInfo;
+
+/// General statistics from current state of Allocator.
+typedef struct VmaStats
+{
+    VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES];
+    VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS];
+    VmaStatInfo total;
+} VmaStats;
+
+/// Retrieves statistics from current state of the Allocator.
+void vmaCalculateStats(
+    VmaAllocator allocator,
+    VmaStats* pStats);
+
+#define VMA_STATS_STRING_ENABLED 1
+
+#if VMA_STATS_STRING_ENABLED
+
+/// Builds and returns statistics as string in JSON format.
+/** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
+*/
+void vmaBuildStatsString(
+    VmaAllocator allocator,
+    char** ppStatsString,
+    VkBool32 detailedMap);
+
+void vmaFreeStatsString(
+    VmaAllocator allocator,
+    char* pStatsString);
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+VK_DEFINE_HANDLE(VmaPool)
+
+typedef enum VmaMemoryUsage
+{
+    /** No intended memory usage specified.
+    Use other members of VmaAllocationCreateInfo to specify your requirements.
+    */
+    VMA_MEMORY_USAGE_UNKNOWN = 0,
+    /** Memory will be used on device only, so faster access from the device is preferred.
+    It usually means device-local GPU memory.
+    No need to be mappable on host.
+    Good e.g. for images to be used as attachments, images containing textures to be sampled,
+    buffers used as vertex buffer, index buffer, uniform buffer and majority of
+    other types of resources used by device.
+    You can still do transfers from/to such resource to/from host memory.
+
+    The allocation may still end up in `HOST_VISIBLE` memory on some implementations.
+    In such case, you are free to map it.
+    You can also use `VMA_ALLOCATION_CREATE_MAPPED_BIT` with this usage type.
+    */
+    VMA_MEMORY_USAGE_GPU_ONLY = 1,
+    /** Memory will be mapped and used on host.
+    It usually means CPU system memory.
+    Could be used for transfer to/from device.
+    Good e.g. for "staging" copy of buffers and images, used as transfer source or destination.
+    Resources created in this pool may still be accessible to the device, but access to them can be slower.
+    
+    Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`.
+    */
+    VMA_MEMORY_USAGE_CPU_ONLY = 2,
+    /** Memory will be used for frequent (dynamic) updates from host and reads on device (upload).
+    Good e.g. for vertex buffers or uniform buffers updated every frame.
+
+    Guarantees to be `HOST_VISIBLE`.
+    */
+    VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
+    /** Memory will be used for frequent writing on device and readback on host (download).
+
+    Guarantees to be `HOST_VISIBLE`.
+    */
+    VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
+    VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
+} VmaMemoryUsage;
+
+/// Flags to be passed as VmaAllocationCreateInfo::flags.
+typedef enum VmaAllocationCreateFlagBits {
+    /** \brief Set this flag if the allocation should have its own memory block.
+    
+    Use it for special, big resources, like fullscreen images used as attachments.
+   
+    This flag must also be used for host visible resources that you want to map
+    simultaneously because otherwise they might end up as regions of the same
+    `VkDeviceMemory`, while mapping same `VkDeviceMemory` multiple times
+    simultaneously is illegal.
+
+    You should not use this flag if VmaAllocationCreateInfo::pool is not null.
+    */
+    VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
+
+    /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
+    
+    If new allocation cannot be placed in any of the existing blocks, allocation
+    fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
+    
+    You should not use `VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT` and
+    `VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT` at the same time. It makes no sense.
+    
+    If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */
+    VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
+    /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
+    
+    Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
+
+    Is it valid to use this flag for allocation made from memory type that is not
+    `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
+    useful if you need an allocation that is efficient to use on GPU
+    (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
+    support it (e.g. Intel GPU).
+
+    You should not use this flag together with `VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT`.
+    */
+    VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
+    /** Allocation created with this flag can become lost as a result of another
+    allocation with `VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT` flag, so you
+    must check it before use.
+
+    To check if allocation is not lost, call vmaGetAllocationInfo() and check if
+    VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`.
+
+    For details about supporting lost allocations, see Lost Allocations
+    chapter of User Guide on Main Page.
+
+    You should not use this flag together with `VMA_ALLOCATION_CREATE_MAPPED_BIT`.
+    */
+    VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008,
+    /** While creating allocation using this flag, other allocations that were
+    created with flag `VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT` can become lost.
+
+    For details about supporting lost allocations, see Lost Allocations
+    chapter of User Guide on Main Page.
+    */
+    VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010,
+    /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
+    null-terminated string. Instead of copying pointer value, a local copy of the
+    string is made and stored in allocation's pUserData. The string is automatically
+    freed together with the allocation. It is also used in vmaBuildStatsString().
+    */
+    VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
+
+    VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaAllocationCreateFlagBits;
+typedef VkFlags VmaAllocationCreateFlags;
+
+typedef struct VmaAllocationCreateInfo
+{
+    /// Use VmaAllocationCreateFlagBits enum.
+    VmaAllocationCreateFlags flags;
+    /** \brief Intended usage of memory.
+    
+    You can leave `VMA_MEMORY_USAGE_UNKNOWN` if you specify memory requirements in other way. \n
+    If `pool` is not null, this member is ignored.
+    */
+    VmaMemoryUsage usage;
+    /** \brief Flags that must be set in a Memory Type chosen for an allocation.
+    
+    Leave 0 if you specify memory requirements in other way. \n
+    If `pool` is not null, this member is ignored.*/
+    VkMemoryPropertyFlags requiredFlags;
+    /** \brief Flags that preferably should be set in a memory type chosen for an allocation.
+    
+    Set to 0 if no additional flags are prefered. \n
+    If `pool` is not null, this member is ignored. */
+    VkMemoryPropertyFlags preferredFlags;
+    /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
+
+    Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
+    it meets other requirements specified by this structure, with no further
+    restrictions on memory type index. \n
+    If `pool` is not null, this member is ignored.
+    */
+    uint32_t memoryTypeBits;
+    /** \brief Pool that this allocation should be created in.
+
+    Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
+    `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
+    */
+    VmaPool pool;
+    /** \brief Custom general-purpose pointer that will be stored in VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
+    
+    If `VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT` is used, it must be either
+    null or pointer to a null-terminated string. The string will be then copied to
+    internal buffer, so it doesn't need to be valid after allocation call.
+    */
+    void* pUserData;
+} VmaAllocationCreateInfo;
+
+/**
+This algorithm tries to find a memory type that:
+
+- Is allowed by memoryTypeBits.
+- Contains all the flags from pAllocationCreateInfo->requiredFlags.
+- Matches intended usage.
+- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
+
+\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
+from this function or any other allocating function probably means that your
+device doesn't support any memory type with requested features for the specific
+type of resource you want to use it for. Please check parameters of your
+resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
+*/
+VkResult vmaFindMemoryTypeIndex(
+    VmaAllocator allocator,
+    uint32_t memoryTypeBits,
+    const VmaAllocationCreateInfo* pAllocationCreateInfo,
+    uint32_t* pMemoryTypeIndex);
+
+/// Flags to be passed as VmaPoolCreateInfo::flags.
+typedef enum VmaPoolCreateFlagBits {
+    /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
+
+    This is na optional optimization flag.
+
+    If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
+    vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
+    knows exact type of your allocations so it can handle Buffer-Image Granularity
+    in the optimal way.
+
+    If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
+    exact type of such allocations is not known, so allocator must be conservative
+    in handling Buffer-Image Granularity, which can lead to suboptimal allocation
+    (wasted memory). In that case, if you can make sure you always allocate only
+    buffers and linear images or only optimal images out of this pool, use this flag
+    to make allocator disregard Buffer-Image Granularity and so make allocations
+    more optimal.
+    */
+    VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
+
+    VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaPoolCreateFlagBits;
+typedef VkFlags VmaPoolCreateFlags;
+
+/** \brief Describes parameter of created `VmaPool`.
+*/
+typedef struct VmaPoolCreateInfo {
+    /** \brief Vulkan memory type index to allocate this pool from.
+    */
+    uint32_t memoryTypeIndex;
+    /** \brief Use combination of `VmaPoolCreateFlagBits`.
+    */
+    VmaPoolCreateFlags flags;
+    /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes.
+
+    Optional. Leave 0 to use default.
+    */
+    VkDeviceSize blockSize;
+    /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
+
+    Set to 0 to have no preallocated blocks and let the pool be completely empty.
+    */
+    size_t minBlockCount;
+    /** \brief Maximum number of blocks that can be allocated in this pool.
+
+    Optional. Set to 0 to use `SIZE_MAX`, which means no limit.
+    
+    Set to same value as minBlockCount to have fixed amount of memory allocated
+    throuout whole lifetime of this pool.
+    */
+    size_t maxBlockCount;
+    /** \brief Maximum number of additional frames that are in use at the same time as current frame.
+
+    This value is used only when you make allocations with
+    `VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT` flag. Such allocation cannot become
+    lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
+
+    For example, if you double-buffer your command buffers, so resources used for
+    rendering in previous frame may still be in use by the GPU at the moment you
+    allocate resources needed for the current frame, set this value to 1.
+
+    If you want to allow any allocations other than used in the current frame to
+    become lost, set this value to 0.
+    */
+    uint32_t frameInUseCount;
+} VmaPoolCreateInfo;
+
+/** \brief Describes parameter of existing `VmaPool`.
+*/
+typedef struct VmaPoolStats {
+    /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes.
+    */
+    VkDeviceSize size;
+    /** \brief Total number of bytes in the pool not used by any `VmaAllocation`.
+    */
+    VkDeviceSize unusedSize;
+    /** \brief Number of VmaAllocation objects created from this pool that were not destroyed or lost.
+    */
+    size_t allocationCount;
+    /** \brief Number of continuous memory ranges in the pool not used by any `VmaAllocation`.
+    */
+    size_t unusedRangeCount;
+    /** \brief Size of the largest continuous free memory region.
+
+    Making a new allocation of that size is not guaranteed to succeed because of
+    possible additional margin required to respect alignment and buffer/image
+    granularity.
+    */
+    VkDeviceSize unusedRangeSizeMax;
+} VmaPoolStats;
+
+/** \brief Allocates Vulkan device memory and creates `VmaPool` object.
+
+@param allocator Allocator object.
+@param pCreateInfo Parameters of pool to create.
+@param[out] pPool Handle to created pool.
+*/
+VkResult vmaCreatePool(
+	VmaAllocator allocator,
+	const VmaPoolCreateInfo* pCreateInfo,
+	VmaPool* pPool);
+
+/** \brief Destroys VmaPool object and frees Vulkan device memory.
+*/
+void vmaDestroyPool(
+    VmaAllocator allocator,
+    VmaPool pool);
+
+/** \brief Retrieves statistics of existing VmaPool object.
+
+@param allocator Allocator object.
+@param pool Pool object.
+@param[out] pPoolStats Statistics of specified pool.
+*/
+void vmaGetPoolStats(
+    VmaAllocator allocator,
+    VmaPool pool,
+    VmaPoolStats* pPoolStats);
+
+/** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now.
+
+@param allocator Allocator object.
+@param pool Pool.
+@param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information.
+*/
+void vmaMakePoolAllocationsLost(
+    VmaAllocator allocator,
+    VmaPool pool,
+    size_t* pLostAllocationCount);
+
+VK_DEFINE_HANDLE(VmaAllocation)
+
+/** \brief Parameters of `VmaAllocation` objects, that can be retrieved using function vmaGetAllocationInfo().
+*/
+typedef struct VmaAllocationInfo {
+    /** \brief Memory type index that this allocation was allocated from.
+    
+    It never changes.
+    */
+    uint32_t memoryType;
+    /** \brief Handle to Vulkan memory object.
+
+    Same memory object can be shared by multiple allocations.
+    
+    It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
+
+    If the allocation is lost, it is equal to `VK_NULL_HANDLE`.
+    */
+    VkDeviceMemory deviceMemory;
+    /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation.
+
+    It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
+    */
+    VkDeviceSize offset;
+    /** \brief Size of this allocation, in bytes.
+
+    It never changes, unless allocation is lost.
+    */
+    VkDeviceSize size;
+    /** \brief Pointer to the beginning of this allocation as mapped data.
+
+    If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
+    created with `VMA_ALLOCATION_CREATE_MAPPED_BIT` flag, this value null.
+
+    It can change after call to vmaMapMemory(), vmaUnmapMemory().
+    It can also change after call to vmaDefragment() if this allocation is passed to the function.
+    */
+    void* pMappedData;
+    /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
+
+    It can change after call to vmaSetAllocationUserData() for this allocation.
+    */
+    void* pUserData;
+} VmaAllocationInfo;
+
+/** \brief General purpose memory allocation.
+
+@param[out] pAllocation Handle to allocated memory.
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+You should free the memory using vmaFreeMemory().
+
+It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
+vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
+*/
+VkResult vmaAllocateMemory(
+    VmaAllocator allocator,
+    const VkMemoryRequirements* pVkMemoryRequirements,
+    const VmaAllocationCreateInfo* pCreateInfo,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo);
+
+/**
+@param[out] pAllocation Handle to allocated memory.
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+You should free the memory using vmaFreeMemory().
+*/
+VkResult vmaAllocateMemoryForBuffer(
+    VmaAllocator allocator,
+    VkBuffer buffer,
+    const VmaAllocationCreateInfo* pCreateInfo,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo);
+
+/// Function similar to vmaAllocateMemoryForBuffer().
+VkResult vmaAllocateMemoryForImage(
+    VmaAllocator allocator,
+    VkImage image,
+    const VmaAllocationCreateInfo* pCreateInfo,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo);
+
+/// Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
+void vmaFreeMemory(
+    VmaAllocator allocator,
+    VmaAllocation allocation);
+
+/// Returns current information about specified allocation.
+void vmaGetAllocationInfo(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    VmaAllocationInfo* pAllocationInfo);
+
+/** \brief Sets pUserData in given allocation to new value.
+
+If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT,
+pUserData must be either null, or pointer to a null-terminated string. The function
+makes local copy of the string and sets it as allocation's pUserData. String
+passed as pUserData doesn't need to be valid for whole lifetime of the allocation -
+you can free it after this call. String previously pointed by allocation's
+pUserData is freed from memory.
+
+If the flag was not used, the value of pointer pUserData is just copied to
+allocation's pUserData. It is opaque, so you can use it however you want - e.g.
+as a pointer, ordinal number or some handle to you own data.
+*/
+void vmaSetAllocationUserData(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    void* pUserData);
+
+/** \brief Creates new allocation that is in lost state from the beginning.
+
+It can be useful if you need a dummy, non-null allocation.
+
+You still need to destroy created object using vmaFreeMemory().
+
+Returned allocation is not tied to any specific memory pool or memory type and
+not bound to any image or buffer. It has size = 0. It cannot be turned into
+a real, non-empty allocation.
+*/
+void vmaCreateLostAllocation(
+    VmaAllocator allocator,
+    VmaAllocation* pAllocation);
+
+/** \brief Maps memory represented by given allocation and returns pointer to it.
+
+Maps memory represented by given allocation to make it accessible to CPU code.
+When succeeded, `*ppData` contains pointer to first byte of this memory.
+If the allocation is part of bigger `VkDeviceMemory` block, the pointer is
+correctly offseted to the beginning of region assigned to this particular
+allocation.
+
+Mapping is internally reference-counted and synchronized, so despite raw Vulkan
+function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
+multiple times simultaneously, it is safe to call this function on allocations
+assigned to the same memory block. Actual Vulkan memory will be mapped on first
+mapping and unmapped on last unmapping.
+
+If the function succeeded, you must call vmaUnmapMemory() to unmap the
+allocation when mapping is no longer needed or before freeing the allocation, at
+the latest.
+
+It also safe to call this function multiple times on the same allocation. You
+must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
+
+It is also safe to call this function on allocation created with
+`VMA_ALLOCATION_CREATE_MAPPED_BIT` flag. Its memory stays mapped all the time.
+You must still call vmaUnmapMemory() same number of times as you called
+vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
+"0-th" mapping made automatically due to `VMA_ALLOCATION_CREATE_MAPPED_BIT` flag.
+
+This function fails when used on allocation made in memory type that is not
+`HOST_VISIBLE`.
+
+This function always fails when called for allocation that was created with
+`VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT` flag. Such allocations cannot be
+mapped.
+*/
+VkResult vmaMapMemory(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    void** ppData);
+
+/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
+
+For details, see description of vmaMapMemory().
+*/
+void vmaUnmapMemory(
+    VmaAllocator allocator,
+    VmaAllocation allocation);
+
+/** \brief Optional configuration parameters to be passed to function vmaDefragment(). */
+typedef struct VmaDefragmentationInfo {
+    /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places.
+    
+    Default is `VK_WHOLE_SIZE`, which means no limit.
+    */
+    VkDeviceSize maxBytesToMove;
+    /** \brief Maximum number of allocations that can be moved to different place.
+
+    Default is `UINT32_MAX`, which means no limit.
+    */
+    uint32_t maxAllocationsToMove;
+} VmaDefragmentationInfo;
+
+/** \brief Statistics returned by function vmaDefragment(). */
+typedef struct VmaDefragmentationStats {
+    /// Total number of bytes that have been copied while moving allocations to different places.
+    VkDeviceSize bytesMoved;
+    /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
+    VkDeviceSize bytesFreed;
+    /// Number of allocations that have been moved to different places.
+    uint32_t allocationsMoved;
+    /// Number of empty `VkDeviceMemory` objects that have been released to the system.
+    uint32_t deviceMemoryBlocksFreed;
+} VmaDefragmentationStats;
+
+/** \brief Compacts memory by moving allocations.
+
+@param pAllocations Array of allocations that can be moved during this compation.
+@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays.
+@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information.
+@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values.
+@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information.
+@return VK_SUCCESS if completed, VK_INCOMPLETE if succeeded but didn't make all possible optimizations because limits specified in pDefragmentationInfo have been reached, negative error code in case of error.
+
+This function works by moving allocations to different places (different
+`VkDeviceMemory` objects and/or different offsets) in order to optimize memory
+usage. Only allocations that are in pAllocations array can be moved. All other
+allocations are considered nonmovable in this call. Basic rules:
+
+- Only allocations made in memory types that have
+  `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag can be compacted. You may pass other
+  allocations but it makes no sense - these will never be moved.
+- You may pass allocations made with `VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT` but
+  it makes no sense - they will never be moved.
+- Both allocations made with or without `VMA_ALLOCATION_CREATE_MAPPED_BIT`
+  flag can be compacted. If not persistently mapped, memory will be mapped
+  temporarily inside this function if needed.
+- You must not pass same `VmaAllocation` object multiple times in pAllocations array.
+
+The function also frees empty `VkDeviceMemory` blocks.
+
+After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or
+VmaAllocationInfo::offset changes. You must query them again using
+vmaGetAllocationInfo() if you need them.
+
+If an allocation has been moved, data in memory is copied to new place
+automatically, but if it was bound to a buffer or an image, you must destroy
+that object yourself, create new one and bind it to the new memory pointed by
+the allocation. You must use `vkDestroyBuffer()`, `vkDestroyImage()`,
+`vkCreateBuffer()`, `vkCreateImage()` for that purpose and NOT vmaDestroyBuffer(),
+vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage()! Example:
+
+\code
+VkDevice device = ...;
+VmaAllocator allocator = ...;
+std::vector<VkBuffer> buffers = ...;
+std::vector<VmaAllocation> allocations = ...;
+
+std::vector<VkBool32> allocationsChanged(allocations.size());
+vmaDefragment(allocator, allocations.data(), allocations.size(), allocationsChanged.data(), nullptr, nullptr);
+
+for(size_t i = 0; i < allocations.size(); ++i)
+{
+    if(allocationsChanged[i])
+    {
+        VmaAllocationInfo allocInfo;
+        vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
+
+        vkDestroyBuffer(device, buffers[i], nullptr);
+
+        VkBufferCreateInfo bufferInfo = ...;
+        vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
+            
+        // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
+            
+        vkBindBufferMemory(device, buffers[i], allocInfo.deviceMemory, allocInfo.offset);
+    }
+}
+\endcode
+
+Warning! This function is not correct according to Vulkan specification. Use it
+at your own risk. That's becuase Vulkan doesn't guarantee that memory
+requirements (size and alignment) for a new buffer or image are consistent. They
+may be different even for subsequent calls with the same parameters. It really
+does happen on some platforms, especially with images.
+
+This function may be time-consuming, so you shouldn't call it too often (like
+every frame or after every resource creation/destruction), but rater you can
+call it on special occasions (like when reloading a game level, when you just
+destroyed a lot of objects).
+*/
+VkResult vmaDefragment(
+    VmaAllocator allocator,
+    VmaAllocation* pAllocations,
+    size_t allocationCount,
+    VkBool32* pAllocationsChanged,
+    const VmaDefragmentationInfo *pDefragmentationInfo,
+    VmaDefragmentationStats* pDefragmentationStats);
+
+/**
+@param[out] pBuffer Buffer that was created.
+@param[out] pAllocation Allocation that was created.
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+This function automatically:
+
+-# Creates buffer.
+-# Allocates appropriate memory for it.
+-# Binds the buffer with the memory.
+
+If any of these operations fail, buffer and allocation are not created,
+returned value is negative error code, *pBuffer and *pAllocation are null.
+
+If the function succeeded, you must destroy both buffer and allocation when you
+no longer need them using either convenience function vmaDestroyBuffer() or
+separately, using `vkDestroyBuffer()` and vmaFreeMemory().
+
+If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
+VK_KHR_dedicated_allocation extension is used internally to query driver whether
+it requires or prefers the new buffer to have dedicated allocation. If yes,
+and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null
+and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
+allocation for this buffer, just like when using
+VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+*/
+VkResult vmaCreateBuffer(
+    VmaAllocator allocator,
+    const VkBufferCreateInfo* pBufferCreateInfo,
+    const VmaAllocationCreateInfo* pAllocationCreateInfo,
+    VkBuffer* pBuffer,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo);
+
+/** \brief Destroys Vulkan buffer and frees allocated memory.
+
+This is just a convenience function equivalent to:
+
+\code
+vkDestroyBuffer(device, buffer, allocationCallbacks);
+vmaFreeMemory(allocator, allocation);
+\endcode
+
+It it safe to pass null as buffer and/or allocation.
+*/
+void vmaDestroyBuffer(
+    VmaAllocator allocator,
+    VkBuffer buffer,
+    VmaAllocation allocation);
+
+/// Function similar to vmaCreateBuffer().
+VkResult vmaCreateImage(
+    VmaAllocator allocator,
+    const VkImageCreateInfo* pImageCreateInfo,
+    const VmaAllocationCreateInfo* pAllocationCreateInfo,
+    VkImage* pImage,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo);
+
+/** \brief Destroys Vulkan image and frees allocated memory.
+
+This is just a convenience function equivalent to:
+
+\code
+vkDestroyImage(device, image, allocationCallbacks);
+vmaFreeMemory(allocator, allocation);
+\endcode
+
+It it safe to pass null as image and/or allocation.
+*/
+void vmaDestroyImage(
+    VmaAllocator allocator,
+    VkImage image,
+    VmaAllocation allocation);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
+
+// For Visual Studio IntelliSense.
+#ifdef __INTELLISENSE__
+#define VMA_IMPLEMENTATION
+#endif
+
+#ifdef VMA_IMPLEMENTATION
+#undef VMA_IMPLEMENTATION
+
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+
+/*******************************************************************************
+CONFIGURATION SECTION
+
+Define some of these macros before each #include of this header or change them
+here if you need other then default behavior depending on your environment.
+*/
+
+/*
+Define this macro to 1 to make the library fetch pointers to Vulkan functions
+internally, like:
+
+    vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
+
+Define to 0 if you are going to provide you own pointers to Vulkan functions via
+VmaAllocatorCreateInfo::pVulkanFunctions.
+*/
+#ifndef VMA_STATIC_VULKAN_FUNCTIONS
+#define VMA_STATIC_VULKAN_FUNCTIONS 1
+#endif
+
+// Define this macro to 1 to make the library use STL containers instead of its own implementation.
+//#define VMA_USE_STL_CONTAINERS 1
+
+/* Set this macro to 1 to make the library including and using STL containers:
+std::pair, std::vector, std::list, std::unordered_map.
+
+Set it to 0 or undefined to make the library using its own implementation of
+the containers.
+*/
+#if VMA_USE_STL_CONTAINERS
+   #define VMA_USE_STL_VECTOR 1
+   #define VMA_USE_STL_UNORDERED_MAP 1
+   #define VMA_USE_STL_LIST 1
+#endif
+
+#if VMA_USE_STL_VECTOR
+   #include <vector>
+#endif
+
+#if VMA_USE_STL_UNORDERED_MAP
+   #include <unordered_map>
+#endif
+
+#if VMA_USE_STL_LIST
+   #include <list>
+#endif
+
+/*
+Following headers are used in this CONFIGURATION section only, so feel free to
+remove them if not needed.
+*/
+#include <cassert> // for assert
+#include <algorithm> // for min, max
+#include <mutex> // for std::mutex
+#include <atomic> // for std::atomic
+
+#if !defined(_WIN32)
+    #include <malloc.h> // for aligned_alloc()
+#endif
+
+// Normal assert to check for programmer's errors, especially in Debug configuration.
+#ifndef VMA_ASSERT
+   #ifdef _DEBUG
+       #define VMA_ASSERT(expr)         assert(expr)
+   #else
+       #define VMA_ASSERT(expr)
+   #endif
+#endif
+
+// Assert that will be called very often, like inside data structures e.g. operator[].
+// Making it non-empty can make program slow.
+#ifndef VMA_HEAVY_ASSERT
+   #ifdef _DEBUG
+       #define VMA_HEAVY_ASSERT(expr)   //VMA_ASSERT(expr)
+   #else
+       #define VMA_HEAVY_ASSERT(expr)
+   #endif
+#endif
+
+#ifndef VMA_NULL
+   // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
+   #define VMA_NULL   nullptr
+#endif
+
+#ifndef VMA_ALIGN_OF
+   #define VMA_ALIGN_OF(type)       (__alignof(type))
+#endif
+
+#ifndef VMA_SYSTEM_ALIGNED_MALLOC
+   #if defined(_WIN32)
+       #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment)   (_aligned_malloc((size), (alignment)))
+   #else
+       #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment)   (aligned_alloc((alignment), (size) ))
+   #endif
+#endif
+
+#ifndef VMA_SYSTEM_FREE
+   #if defined(_WIN32)
+       #define VMA_SYSTEM_FREE(ptr)   _aligned_free(ptr)
+   #else
+       #define VMA_SYSTEM_FREE(ptr)   free(ptr)
+   #endif
+#endif
+
+#ifndef VMA_MIN
+   #define VMA_MIN(v1, v2)    (std::min((v1), (v2)))
+#endif
+
+#ifndef VMA_MAX
+   #define VMA_MAX(v1, v2)    (std::max((v1), (v2)))
+#endif
+
+#ifndef VMA_SWAP
+   #define VMA_SWAP(v1, v2)   std::swap((v1), (v2))
+#endif
+
+#ifndef VMA_SORT
+   #define VMA_SORT(beg, end, cmp)  std::sort(beg, end, cmp)
+#endif
+
+#ifndef VMA_DEBUG_LOG
+   #define VMA_DEBUG_LOG(format, ...)
+   /*
+   #define VMA_DEBUG_LOG(format, ...) do { \
+       printf(format, __VA_ARGS__); \
+       printf("\n"); \
+   } while(false)
+   */
+#endif
+
+// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
+#if VMA_STATS_STRING_ENABLED
+   static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num)
+   {
+       snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num));
+   }
+   static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num)
+   {
+       snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num));
+   }
+   static inline void VmaPtrToStr(char* outStr, size_t strLen, const void* ptr)
+   {
+       snprintf(outStr, strLen, "%p", ptr);
+   }
+#endif
+
+#ifndef VMA_MUTEX
+   class VmaMutex
+   {
+   public:
+       VmaMutex() { }
+       ~VmaMutex() { }
+       void Lock() { m_Mutex.lock(); }
+       void Unlock() { m_Mutex.unlock(); }
+   private:
+       std::mutex m_Mutex;
+   };
+   #define VMA_MUTEX VmaMutex
+#endif
+
+/*
+If providing your own implementation, you need to implement a subset of std::atomic:
+
+- Constructor(uint32_t desired)
+- uint32_t load() const
+- void store(uint32_t desired)
+- bool compare_exchange_weak(uint32_t& expected, uint32_t desired)
+*/
+#ifndef VMA_ATOMIC_UINT32
+   #define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
+#endif
+
+#ifndef VMA_BEST_FIT
+   /**
+   Main parameter for function assessing how good is a free suballocation for a new
+   allocation request.
+
+   - Set to 1 to use Best-Fit algorithm - prefer smaller blocks, as close to the
+     size of requested allocations as possible.
+   - Set to 0 to use Worst-Fit algorithm - prefer larger blocks, as large as
+     possible.
+
+   Experiments in special testing environment showed that Best-Fit algorithm is
+   better.
+   */
+   #define VMA_BEST_FIT (1)
+#endif
+
+#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
+   /**
+   Every allocation will have its own memory block.
+   Define to 1 for debugging purposes only.
+   */
+   #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
+#endif
+
+#ifndef VMA_DEBUG_ALIGNMENT
+   /**
+   Minimum alignment of all suballocations, in bytes.
+   Set to more than 1 for debugging purposes only. Must be power of two.
+   */
+   #define VMA_DEBUG_ALIGNMENT (1)
+#endif
+
+#ifndef VMA_DEBUG_MARGIN
+   /**
+   Minimum margin between suballocations, in bytes.
+   Set nonzero for debugging purposes only.
+   */
+   #define VMA_DEBUG_MARGIN (0)
+#endif
+
+#ifndef VMA_DEBUG_GLOBAL_MUTEX
+   /**
+   Set this to 1 for debugging purposes only, to enable single mutex protecting all
+   entry calls to the library. Can be useful for debugging multithreading issues.
+   */
+   #define VMA_DEBUG_GLOBAL_MUTEX (0)
+#endif
+
+#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
+   /**
+   Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
+   Set to more than 1 for debugging purposes only. Must be power of two.
+   */
+   #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
+#endif
+
+#ifndef VMA_SMALL_HEAP_MAX_SIZE
+   /// Maximum size of a memory heap in Vulkan to consider it "small".
+   #define VMA_SMALL_HEAP_MAX_SIZE (512 * 1024 * 1024)
+#endif
+
+#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
+   /// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
+   #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256 * 1024 * 1024)
+#endif
+
+#ifndef VMA_DEFAULT_SMALL_HEAP_BLOCK_SIZE
+   /// Default size of a block allocated as single VkDeviceMemory from a "small" heap.
+   #define VMA_DEFAULT_SMALL_HEAP_BLOCK_SIZE (64 * 1024 * 1024)
+#endif
+
+static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX;
+
+/*******************************************************************************
+END OF CONFIGURATION
+*/
+
+static VkAllocationCallbacks VmaEmptyAllocationCallbacks = {
+    VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
+
+// Returns number of bits set to 1 in (v).
+static inline uint32_t VmaCountBitsSet(uint32_t v)
+{
+	uint32_t c = v - ((v >> 1) & 0x55555555);
+	c = ((c >>  2) & 0x33333333) + (c & 0x33333333);
+	c = ((c >>  4) + c) & 0x0F0F0F0F;
+	c = ((c >>  8) + c) & 0x00FF00FF;
+	c = ((c >> 16) + c) & 0x0000FFFF;
+	return c;
+}
+
+// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
+// Use types like uint32_t, uint64_t as T.
+template <typename T>
+static inline T VmaAlignUp(T val, T align)
+{
+	return (val + align - 1) / align * align;
+}
+
+// Division with mathematical rounding to nearest number.
+template <typename T>
+inline T VmaRoundDiv(T x, T y)
+{
+	return (x + (y / (T)2)) / y;
+}
+
+#ifndef VMA_SORT
+
+template<typename Iterator, typename Compare>
+Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp)
+{
+    Iterator centerValue = end; --centerValue;
+    Iterator insertIndex = beg;
+    for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex)
+    {
+        if(cmp(*memTypeIndex, *centerValue))
+        {
+            if(insertIndex != memTypeIndex)
+            {
+                VMA_SWAP(*memTypeIndex, *insertIndex);
+            }
+            ++insertIndex;
+        }
+    }
+    if(insertIndex != centerValue)
+    {
+        VMA_SWAP(*insertIndex, *centerValue);
+    }
+    return insertIndex;
+}
+
+template<typename Iterator, typename Compare>
+void VmaQuickSort(Iterator beg, Iterator end, Compare cmp)
+{
+    if(beg < end)
+    {
+        Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp);
+        VmaQuickSort<Iterator, Compare>(beg, it, cmp);
+        VmaQuickSort<Iterator, Compare>(it + 1, end, cmp);
+    }
+}
+
+#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp)
+
+#endif // #ifndef VMA_SORT
+
+/*
+Returns true if two memory blocks occupy overlapping pages.
+ResourceA must be in less memory offset than ResourceB.
+
+Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
+chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
+*/
+static inline bool VmaBlocksOnSamePage(
+    VkDeviceSize resourceAOffset,
+    VkDeviceSize resourceASize,
+    VkDeviceSize resourceBOffset,
+    VkDeviceSize pageSize)
+{
+    VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
+    VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
+    VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
+    VkDeviceSize resourceBStart = resourceBOffset;
+    VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
+    return resourceAEndPage == resourceBStartPage;
+}
+
+enum VmaSuballocationType
+{
+    VMA_SUBALLOCATION_TYPE_FREE = 0,
+    VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
+    VMA_SUBALLOCATION_TYPE_BUFFER = 2,
+    VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
+    VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
+    VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
+    VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
+};
+
+/*
+Returns true if given suballocation types could conflict and must respect
+VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
+or linear image and another one is optimal image. If type is unknown, behave
+conservatively.
+*/
+static inline bool VmaIsBufferImageGranularityConflict(
+    VmaSuballocationType suballocType1,
+    VmaSuballocationType suballocType2)
+{
+    if(suballocType1 > suballocType2)
+    {
+        VMA_SWAP(suballocType1, suballocType2);
+    }
+    
+    switch(suballocType1)
+    {
+    case VMA_SUBALLOCATION_TYPE_FREE:
+        return false;
+    case VMA_SUBALLOCATION_TYPE_UNKNOWN:
+        return true;
+    case VMA_SUBALLOCATION_TYPE_BUFFER:
+        return
+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+    case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
+        return
+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+    case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
+        return
+            suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+    case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
+        return false;
+    default:
+        VMA_ASSERT(0);
+        return true;
+    }
+}
+
+// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
+struct VmaMutexLock
+{
+public:
+    VmaMutexLock(VMA_MUTEX& mutex, bool useMutex) :
+        m_pMutex(useMutex ? &mutex : VMA_NULL)
+    {
+        if(m_pMutex)
+        {
+            m_pMutex->Lock();
+        }
+    }
+    
+    ~VmaMutexLock()
+    {
+        if(m_pMutex)
+        {
+            m_pMutex->Unlock();
+        }
+    }
+
+private:
+    VMA_MUTEX* m_pMutex;
+};
+
+#if VMA_DEBUG_GLOBAL_MUTEX
+    static VMA_MUTEX gDebugGlobalMutex;
+    #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
+#else
+    #define VMA_DEBUG_GLOBAL_MUTEX_LOCK
+#endif
+
+// Minimum size of a free suballocation to register it in the free suballocation collection.
+static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16;
+
+/*
+Performs binary search and returns iterator to first element that is greater or
+equal to (key), according to comparison (cmp).
+
+Cmp should return true if first argument is less than second argument.
+
+Returned value is the found element, if present in the collection or place where
+new element with value (key) should be inserted.
+*/
+template <typename IterT, typename KeyT, typename CmpT>
+static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, CmpT cmp)
+{
+   size_t down = 0, up = (end - beg);
+   while(down < up)
+   {
+      const size_t mid = (down + up) / 2;
+      if(cmp(*(beg+mid), key))
+      {
+         down = mid + 1;
+      }
+      else
+      {
+         up = mid;
+      }
+   }
+   return beg + down;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Memory allocation
+
+static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
+{
+    if((pAllocationCallbacks != VMA_NULL) &&
+        (pAllocationCallbacks->pfnAllocation != VMA_NULL))
+    {
+        return (*pAllocationCallbacks->pfnAllocation)(
+            pAllocationCallbacks->pUserData,
+            size,
+            alignment,
+            VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
+    }
+    else
+    {
+        return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
+    }
+}
+
+static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
+{
+    if((pAllocationCallbacks != VMA_NULL) &&
+        (pAllocationCallbacks->pfnFree != VMA_NULL))
+    {
+        (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
+    }
+    else
+    {
+        VMA_SYSTEM_FREE(ptr);
+    }
+}
+
+template<typename T>
+static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
+{
+    return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
+{
+    return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
+}
+
+#define vma_new(allocator, type)   new(VmaAllocate<type>(allocator))(type)
+
+#define vma_new_array(allocator, type, count)   new(VmaAllocateArray<type>((allocator), (count)))(type)
+
+template<typename T>
+static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
+{
+    ptr->~T();
+    VmaFree(pAllocationCallbacks, ptr);
+}
+
+template<typename T>
+static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
+{
+    if(ptr != VMA_NULL)
+    {
+        for(size_t i = count; i--; )
+        {
+            ptr[i].~T();
+        }
+        VmaFree(pAllocationCallbacks, ptr);
+    }
+}
+
+// STL-compatible allocator.
+template<typename T>
+class VmaStlAllocator
+{
+public:
+    const VkAllocationCallbacks* const m_pCallbacks;
+    typedef T value_type;
+    
+    VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { }
+    template<typename U> VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) { }
+
+    T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
+    void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
+
+    template<typename U>
+    bool operator==(const VmaStlAllocator<U>& rhs) const
+    {
+        return m_pCallbacks == rhs.m_pCallbacks;
+    }
+    template<typename U>
+    bool operator!=(const VmaStlAllocator<U>& rhs) const
+    {
+        return m_pCallbacks != rhs.m_pCallbacks;
+    }
+
+    VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete;
+};
+
+#if VMA_USE_STL_VECTOR
+
+#define VmaVector std::vector
+
+template<typename T, typename allocatorT>
+static void VmaVectorInsert(std::vector<T, allocatorT>& vec, size_t index, const T& item)
+{
+    vec.insert(vec.begin() + index, item);
+}
+
+template<typename T, typename allocatorT>
+static void VmaVectorRemove(std::vector<T, allocatorT>& vec, size_t index)
+{
+    vec.erase(vec.begin() + index);
+}
+
+#else // #if VMA_USE_STL_VECTOR
+
+/* Class with interface compatible with subset of std::vector.
+T must be POD because constructors and destructors are not called and memcpy is
+used for these objects. */
+template<typename T, typename AllocatorT>
+class VmaVector
+{
+public:
+    typedef T value_type;
+
+    VmaVector(const AllocatorT& allocator) :
+        m_Allocator(allocator),
+        m_pArray(VMA_NULL),
+        m_Count(0),
+        m_Capacity(0)
+    {
+    }
+
+    VmaVector(size_t count, const AllocatorT& allocator) :
+        m_Allocator(allocator),
+        m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
+        m_Count(count),
+        m_Capacity(count)
+    {
+    }
+    
+    VmaVector(const VmaVector<T, AllocatorT>& src) :
+        m_Allocator(src.m_Allocator),
+        m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
+        m_Count(src.m_Count),
+        m_Capacity(src.m_Count)
+    {
+        if(m_Count != 0)
+        {
+            memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
+        }
+    }
+    
+    ~VmaVector()
+    {
+        VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+    }
+
+    VmaVector& operator=(const VmaVector<T, AllocatorT>& rhs)
+    {
+        if(&rhs != this)
+        {
+            resize(rhs.m_Count);
+            if(m_Count != 0)
+            {
+                memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
+            }
+        }
+        return *this;
+    }
+    
+    bool empty() const { return m_Count == 0; }
+    size_t size() const { return m_Count; }
+    T* data() { return m_pArray; }
+    const T* data() const { return m_pArray; }
+    
+    T& operator[](size_t index)
+    {
+        VMA_HEAVY_ASSERT(index < m_Count);
+        return m_pArray[index];
+    }
+    const T& operator[](size_t index) const
+    {
+        VMA_HEAVY_ASSERT(index < m_Count);
+        return m_pArray[index];
+    }
+
+    T& front()
+    {
+        VMA_HEAVY_ASSERT(m_Count > 0);
+        return m_pArray[0];
+    }
+    const T& front() const
+    {
+        VMA_HEAVY_ASSERT(m_Count > 0);
+        return m_pArray[0];
+    }
+    T& back()
+    {
+        VMA_HEAVY_ASSERT(m_Count > 0);
+        return m_pArray[m_Count - 1];
+    }
+    const T& back() const
+    {
+        VMA_HEAVY_ASSERT(m_Count > 0);
+        return m_pArray[m_Count - 1];
+    }
+
+    void reserve(size_t newCapacity, bool freeMemory = false)
+    {
+        newCapacity = VMA_MAX(newCapacity, m_Count);
+        
+        if((newCapacity < m_Capacity) && !freeMemory)
+        {
+            newCapacity = m_Capacity;
+        }
+        
+        if(newCapacity != m_Capacity)
+        {
+            T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
+            if(m_Count != 0)
+            {
+                memcpy(newArray, m_pArray, m_Count * sizeof(T));
+            }
+            VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+            m_Capacity = newCapacity;
+            m_pArray = newArray;
+        }
+    }
+
+    void resize(size_t newCount, bool freeMemory = false)
+    {
+        size_t newCapacity = m_Capacity;
+        if(newCount > m_Capacity)
+        {
+            newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
+        }
+        else if(freeMemory)
+        {
+            newCapacity = newCount;
+        }
+
+        if(newCapacity != m_Capacity)
+        {
+            T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
+            const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
+            if(elementsToCopy != 0)
+            {
+                memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
+            }
+            VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+            m_Capacity = newCapacity;
+            m_pArray = newArray;
+        }
+
+        m_Count = newCount;
+    }
+
+    void clear(bool freeMemory = false)
+    {
+        resize(0, freeMemory);
+    }
+
+    void insert(size_t index, const T& src)
+    {
+        VMA_HEAVY_ASSERT(index <= m_Count);
+        const size_t oldCount = size();
+        resize(oldCount + 1);
+        if(index < oldCount)
+        {
+            memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
+        }
+        m_pArray[index] = src;
+    }
+
+    void remove(size_t index)
+    {
+        VMA_HEAVY_ASSERT(index < m_Count);
+        const size_t oldCount = size();
+        if(index < oldCount - 1)
+        {
+            memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
+        }
+        resize(oldCount - 1);
+    }
+
+    void push_back(const T& src)
+    {
+        const size_t newIndex = size();
+        resize(newIndex + 1);
+        m_pArray[newIndex] = src;
+    }
+
+    void pop_back()
+    {
+        VMA_HEAVY_ASSERT(m_Count > 0);
+        resize(size() - 1);
+    }
+
+    void push_front(const T& src)
+    {
+        insert(0, src);
+    }
+
+    void pop_front()
+    {
+        VMA_HEAVY_ASSERT(m_Count > 0);
+        remove(0);
+    }
+
+    typedef T* iterator;
+
+    iterator begin() { return m_pArray; }
+    iterator end() { return m_pArray + m_Count; }
+
+private:
+    AllocatorT m_Allocator;
+    T* m_pArray;
+    size_t m_Count;
+    size_t m_Capacity;
+};
+
+template<typename T, typename allocatorT>
+static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
+{
+    vec.insert(index, item);
+}
+
+template<typename T, typename allocatorT>
+static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
+{
+    vec.remove(index);
+}
+
+#endif // #if VMA_USE_STL_VECTOR
+
+template<typename CmpLess, typename VectorT>
+size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
+{
+    const size_t indexToInsert = VmaBinaryFindFirstNotLess(
+        vector.data(),
+        vector.data() + vector.size(),
+        value,
+        CmpLess()) - vector.data();
+    VmaVectorInsert(vector, indexToInsert, value);
+    return indexToInsert;
+}
+
+template<typename CmpLess, typename VectorT>
+bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
+{
+    CmpLess comparator;
+    typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
+        vector.begin(),
+        vector.end(),
+        value,
+        comparator);
+    if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
+    {
+        size_t indexToRemove = it - vector.begin();
+        VmaVectorRemove(vector, indexToRemove);
+        return true;
+    }
+    return false;
+}
+
+template<typename CmpLess, typename VectorT>
+size_t VmaVectorFindSorted(const VectorT& vector, const typename VectorT::value_type& value)
+{
+    CmpLess comparator;
+    typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
+        vector.data(),
+        vector.data() + vector.size(),
+        value,
+        comparator);
+    if(it != vector.size() && !comparator(*it, value) && !comparator(value, *it))
+    {
+        return it - vector.begin();
+    }
+    else
+    {
+        return vector.size();
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaPoolAllocator
+
+/*
+Allocator for objects of type T using a list of arrays (pools) to speed up
+allocation. Number of elements that can be allocated is not bounded because
+allocator can create multiple blocks.
+*/
+template<typename T>
+class VmaPoolAllocator
+{
+public:
+    VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock);
+    ~VmaPoolAllocator();
+    void Clear();
+    T* Alloc();
+    void Free(T* ptr);
+
+private:
+    union Item
+    {
+        uint32_t NextFreeIndex;
+        T Value;
+    };
+
+    struct ItemBlock
+    {
+        Item* pItems;
+        uint32_t FirstFreeIndex;
+    };
+    
+    const VkAllocationCallbacks* m_pAllocationCallbacks;
+    size_t m_ItemsPerBlock;
+    VmaVector< ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks;
+
+    ItemBlock& CreateNewBlock();
+};
+
+template<typename T>
+VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock) :
+    m_pAllocationCallbacks(pAllocationCallbacks),
+    m_ItemsPerBlock(itemsPerBlock),
+    m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
+{
+    VMA_ASSERT(itemsPerBlock > 0);
+}
+
+template<typename T>
+VmaPoolAllocator<T>::~VmaPoolAllocator()
+{
+    Clear();
+}
+
+template<typename T>
+void VmaPoolAllocator<T>::Clear()
+{
+    for(size_t i = m_ItemBlocks.size(); i--; )
+        vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemsPerBlock);
+    m_ItemBlocks.clear();
+}
+
+template<typename T>
+T* VmaPoolAllocator<T>::Alloc()
+{
+    for(size_t i = m_ItemBlocks.size(); i--; )
+    {
+        ItemBlock& block = m_ItemBlocks[i];
+        // This block has some free items: Use first one.
+        if(block.FirstFreeIndex != UINT32_MAX)
+        {
+            Item* const pItem = &block.pItems[block.FirstFreeIndex];
+            block.FirstFreeIndex = pItem->NextFreeIndex;
+            return &pItem->Value;
+        }
+    }
+
+    // No block has free item: Create new one and use it.
+    ItemBlock& newBlock = CreateNewBlock();
+    Item* const pItem = &newBlock.pItems[0];
+    newBlock.FirstFreeIndex = pItem->NextFreeIndex;
+    return &pItem->Value;
+}
+
+template<typename T>
+void VmaPoolAllocator<T>::Free(T* ptr)
+{
+    // Search all memory blocks to find ptr.
+    for(size_t i = 0; i < m_ItemBlocks.size(); ++i)
+    {
+        ItemBlock& block = m_ItemBlocks[i];
+        
+        // Casting to union.
+        Item* pItemPtr;
+        memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
+        
+        // Check if pItemPtr is in address range of this block.
+        if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + m_ItemsPerBlock))
+        {
+            const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
+            pItemPtr->NextFreeIndex = block.FirstFreeIndex;
+            block.FirstFreeIndex = index;
+            return;
+        }
+    }
+    VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
+}
+
+template<typename T>
+typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
+{
+    ItemBlock newBlock = {
+        vma_new_array(m_pAllocationCallbacks, Item, m_ItemsPerBlock), 0 };
+
+    m_ItemBlocks.push_back(newBlock);
+
+    // Setup singly-linked list of all free items in this block.
+    for(uint32_t i = 0; i < m_ItemsPerBlock - 1; ++i)
+        newBlock.pItems[i].NextFreeIndex = i + 1;
+    newBlock.pItems[m_ItemsPerBlock - 1].NextFreeIndex = UINT32_MAX;
+    return m_ItemBlocks.back();
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaRawList, VmaList
+
+#if VMA_USE_STL_LIST
+
+#define VmaList std::list
+
+#else // #if VMA_USE_STL_LIST
+
+template<typename T>
+struct VmaListItem
+{
+    VmaListItem* pPrev;
+    VmaListItem* pNext;
+    T Value;
+};
+
+// Doubly linked list.
+template<typename T>
+class VmaRawList
+{
+public:
+    typedef VmaListItem<T> ItemType;
+
+    VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
+    ~VmaRawList();
+    void Clear();
+
+    size_t GetCount() const { return m_Count; }
+    bool IsEmpty() const { return m_Count == 0; }
+
+    ItemType* Front() { return m_pFront; }
+    const ItemType* Front() const { return m_pFront; }
+    ItemType* Back() { return m_pBack; }
+    const ItemType* Back() const { return m_pBack; }
+
+    ItemType* PushBack();
+    ItemType* PushFront();
+    ItemType* PushBack(const T& value);
+    ItemType* PushFront(const T& value);
+    void PopBack();
+    void PopFront();
+    
+    // Item can be null - it means PushBack.
+    ItemType* InsertBefore(ItemType* pItem);
+    // Item can be null - it means PushFront.
+    ItemType* InsertAfter(ItemType* pItem);
+
+    ItemType* InsertBefore(ItemType* pItem, const T& value);
+    ItemType* InsertAfter(ItemType* pItem, const T& value);
+
+    void Remove(ItemType* pItem);
+
+private:
+    const VkAllocationCallbacks* const m_pAllocationCallbacks;
+    VmaPoolAllocator<ItemType> m_ItemAllocator;
+    ItemType* m_pFront;
+    ItemType* m_pBack;
+    size_t m_Count;
+
+    // Declared not defined, to block copy constructor and assignment operator.
+    VmaRawList(const VmaRawList<T>& src);
+    VmaRawList<T>& operator=(const VmaRawList<T>& rhs);
+};
+
+template<typename T>
+VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) :
+    m_pAllocationCallbacks(pAllocationCallbacks),
+    m_ItemAllocator(pAllocationCallbacks, 128),
+    m_pFront(VMA_NULL),
+    m_pBack(VMA_NULL),
+    m_Count(0)
+{
+}
+
+template<typename T>
+VmaRawList<T>::~VmaRawList()
+{
+    // Intentionally not calling Clear, because that would be unnecessary
+    // computations to return all items to m_ItemAllocator as free.
+}
+
+template<typename T>
+void VmaRawList<T>::Clear()
+{
+    if(IsEmpty() == false)
+    {
+        ItemType* pItem = m_pBack;
+        while(pItem != VMA_NULL)
+        {
+            ItemType* const pPrevItem = pItem->pPrev;
+            m_ItemAllocator.Free(pItem);
+            pItem = pPrevItem;
+        }
+        m_pFront = VMA_NULL;
+        m_pBack = VMA_NULL;
+        m_Count = 0;
+    }
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushBack()
+{
+    ItemType* const pNewItem = m_ItemAllocator.Alloc();
+    pNewItem->pNext = VMA_NULL;
+    if(IsEmpty())
+    {
+        pNewItem->pPrev = VMA_NULL;
+        m_pFront = pNewItem;
+        m_pBack = pNewItem;
+        m_Count = 1;
+    }
+    else
+    {
+        pNewItem->pPrev = m_pBack;
+        m_pBack->pNext = pNewItem;
+        m_pBack = pNewItem;
+        ++m_Count;
+    }
+    return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushFront()
+{
+    ItemType* const pNewItem = m_ItemAllocator.Alloc();
+    pNewItem->pPrev = VMA_NULL;
+    if(IsEmpty())
+    {
+        pNewItem->pNext = VMA_NULL;
+        m_pFront = pNewItem;
+        m_pBack = pNewItem;
+        m_Count = 1;
+    }
+    else
+    {
+        pNewItem->pNext = m_pFront;
+        m_pFront->pPrev = pNewItem;
+        m_pFront = pNewItem;
+        ++m_Count;
+    }
+    return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
+{
+    ItemType* const pNewItem = PushBack();
+    pNewItem->Value = value;
+    return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
+{
+    ItemType* const pNewItem = PushFront();
+    pNewItem->Value = value;
+    return pNewItem;
+}
+
+template<typename T>
+void VmaRawList<T>::PopBack()
+{
+    VMA_HEAVY_ASSERT(m_Count > 0);
+    ItemType* const pBackItem = m_pBack;
+    ItemType* const pPrevItem = pBackItem->pPrev;
+    if(pPrevItem != VMA_NULL)
+    {
+        pPrevItem->pNext = VMA_NULL;
+    }
+    m_pBack = pPrevItem;
+    m_ItemAllocator.Free(pBackItem);
+    --m_Count;
+}
+
+template<typename T>
+void VmaRawList<T>::PopFront()
+{
+    VMA_HEAVY_ASSERT(m_Count > 0);
+    ItemType* const pFrontItem = m_pFront;
+    ItemType* const pNextItem = pFrontItem->pNext;
+    if(pNextItem != VMA_NULL)
+    {
+        pNextItem->pPrev = VMA_NULL;
+    }
+    m_pFront = pNextItem;
+    m_ItemAllocator.Free(pFrontItem);
+    --m_Count;
+}
+
+template<typename T>
+void VmaRawList<T>::Remove(ItemType* pItem)
+{
+    VMA_HEAVY_ASSERT(pItem != VMA_NULL);
+    VMA_HEAVY_ASSERT(m_Count > 0);
+
+    if(pItem->pPrev != VMA_NULL)
+    {
+        pItem->pPrev->pNext = pItem->pNext;
+    }
+    else
+    {
+        VMA_HEAVY_ASSERT(m_pFront == pItem);
+        m_pFront = pItem->pNext;
+    }
+
+    if(pItem->pNext != VMA_NULL)
+    {
+        pItem->pNext->pPrev = pItem->pPrev;
+    }
+    else
+    {
+        VMA_HEAVY_ASSERT(m_pBack == pItem);
+        m_pBack = pItem->pPrev;
+    }
+
+    m_ItemAllocator.Free(pItem);
+    --m_Count;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
+{
+    if(pItem != VMA_NULL)
+    {
+        ItemType* const prevItem = pItem->pPrev;
+        ItemType* const newItem = m_ItemAllocator.Alloc();
+        newItem->pPrev = prevItem;
+        newItem->pNext = pItem;
+        pItem->pPrev = newItem;
+        if(prevItem != VMA_NULL)
+        {
+            prevItem->pNext = newItem;
+        }
+        else
+        {
+            VMA_HEAVY_ASSERT(m_pFront == pItem);
+            m_pFront = newItem;
+        }
+        ++m_Count;
+        return newItem;
+    }
+    else
+        return PushBack();
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
+{
+    if(pItem != VMA_NULL)
+    {
+        ItemType* const nextItem = pItem->pNext;
+        ItemType* const newItem = m_ItemAllocator.Alloc();
+        newItem->pNext = nextItem;
+        newItem->pPrev = pItem;
+        pItem->pNext = newItem;
+        if(nextItem != VMA_NULL)
+        {
+            nextItem->pPrev = newItem;
+        }
+        else
+        {
+            VMA_HEAVY_ASSERT(m_pBack == pItem);
+            m_pBack = newItem;
+        }
+        ++m_Count;
+        return newItem;
+    }
+    else
+        return PushFront();
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
+{
+    ItemType* const newItem = InsertBefore(pItem);
+    newItem->Value = value;
+    return newItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
+{
+    ItemType* const newItem = InsertAfter(pItem);
+    newItem->Value = value;
+    return newItem;
+}
+
+template<typename T, typename AllocatorT>
+class VmaList
+{
+public:
+    class iterator
+    {
+    public:
+        iterator() :
+            m_pList(VMA_NULL),
+            m_pItem(VMA_NULL)
+        {
+        }
+
+        T& operator*() const
+        {
+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+            return m_pItem->Value;
+        }
+        T* operator->() const
+        {
+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+            return &m_pItem->Value;
+        }
+
+        iterator& operator++()
+        {
+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+            m_pItem = m_pItem->pNext;
+            return *this;
+        }
+        iterator& operator--()
+        {
+            if(m_pItem != VMA_NULL)
+            {
+                m_pItem = m_pItem->pPrev;
+            }
+            else
+            {
+                VMA_HEAVY_ASSERT(!m_pList.IsEmpty());
+                m_pItem = m_pList->Back();
+            }
+            return *this;
+        }
+
+        iterator operator++(int)
+        {
+            iterator result = *this;
+            ++*this;
+            return result;
+        }
+        iterator operator--(int)
+        {
+            iterator result = *this;
+            --*this;
+            return result;
+        }
+
+        bool operator==(const iterator& rhs) const
+        {
+            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+            return m_pItem == rhs.m_pItem;
+        }
+        bool operator!=(const iterator& rhs) const
+        {
+            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+            return m_pItem != rhs.m_pItem;
+        }
+        
+    private:
+        VmaRawList<T>* m_pList;
+        VmaListItem<T>* m_pItem;
+
+        iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) :
+            m_pList(pList),
+            m_pItem(pItem)
+        {
+        }
+
+        friend class VmaList<T, AllocatorT>;
+    };
+
+    class const_iterator
+    {
+    public:
+        const_iterator() :
+            m_pList(VMA_NULL),
+            m_pItem(VMA_NULL)
+        {
+        }
+
+        const_iterator(const iterator& src) :
+            m_pList(src.m_pList),
+            m_pItem(src.m_pItem)
+        {
+        }
+        
+        const T& operator*() const
+        {
+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+            return m_pItem->Value;
+        }
+        const T* operator->() const
+        {
+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+            return &m_pItem->Value;
+        }
+
+        const_iterator& operator++()
+        {
+            VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+            m_pItem = m_pItem->pNext;
+            return *this;
+        }
+        const_iterator& operator--()
+        {
+            if(m_pItem != VMA_NULL)
+            {
+                m_pItem = m_pItem->pPrev;
+            }
+            else
+            {
+                VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
+                m_pItem = m_pList->Back();
+            }
+            return *this;
+        }
+
+        const_iterator operator++(int)
+        {
+            const_iterator result = *this;
+            ++*this;
+            return result;
+        }
+        const_iterator operator--(int)
+        {
+            const_iterator result = *this;
+            --*this;
+            return result;
+        }
+
+        bool operator==(const const_iterator& rhs) const
+        {
+            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+            return m_pItem == rhs.m_pItem;
+        }
+        bool operator!=(const const_iterator& rhs) const
+        {
+            VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+            return m_pItem != rhs.m_pItem;
+        }
+        
+    private:
+        const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) :
+            m_pList(pList),
+            m_pItem(pItem)
+        {
+        }
+
+        const VmaRawList<T>* m_pList;
+        const VmaListItem<T>* m_pItem;
+
+        friend class VmaList<T, AllocatorT>;
+    };
+
+    VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { }
+
+    bool empty() const { return m_RawList.IsEmpty(); }
+    size_t size() const { return m_RawList.GetCount(); }
+
+    iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
+    iterator end() { return iterator(&m_RawList, VMA_NULL); }
+
+    const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
+    const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
+
+    void clear() { m_RawList.Clear(); }
+    void push_back(const T& value) { m_RawList.PushBack(value); }
+    void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
+    iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
+
+private:
+    VmaRawList<T> m_RawList;
+};
+
+#endif // #if VMA_USE_STL_LIST
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaMap
+
+// Unused in this version.
+#if 0
+
+#if VMA_USE_STL_UNORDERED_MAP
+
+#define VmaPair std::pair
+
+#define VMA_MAP_TYPE(KeyT, ValueT) \
+    std::unordered_map< KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator< std::pair<KeyT, ValueT> > >
+
+#else // #if VMA_USE_STL_UNORDERED_MAP
+
+template<typename T1, typename T2>
+struct VmaPair
+{
+    T1 first;
+    T2 second;
+
+    VmaPair() : first(), second() { }
+    VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { }
+};
+
+/* Class compatible with subset of interface of std::unordered_map.
+KeyT, ValueT must be POD because they will be stored in VmaVector.
+*/
+template<typename KeyT, typename ValueT>
+class VmaMap
+{
+public:
+    typedef VmaPair<KeyT, ValueT> PairType;
+    typedef PairType* iterator;
+
+    VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { }
+
+    iterator begin() { return m_Vector.begin(); }
+    iterator end() { return m_Vector.end(); }
+
+    void insert(const PairType& pair);
+    iterator find(const KeyT& key);
+    void erase(iterator it);
+    
+private:
+    VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector;
+};
+
+#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT>
+
+template<typename FirstT, typename SecondT>
+struct VmaPairFirstLess
+{
+    bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const
+    {
+        return lhs.first < rhs.first;
+    }
+    bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const
+    {
+        return lhs.first < rhsFirst;
+    }
+};
+
+template<typename KeyT, typename ValueT>
+void VmaMap<KeyT, ValueT>::insert(const PairType& pair)
+{
+    const size_t indexToInsert = VmaBinaryFindFirstNotLess(
+        m_Vector.data(),
+        m_Vector.data() + m_Vector.size(),
+        pair,
+        VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();
+    VmaVectorInsert(m_Vector, indexToInsert, pair);
+}
+
+template<typename KeyT, typename ValueT>
+VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)
+{
+    PairType* it = VmaBinaryFindFirstNotLess(
+        m_Vector.data(),
+        m_Vector.data() + m_Vector.size(),
+        key,
+        VmaPairFirstLess<KeyT, ValueT>());
+    if((it != m_Vector.end()) && (it->first == key))
+    {
+        return it;
+    }
+    else
+    {
+        return m_Vector.end();
+    }
+}
+
+template<typename KeyT, typename ValueT>
+void VmaMap<KeyT, ValueT>::erase(iterator it)
+{
+    VmaVectorRemove(m_Vector, it - m_Vector.begin());
+}
+
+#endif // #if VMA_USE_STL_UNORDERED_MAP
+
+#endif // #if 0
+
+////////////////////////////////////////////////////////////////////////////////
+
+class VmaDeviceMemoryBlock;
+
+struct VmaAllocation_T
+{
+private:
+    static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80;
+
+    enum FLAGS
+    {
+        FLAG_USER_DATA_STRING = 0x01,
+    };
+
+public:
+    enum ALLOCATION_TYPE
+    {
+        ALLOCATION_TYPE_NONE,
+        ALLOCATION_TYPE_BLOCK,
+        ALLOCATION_TYPE_DEDICATED,
+    };
+
+    VmaAllocation_T(uint32_t currentFrameIndex, bool userDataString) :
+        m_Alignment(1),
+        m_Size(0),
+        m_pUserData(VMA_NULL),
+        m_LastUseFrameIndex(currentFrameIndex),
+        m_Type((uint8_t)ALLOCATION_TYPE_NONE),
+        m_SuballocationType((uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN),
+        m_MapCount(0),
+        m_Flags(userDataString ? (uint8_t)FLAG_USER_DATA_STRING : 0)
+    {
+    }
+
+    ~VmaAllocation_T()
+    {
+        VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction.");
+
+        // Check if owned string was freed.
+        VMA_ASSERT(m_pUserData == VMA_NULL);
+    }
+
+    void InitBlockAllocation(
+        VmaPool hPool,
+        VmaDeviceMemoryBlock* block,
+        VkDeviceSize offset,
+        VkDeviceSize alignment,
+        VkDeviceSize size,
+        VmaSuballocationType suballocationType,
+        bool mapped,
+        bool canBecomeLost)
+    {
+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+        VMA_ASSERT(block != VMA_NULL);
+        m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
+        m_Alignment = alignment;
+        m_Size = size;
+        m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
+        m_SuballocationType = (uint8_t)suballocationType;
+        m_BlockAllocation.m_hPool = hPool;
+        m_BlockAllocation.m_Block = block;
+        m_BlockAllocation.m_Offset = offset;
+        m_BlockAllocation.m_CanBecomeLost = canBecomeLost;
+    }
+
+    void InitLost()
+    {
+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+        VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST);
+        m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
+        m_BlockAllocation.m_hPool = VK_NULL_HANDLE;
+        m_BlockAllocation.m_Block = VMA_NULL;
+        m_BlockAllocation.m_Offset = 0;
+        m_BlockAllocation.m_CanBecomeLost = true;
+    }
+
+    void ChangeBlockAllocation(
+        VmaDeviceMemoryBlock* block,
+        VkDeviceSize offset)
+    {
+        VMA_ASSERT(block != VMA_NULL);
+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
+        m_BlockAllocation.m_Block = block;
+        m_BlockAllocation.m_Offset = offset;
+    }
+
+    // pMappedData not null means allocation is created with MAPPED flag.
+    void InitDedicatedAllocation(
+        uint32_t memoryTypeIndex,
+        VkDeviceMemory hMemory,
+        VmaSuballocationType suballocationType,
+        void* pMappedData,
+        VkDeviceSize size)
+    {
+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+        VMA_ASSERT(hMemory != VK_NULL_HANDLE);
+        m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;
+        m_Alignment = 0;
+        m_Size = size;
+        m_SuballocationType = (uint8_t)suballocationType;
+        m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
+        m_DedicatedAllocation.m_MemoryTypeIndex = memoryTypeIndex;
+        m_DedicatedAllocation.m_hMemory = hMemory;
+        m_DedicatedAllocation.m_pMappedData = pMappedData;
+    }
+
+    ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }
+    VkDeviceSize GetAlignment() const { return m_Alignment; }
+    VkDeviceSize GetSize() const { return m_Size; }
+    bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; }
+    void* GetUserData() const { return m_pUserData; }
+    void SetUserData(VmaAllocator hAllocator, void* pUserData);
+    VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }
+
+    VmaDeviceMemoryBlock* GetBlock() const
+    {
+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
+        return m_BlockAllocation.m_Block;
+    }
+    VkDeviceSize GetOffset() const;
+    VkDeviceMemory GetMemory() const;
+    uint32_t GetMemoryTypeIndex() const;
+    bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; }
+    void* GetMappedData() const;
+    bool CanBecomeLost() const;
+    VmaPool GetPool() const;
+    
+    uint32_t GetLastUseFrameIndex() const
+    {
+        return m_LastUseFrameIndex.load();
+    }
+    bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired)
+    {
+        return m_LastUseFrameIndex.compare_exchange_weak(expected, desired);
+    }
+    /*
+    - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex,
+      makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true.
+    - Else, returns false.
+    
+    If hAllocation is already lost, assert - you should not call it then.
+    If hAllocation was not created with CAN_BECOME_LOST_BIT, assert.
+    */
+    bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
+
+    void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo)
+    {
+        VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED);
+        outInfo.blockCount = 1;
+        outInfo.allocationCount = 1;
+        outInfo.unusedRangeCount = 0;
+        outInfo.usedBytes = m_Size;
+        outInfo.unusedBytes = 0;
+        outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size;
+        outInfo.unusedRangeSizeMin = UINT64_MAX;
+        outInfo.unusedRangeSizeMax = 0;
+    }
+
+    void BlockAllocMap();
+    void BlockAllocUnmap();
+    VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);
+    void DedicatedAllocUnmap(VmaAllocator hAllocator);
+
+private:
+    VkDeviceSize m_Alignment;
+    VkDeviceSize m_Size;
+    void* m_pUserData;
+    VMA_ATOMIC_UINT32 m_LastUseFrameIndex;
+    uint8_t m_Type; // ALLOCATION_TYPE
+    uint8_t m_SuballocationType; // VmaSuballocationType
+    // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT.
+    // Bits with mask 0x7F, used only when ALLOCATION_TYPE_DEDICATED, are reference counter for vmaMapMemory()/vmaUnmapMemory().
+    uint8_t m_MapCount;
+    uint8_t m_Flags; // enum FLAGS
+
+    // Allocation out of VmaDeviceMemoryBlock.
+    struct BlockAllocation
+    {
+        VmaPool m_hPool; // Null if belongs to general memory.
+        VmaDeviceMemoryBlock* m_Block;
+        VkDeviceSize m_Offset;
+        bool m_CanBecomeLost;
+    };
+
+    // Allocation for an object that has its own private VkDeviceMemory.
+    struct DedicatedAllocation
+    {
+        uint32_t m_MemoryTypeIndex;
+        VkDeviceMemory m_hMemory;
+        void* m_pMappedData; // Not null means memory is mapped.
+    };
+
+    union
+    {
+        // Allocation out of VmaDeviceMemoryBlock.
+        BlockAllocation m_BlockAllocation;
+        // Allocation for an object that has its own private VkDeviceMemory.
+        DedicatedAllocation m_DedicatedAllocation;
+    };
+
+    void FreeUserDataString(VmaAllocator hAllocator);
+};
+
+/*
+Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
+allocated memory block or free.
+*/
+struct VmaSuballocation
+{
+    VkDeviceSize offset;
+    VkDeviceSize size;
+    VmaAllocation hAllocation;
+    VmaSuballocationType type;
+};
+
+typedef VmaList< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList;
+
+// Cost of one additional allocation lost, as equivalent in bytes.
+static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576;
+
+/*
+Parameters of planned allocation inside a VmaDeviceMemoryBlock.
+
+If canMakeOtherLost was false:
+- item points to a FREE suballocation.
+- itemsToMakeLostCount is 0.
+
+If canMakeOtherLost was true:
+- item points to first of sequence of suballocations, which are either FREE,
+  or point to VmaAllocations that can become lost.
+- itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for
+  the requested allocation to succeed.
+*/
+struct VmaAllocationRequest
+{
+    VkDeviceSize offset;
+    VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation.
+    VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation.
+    VmaSuballocationList::iterator item;
+    size_t itemsToMakeLostCount;
+
+    VkDeviceSize CalcCost() const
+    {
+        return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST;
+    }
+};
+
+/*
+Data structure used for bookkeeping of allocations and unused ranges of memory
+in a single VkDeviceMemory block.
+*/
+class VmaBlockMetadata
+{
+public:
+    VmaBlockMetadata(VmaAllocator hAllocator);
+    ~VmaBlockMetadata();
+    void Init(VkDeviceSize size);
+
+    // Validates all data structures inside this object. If not valid, returns false.
+    bool Validate() const;
+    VkDeviceSize GetSize() const { return m_Size; }
+    size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; }
+    VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }
+    VkDeviceSize GetUnusedRangeSizeMax() const;
+    // Returns true if this block is empty - contains only single free suballocation.
+    bool IsEmpty() const;
+
+    void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
+    void AddPoolStats(VmaPoolStats& inoutStats) const;
+
+#if VMA_STATS_STRING_ENABLED
+    void PrintDetailedMap(class VmaJsonWriter& json) const;
+#endif
+
+    // Creates trivial request for case when block is empty.
+    void CreateFirstAllocationRequest(VmaAllocationRequest* pAllocationRequest);
+
+    // Tries to find a place for suballocation with given parameters inside this block.
+    // If succeeded, fills pAllocationRequest and returns true.
+    // If failed, returns false.
+    bool CreateAllocationRequest(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VkDeviceSize bufferImageGranularity,
+        VkDeviceSize allocSize,
+        VkDeviceSize allocAlignment,
+        VmaSuballocationType allocType,
+        bool canMakeOtherLost,
+        VmaAllocationRequest* pAllocationRequest);
+
+    bool MakeRequestedAllocationsLost(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VmaAllocationRequest* pAllocationRequest);
+
+    uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
+
+    // Makes actual allocation based on request. Request must already be checked and valid.
+    void Alloc(
+        const VmaAllocationRequest& request,
+        VmaSuballocationType type,
+        VkDeviceSize allocSize,
+        VmaAllocation hAllocation);
+
+    // Frees suballocation assigned to given memory region.
+    void Free(const VmaAllocation allocation);
+
+private:
+    VkDeviceSize m_Size;
+    uint32_t m_FreeCount;
+    VkDeviceSize m_SumFreeSize;
+    VmaSuballocationList m_Suballocations;
+    // Suballocations that are free and have size greater than certain threshold.
+    // Sorted by size, ascending.
+    VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize;
+
+    bool ValidateFreeSuballocationList() const;
+
+    // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.
+    // If yes, fills pOffset and returns true. If no, returns false.
+    bool CheckAllocation(
+        uint32_t currentFrameIndex,
+        uint32_t frameInUseCount,
+        VkDeviceSize bufferImageGranularity,
+        VkDeviceSize allocSize,
+        VkDeviceSize allocAlignment,
+        VmaSuballocationType allocType,
+        VmaSuballocationList::const_iterator suballocItem,
+        bool canMakeOtherLost,
+        VkDeviceSize* pOffset,
+        size_t* itemsToMakeLostCount,
+        VkDeviceSize* pSumFreeSize,
+        VkDeviceSize* pSumItemSize) const;
+    // Given free suballocation, it merges it with following one, which must also be free.
+    void MergeFreeWithNext(VmaSuballocationList::iterator item);
+    // Releases given suballocation, making it free.
+    // Merges it with adjacent free suballocations if applicable.
+    // Returns iterator to new free suballocation at this place.
+    VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem);
+    // Given free suballocation, it inserts it into sorted list of
+    // m_FreeSuballocationsBySize if it's suitable.
+    void RegisterFreeSuballocation(VmaSuballocationList::iterator item);
+    // Given free suballocation, it removes it from sorted list of
+    // m_FreeSuballocationsBySize if it's suitable.
+    void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);
+};
+
+// Helper class that represents mapped memory. Synchronized internally.
+class VmaDeviceMemoryMapping
+{
+public:
+    VmaDeviceMemoryMapping();
+    ~VmaDeviceMemoryMapping();
+
+    void* GetMappedData() const { return m_pMappedData; }
+
+    // ppData can be null.
+    VkResult Map(VmaAllocator hAllocator, VkDeviceMemory hMemory, void **ppData);
+    void Unmap(VmaAllocator hAllocator, VkDeviceMemory hMemory);
+
+private:
+    VMA_MUTEX m_Mutex;
+    uint32_t m_MapCount;
+    void* m_pMappedData;
+};
+
+/*
+Represents a single block of device memory (`VkDeviceMemory`) with all the
+data about its regions (aka suballocations, `VmaAllocation`), assigned and free.
+
+Thread-safety: This class must be externally synchronized.
+*/
+class VmaDeviceMemoryBlock
+{
+public:
+    uint32_t m_MemoryTypeIndex;
+    VkDeviceMemory m_hMemory;
+    VmaDeviceMemoryMapping m_Mapping;    
+    VmaBlockMetadata m_Metadata;
+
+    VmaDeviceMemoryBlock(VmaAllocator hAllocator);
+
+    ~VmaDeviceMemoryBlock()
+    {
+        VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
+    }
+
+    // Always call after construction.
+    void Init(
+        uint32_t newMemoryTypeIndex,
+        VkDeviceMemory newMemory,
+        VkDeviceSize newSize);
+    // Always call before destruction.
+    void Destroy(VmaAllocator allocator);
+    
+    // Validates all data structures inside this object. If not valid, returns false.
+    bool Validate() const;
+
+    // ppData can be null.
+    VkResult Map(VmaAllocator hAllocator, void** ppData);
+    void Unmap(VmaAllocator hAllocator);
+};
+
+struct VmaPointerLess
+{
+    bool operator()(const void* lhs, const void* rhs) const
+    {
+        return lhs < rhs;
+    }
+};
+
+class VmaDefragmentator;
+
+/*
+Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
+Vulkan memory type.
+
+Synchronized internally with a mutex.
+*/
+struct VmaBlockVector
+{
+    VmaBlockVector(
+        VmaAllocator hAllocator,
+        uint32_t memoryTypeIndex,
+        VkDeviceSize preferredBlockSize,
+        size_t minBlockCount,
+        size_t maxBlockCount,
+        VkDeviceSize bufferImageGranularity,
+        uint32_t frameInUseCount,
+        bool isCustomPool);
+    ~VmaBlockVector();
+
+    VkResult CreateMinBlocks();
+
+    uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
+    VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
+    VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
+    uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; }
+
+    void GetPoolStats(VmaPoolStats* pStats);
+
+    bool IsEmpty() const { return m_Blocks.empty(); }
+
+    VkResult Allocate(
+        VmaPool hCurrentPool,
+        uint32_t currentFrameIndex,
+        const VkMemoryRequirements& vkMemReq,
+        const VmaAllocationCreateInfo& createInfo,
+        VmaSuballocationType suballocType,
+        VmaAllocation* pAllocation);
+
+    void Free(
+        VmaAllocation hAllocation);
+
+    // Adds statistics of this BlockVector to pStats.
+    void AddStats(VmaStats* pStats);
+
+#if VMA_STATS_STRING_ENABLED
+    void PrintDetailedMap(class VmaJsonWriter& json);
+#endif
+
+    void MakePoolAllocationsLost(
+        uint32_t currentFrameIndex,
+        size_t* pLostAllocationCount);
+
+    VmaDefragmentator* EnsureDefragmentator(
+        VmaAllocator hAllocator,
+        uint32_t currentFrameIndex);
+
+    VkResult Defragment(
+        VmaDefragmentationStats* pDefragmentationStats,
+        VkDeviceSize& maxBytesToMove,
+        uint32_t& maxAllocationsToMove);
+
+    void DestroyDefragmentator();
+
+private:
+    friend class VmaDefragmentator;
+
+    const VmaAllocator m_hAllocator;
+    const uint32_t m_MemoryTypeIndex;
+    const VkDeviceSize m_PreferredBlockSize;
+    const size_t m_MinBlockCount;
+    const size_t m_MaxBlockCount;
+    const VkDeviceSize m_BufferImageGranularity;
+    const uint32_t m_FrameInUseCount;
+    const bool m_IsCustomPool;
+    VMA_MUTEX m_Mutex;
+    // Incrementally sorted by sumFreeSize, ascending.
+    VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*> > m_Blocks;
+    /* There can be at most one allocation that is completely empty - a
+    hysteresis to avoid pessimistic case of alternating creation and destruction
+    of a VkDeviceMemory. */
+    bool m_HasEmptyBlock;
+    VmaDefragmentator* m_pDefragmentator;
+
+    // Finds and removes given block from vector.
+    void Remove(VmaDeviceMemoryBlock* pBlock);
+
+    // Performs single step in sorting m_Blocks. They may not be fully sorted
+    // after this call.
+    void IncrementallySortBlocks();
+
+    VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
+};
+
+struct VmaPool_T
+{
+public:
+    VmaBlockVector m_BlockVector;
+
+    // Takes ownership.
+    VmaPool_T(
+        VmaAllocator hAllocator,
+        const VmaPoolCreateInfo& createInfo);
+    ~VmaPool_T();
+
+    VmaBlockVector& GetBlockVector() { return m_BlockVector; }
+
+#if VMA_STATS_STRING_ENABLED
+    //void PrintDetailedMap(class VmaStringBuilder& sb);
+#endif
+};
+
+class VmaDefragmentator
+{
+    const VmaAllocator m_hAllocator;
+    VmaBlockVector* const m_pBlockVector;
+    uint32_t m_CurrentFrameIndex;
+    VkDeviceSize m_BytesMoved;
+    uint32_t m_AllocationsMoved;
+
+    struct AllocationInfo
+    {
+        VmaAllocation m_hAllocation;
+        VkBool32* m_pChanged;
+
+        AllocationInfo() :
+            m_hAllocation(VK_NULL_HANDLE),
+            m_pChanged(VMA_NULL)
+        {
+        }
+    };
+
+    struct AllocationInfoSizeGreater
+    {
+        bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const
+        {
+            return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize();
+        }
+    };
+
+    // Used between AddAllocation and Defragment.
+    VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
+
+    struct BlockInfo
+    {
+        VmaDeviceMemoryBlock* m_pBlock;
+        bool m_HasNonMovableAllocations;
+        VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
+
+        BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) :
+            m_pBlock(VMA_NULL),
+            m_HasNonMovableAllocations(true),
+            m_Allocations(pAllocationCallbacks),
+            m_pMappedDataForDefragmentation(VMA_NULL)
+        {
+        }
+
+        void CalcHasNonMovableAllocations()
+        {
+            const size_t blockAllocCount = m_pBlock->m_Metadata.GetAllocationCount();
+            const size_t defragmentAllocCount = m_Allocations.size();
+            m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount;
+        }
+
+        void SortAllocationsBySizeDescecnding()
+        {
+            VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater());
+        }
+
+        VkResult EnsureMapping(VmaAllocator hAllocator, void** ppMappedData);
+        void Unmap(VmaAllocator hAllocator);
+
+    private:
+        // Not null if mapped for defragmentation only, not originally mapped.
+        void* m_pMappedDataForDefragmentation;
+    };
+
+    struct BlockPointerLess
+    {
+        bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const
+        {
+            return pLhsBlockInfo->m_pBlock < pRhsBlock;
+        }
+        bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
+        {
+            return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock;
+        }
+    };
+
+    // 1. Blocks with some non-movable allocations go first.
+    // 2. Blocks with smaller sumFreeSize go first.
+    struct BlockInfoCompareMoveDestination
+    {
+        bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
+        {
+            if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations)
+            {
+                return true;
+            }
+            if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations)
+            {
+                return false;
+            }
+            if(pLhsBlockInfo->m_pBlock->m_Metadata.GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_Metadata.GetSumFreeSize())
+            {
+                return true;
+            }
+            return false;
+        }
+    };
+
+    typedef VmaVector< BlockInfo*, VmaStlAllocator<BlockInfo*> > BlockInfoVector;
+    BlockInfoVector m_Blocks;
+
+    VkResult DefragmentRound(
+        VkDeviceSize maxBytesToMove,
+        uint32_t maxAllocationsToMove);
+
+    static bool MoveMakesSense(
+        size_t dstBlockIndex, VkDeviceSize dstOffset,
+        size_t srcBlockIndex, VkDeviceSize srcOffset);
+
+public:
+    VmaDefragmentator(
+        VmaAllocator hAllocator,
+        VmaBlockVector* pBlockVector,
+        uint32_t currentFrameIndex);
+
+    ~VmaDefragmentator();
+
+    VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
+    uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
+
+    void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);
+
+    VkResult Defragment(
+        VkDeviceSize maxBytesToMove,
+        uint32_t maxAllocationsToMove);
+};
+
+// Main allocator object.
+struct VmaAllocator_T
+{
+    bool m_UseMutex;
+    bool m_UseKhrDedicatedAllocation;
+    VkDevice m_hDevice;
+    bool m_AllocationCallbacksSpecified;
+    VkAllocationCallbacks m_AllocationCallbacks;
+    VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
+    
+    // Number of bytes free out of limit, or VK_WHOLE_SIZE if not limit for that heap.
+    VkDeviceSize m_HeapSizeLimit[VK_MAX_MEMORY_HEAPS];
+    VMA_MUTEX m_HeapSizeLimitMutex;
+
+    VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
+    VkPhysicalDeviceMemoryProperties m_MemProps;
+
+    // Default pools.
+    VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
+
+    // Each vector is sorted by memory (handle value).
+    typedef VmaVector< VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType;
+    AllocationVectorType* m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES];
+    VMA_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES];
+
+    VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
+    ~VmaAllocator_T();
+
+    const VkAllocationCallbacks* GetAllocationCallbacks() const
+    {
+        return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0;
+    }
+    const VmaVulkanFunctions& GetVulkanFunctions() const
+    {
+        return m_VulkanFunctions;
+    }
+
+    VkDeviceSize GetBufferImageGranularity() const
+    {
+        return VMA_MAX(
+            static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
+            m_PhysicalDeviceProperties.limits.bufferImageGranularity);
+    }
+
+    uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
+    uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
+
+    uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const
+    {
+        VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
+        return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
+    }
+
+    void GetBufferMemoryRequirements(
+        VkBuffer hBuffer,
+        VkMemoryRequirements& memReq,
+        bool& requiresDedicatedAllocation,
+        bool& prefersDedicatedAllocation) const;
+    void GetImageMemoryRequirements(
+        VkImage hImage,
+        VkMemoryRequirements& memReq,
+        bool& requiresDedicatedAllocation,
+        bool& prefersDedicatedAllocation) const;
+
+    // Main allocation function.
+    VkResult AllocateMemory(
+        const VkMemoryRequirements& vkMemReq,
+        bool requiresDedicatedAllocation,
+        bool prefersDedicatedAllocation,
+        VkBuffer dedicatedBuffer,
+        VkImage dedicatedImage,
+        const VmaAllocationCreateInfo& createInfo,
+        VmaSuballocationType suballocType,
+        VmaAllocation* pAllocation);
+
+    // Main deallocation function.
+    void FreeMemory(const VmaAllocation allocation);
+
+    void CalculateStats(VmaStats* pStats);
+
+#if VMA_STATS_STRING_ENABLED
+    void PrintDetailedMap(class VmaJsonWriter& json);
+#endif
+
+    VkResult Defragment(
+        VmaAllocation* pAllocations,
+        size_t allocationCount,
+        VkBool32* pAllocationsChanged,
+        const VmaDefragmentationInfo* pDefragmentationInfo,
+        VmaDefragmentationStats* pDefragmentationStats);
+
+    void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
+
+    VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);
+    void DestroyPool(VmaPool pool);
+    void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats);
+
+    void SetCurrentFrameIndex(uint32_t frameIndex);
+
+    void MakePoolAllocationsLost(
+        VmaPool hPool,
+        size_t* pLostAllocationCount);
+
+    void CreateLostAllocation(VmaAllocation* pAllocation);
+
+    VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);
+    void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
+
+    VkResult Map(VmaAllocation hAllocation, void** ppData);
+    void Unmap(VmaAllocation hAllocation);
+
+private:
+    VkDeviceSize m_PreferredLargeHeapBlockSize;
+    VkDeviceSize m_PreferredSmallHeapBlockSize;
+
+    VkPhysicalDevice m_PhysicalDevice;
+    VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
+    
+    VMA_MUTEX m_PoolsMutex;
+    // Protected by m_PoolsMutex. Sorted by pointer value.
+    VmaVector<VmaPool, VmaStlAllocator<VmaPool> > m_Pools;
+
+    VmaVulkanFunctions m_VulkanFunctions;
+
+    void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);
+
+    VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
+
+    VkResult AllocateMemoryOfType(
+        const VkMemoryRequirements& vkMemReq,
+        bool dedicatedAllocation,
+        VkBuffer dedicatedBuffer,
+        VkImage dedicatedImage,
+        const VmaAllocationCreateInfo& createInfo,
+        uint32_t memTypeIndex,
+        VmaSuballocationType suballocType,
+        VmaAllocation* pAllocation);
+
+    // Allocates and registers new VkDeviceMemory specifically for single allocation.
+    VkResult AllocateDedicatedMemory(
+        VkDeviceSize size,
+        VmaSuballocationType suballocType,
+        uint32_t memTypeIndex,
+        bool map,
+        bool isUserDataString,
+        void* pUserData,
+        VkBuffer dedicatedBuffer,
+        VkImage dedicatedImage,
+        VmaAllocation* pAllocation);
+
+    // Tries to free pMemory as Dedicated Memory. Returns true if found and freed.
+    void FreeDedicatedMemory(VmaAllocation allocation);
+};
+
+////////////////////////////////////////////////////////////////////////////////
+// Memory allocation #2 after VmaAllocator_T definition
+
+static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
+{
+    return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
+}
+
+static void VmaFree(VmaAllocator hAllocator, void* ptr)
+{
+    VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
+}
+
+template<typename T>
+static T* VmaAllocate(VmaAllocator hAllocator)
+{
+    return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
+{
+    return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static void vma_delete(VmaAllocator hAllocator, T* ptr)
+{
+    if(ptr != VMA_NULL)
+    {
+        ptr->~T();
+        VmaFree(hAllocator, ptr);
+    }
+}
+
+template<typename T>
+static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
+{
+    if(ptr != VMA_NULL)
+    {
+        for(size_t i = count; i--; )
+            ptr[i].~T();
+        VmaFree(hAllocator, ptr);
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaStringBuilder
+
+#if VMA_STATS_STRING_ENABLED
+
+class VmaStringBuilder
+{
+public:
+    VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) { }
+    size_t GetLength() const { return m_Data.size(); }
+    const char* GetData() const { return m_Data.data(); }
+
+    void Add(char ch) { m_Data.push_back(ch); }
+    void Add(const char* pStr);
+    void AddNewLine() { Add('\n'); }
+    void AddNumber(uint32_t num);
+    void AddNumber(uint64_t num);
+    void AddPointer(const void* ptr);
+
+private:
+    VmaVector< char, VmaStlAllocator<char> > m_Data;
+};
+
+void VmaStringBuilder::Add(const char* pStr)
+{
+    const size_t strLen = strlen(pStr);
+    if(strLen > 0)
+    {
+        const size_t oldCount = m_Data.size();
+        m_Data.resize(oldCount + strLen);
+        memcpy(m_Data.data() + oldCount, pStr, strLen);
+    }
+}
+
+void VmaStringBuilder::AddNumber(uint32_t num)
+{
+    char buf[11];
+    VmaUint32ToStr(buf, sizeof(buf), num);
+    Add(buf);
+}
+
+void VmaStringBuilder::AddNumber(uint64_t num)
+{
+    char buf[21];
+    VmaUint64ToStr(buf, sizeof(buf), num);
+    Add(buf);
+}
+
+void VmaStringBuilder::AddPointer(const void* ptr)
+{
+    char buf[21];
+    VmaPtrToStr(buf, sizeof(buf), ptr);
+    Add(buf);
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaJsonWriter
+
+#if VMA_STATS_STRING_ENABLED
+
+class VmaJsonWriter
+{
+public:
+    VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);
+    ~VmaJsonWriter();
+
+    void BeginObject(bool singleLine = false);
+    void EndObject();
+    
+    void BeginArray(bool singleLine = false);
+    void EndArray();
+    
+    void WriteString(const char* pStr);
+    void BeginString(const char* pStr = VMA_NULL);
+    void ContinueString(const char* pStr);
+    void ContinueString(uint32_t n);
+    void ContinueString(uint64_t n);
+    void ContinueString_Pointer(const void* ptr);
+    void EndString(const char* pStr = VMA_NULL);
+    
+    void WriteNumber(uint32_t n);
+    void WriteNumber(uint64_t n);
+    void WriteBool(bool b);
+    void WriteNull();
+
+private:
+    static const char* const INDENT;
+
+    enum COLLECTION_TYPE
+    {
+        COLLECTION_TYPE_OBJECT,
+        COLLECTION_TYPE_ARRAY,
+    };
+    struct StackItem
+    {
+        COLLECTION_TYPE type;
+        uint32_t valueCount;
+        bool singleLineMode;
+    };
+
+    VmaStringBuilder& m_SB;
+    VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;
+    bool m_InsideString;
+
+    void BeginValue(bool isString);
+    void WriteIndent(bool oneLess = false);
+};
+
+const char* const VmaJsonWriter::INDENT = "  ";
+
+VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) :
+    m_SB(sb),
+    m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
+    m_InsideString(false)
+{
+}
+
+VmaJsonWriter::~VmaJsonWriter()
+{
+    VMA_ASSERT(!m_InsideString);
+    VMA_ASSERT(m_Stack.empty());
+}
+
+void VmaJsonWriter::BeginObject(bool singleLine)
+{
+    VMA_ASSERT(!m_InsideString);
+
+    BeginValue(false);
+    m_SB.Add('{');
+
+    StackItem item;
+    item.type = COLLECTION_TYPE_OBJECT;
+    item.valueCount = 0;
+    item.singleLineMode = singleLine;
+    m_Stack.push_back(item);
+}
+
+void VmaJsonWriter::EndObject()
+{
+    VMA_ASSERT(!m_InsideString);
+
+    WriteIndent(true);
+    m_SB.Add('}');
+
+    VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
+    m_Stack.pop_back();
+}
+
+void VmaJsonWriter::BeginArray(bool singleLine)
+{
+    VMA_ASSERT(!m_InsideString);
+
+    BeginValue(false);
+    m_SB.Add('[');
+
+    StackItem item;
+    item.type = COLLECTION_TYPE_ARRAY;
+    item.valueCount = 0;
+    item.singleLineMode = singleLine;
+    m_Stack.push_back(item);
+}
+
+void VmaJsonWriter::EndArray()
+{
+    VMA_ASSERT(!m_InsideString);
+
+    WriteIndent(true);
+    m_SB.Add(']');
+
+    VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
+    m_Stack.pop_back();
+}
+
+void VmaJsonWriter::WriteString(const char* pStr)
+{
+    BeginString(pStr);
+    EndString();
+}
+
+void VmaJsonWriter::BeginString(const char* pStr)
+{
+    VMA_ASSERT(!m_InsideString);
+
+    BeginValue(true);
+    m_SB.Add('"');
+    m_InsideString = true;
+    if(pStr != VMA_NULL && pStr[0] != '\0')
+    {
+        ContinueString(pStr);
+    }
+}
+
+void VmaJsonWriter::ContinueString(const char* pStr)
+{
+    VMA_ASSERT(m_InsideString);
+
+    const size_t strLen = strlen(pStr);
+    for(size_t i = 0; i < strLen; ++i)
+    {
+        char ch = pStr[i];
+        if(ch == '\'')
+        {
+            m_SB.Add("\\\\");
+        }
+        else if(ch == '"')
+        {
+            m_SB.Add("\\\"");
+        }
+        else if(ch >= 32)
+        {
+            m_SB.Add(ch);
+        }
+        else switch(ch)
+        {
+        case '\b':
+            m_SB.Add("\\b");
+            break;
+        case '\f':
+            m_SB.Add("\\f");
+            break;
+        case '\n':
+            m_SB.Add("\\n");
+            break;
+        case '\r':
+            m_SB.Add("\\r");
+            break;
+        case '\t':
+            m_SB.Add("\\t");
+            break;
+        default:
+            VMA_ASSERT(0 && "Character not currently supported.");
+            break;
+        }
+    }
+}
+
+void VmaJsonWriter::ContinueString(uint32_t n)
+{
+    VMA_ASSERT(m_InsideString);
+    m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::ContinueString(uint64_t n)
+{
+    VMA_ASSERT(m_InsideString);
+    m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::ContinueString_Pointer(const void* ptr)
+{
+    VMA_ASSERT(m_InsideString);
+    m_SB.AddPointer(ptr);
+}
+
+void VmaJsonWriter::EndString(const char* pStr)
+{
+    VMA_ASSERT(m_InsideString);
+    if(pStr != VMA_NULL && pStr[0] != '\0')
+    {
+        ContinueString(pStr);
+    }
+    m_SB.Add('"');
+    m_InsideString = false;
+}
+
+void VmaJsonWriter::WriteNumber(uint32_t n)
+{
+    VMA_ASSERT(!m_InsideString);
+    BeginValue(false);
+    m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::WriteNumber(uint64_t n)
+{
+    VMA_ASSERT(!m_InsideString);
+    BeginValue(false);
+    m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::WriteBool(bool b)
+{
+    VMA_ASSERT(!m_InsideString);
+    BeginValue(false);
+    m_SB.Add(b ? "true" : "false");
+}
+
+void VmaJsonWriter::WriteNull()
+{
+    VMA_ASSERT(!m_InsideString);
+    BeginValue(false);
+    m_SB.Add("null");
+}
+
+void VmaJsonWriter::BeginValue(bool isString)
+{
+    if(!m_Stack.empty())
+    {
+        StackItem& currItem = m_Stack.back();
+        if(currItem.type == COLLECTION_TYPE_OBJECT &&
+            currItem.valueCount % 2 == 0)
+        {
+            VMA_ASSERT(isString);
+        }
+
+        if(currItem.type == COLLECTION_TYPE_OBJECT &&
+            currItem.valueCount % 2 != 0)
+        {
+            m_SB.Add(": ");
+        }
+        else if(currItem.valueCount > 0)
+        {
+            m_SB.Add(", ");
+            WriteIndent();
+        }
+        else
+        {
+            WriteIndent();
+        }
+        ++currItem.valueCount;
+    }
+}
+
+void VmaJsonWriter::WriteIndent(bool oneLess)
+{
+    if(!m_Stack.empty() && !m_Stack.back().singleLineMode)
+    {
+        m_SB.AddNewLine();
+        
+        size_t count = m_Stack.size();
+        if(count > 0 && oneLess)
+        {
+            --count;
+        }
+        for(size_t i = 0; i < count; ++i)
+        {
+            m_SB.Add(INDENT);
+        }
+    }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+
+void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData)
+{
+    if(IsUserDataString())
+    {
+        VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData);
+
+        FreeUserDataString(hAllocator);
+
+        if(pUserData != VMA_NULL)
+        {
+            const char* const newStrSrc = (char*)pUserData;
+            const size_t newStrLen = strlen(newStrSrc);
+            char* const newStrDst = vma_new_array(hAllocator, char, newStrLen + 1);
+            memcpy(newStrDst, newStrSrc, newStrLen + 1);
+            m_pUserData = newStrDst;
+        }
+    }
+    else
+    {
+        m_pUserData = pUserData;
+    }
+}
+
+VkDeviceSize VmaAllocation_T::GetOffset() const
+{
+    switch(m_Type)
+    {
+    case ALLOCATION_TYPE_BLOCK:
+        return m_BlockAllocation.m_Offset;
+    case ALLOCATION_TYPE_DEDICATED:
+        return 0;
+    default:
+        VMA_ASSERT(0);
+        return 0;
+    }
+}
+
+VkDeviceMemory VmaAllocation_T::GetMemory() const
+{
+    switch(m_Type)
+    {
+    case ALLOCATION_TYPE_BLOCK:
+        return m_BlockAllocation.m_Block->m_hMemory;
+    case ALLOCATION_TYPE_DEDICATED:
+        return m_DedicatedAllocation.m_hMemory;
+    default:
+        VMA_ASSERT(0);
+        return VK_NULL_HANDLE;
+    }
+}
+
+uint32_t VmaAllocation_T::GetMemoryTypeIndex() const
+{
+    switch(m_Type)
+    {
+    case ALLOCATION_TYPE_BLOCK:
+        return m_BlockAllocation.m_Block->m_MemoryTypeIndex;
+    case ALLOCATION_TYPE_DEDICATED:
+        return m_DedicatedAllocation.m_MemoryTypeIndex;
+    default:
+        VMA_ASSERT(0);
+        return UINT32_MAX;
+    }
+}
+
+void* VmaAllocation_T::GetMappedData() const
+{
+    switch(m_Type)
+    {
+    case ALLOCATION_TYPE_BLOCK:
+        if(m_MapCount != 0)
+        {
+            void* pBlockData = m_BlockAllocation.m_Block->m_Mapping.GetMappedData();
+            VMA_ASSERT(pBlockData != VMA_NULL);
+            return (char*)pBlockData + m_BlockAllocation.m_Offset;
+        }
+        else
+        {
+            return VMA_NULL;
+        }
+        break;
+    case ALLOCATION_TYPE_DEDICATED:
+        VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0));
+        return m_DedicatedAllocation.m_pMappedData;
+    default:
+        VMA_ASSERT(0);
+        return VMA_NULL;
+    }
+}
+
+bool VmaAllocation_T::CanBecomeLost() const
+{
+    switch(m_Type)
+    {
+    case ALLOCATION_TYPE_BLOCK:
+        return m_BlockAllocation.m_CanBecomeLost;
+    case ALLOCATION_TYPE_DEDICATED:
+        return false;
+    default:
+        VMA_ASSERT(0);
+        return false;
+    }
+}
+
+VmaPool VmaAllocation_T::GetPool() const
+{
+    VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
+    return m_BlockAllocation.m_hPool;
+}
+
+bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
+{
+    VMA_ASSERT(CanBecomeLost());
+
+    /*
+    Warning: This is a carefully designed algorithm.
+    Do not modify unless you really know what you're doing :)
+    */
+    uint32_t localLastUseFrameIndex = GetLastUseFrameIndex();
+    for(;;)
+    {
+        if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
+        {
+            VMA_ASSERT(0);
+            return false;
+        }
+        else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex)
+        {
+            return false;
+        }
+        else // Last use time earlier than current time.
+        {
+            if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST))
+            {
+                // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST.
+                // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock.
+                return true;
+            }
+        }
+    }
+}
+
+void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator)
+{
+    VMA_ASSERT(IsUserDataString());
+    if(m_pUserData != VMA_NULL)
+    {
+        char* const oldStr = (char*)m_pUserData;
+        const size_t oldStrLen = strlen(oldStr);
+        vma_delete_array(hAllocator, oldStr, oldStrLen + 1);
+        m_pUserData = VMA_NULL;
+    }
+}
+
+void VmaAllocation_T::BlockAllocMap()
+{
+    VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
+
+    if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
+    {
+        ++m_MapCount;
+    }
+    else
+    {
+        VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");
+    }
+}
+
+void VmaAllocation_T::BlockAllocUnmap()
+{
+    VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
+
+    if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
+    {
+        --m_MapCount;
+    }
+    else
+    {
+        VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");
+    }
+}
+
+VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)
+{
+    VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
+
+    if(m_MapCount != 0)
+    {
+        if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
+        {
+            VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);
+            *ppData = m_DedicatedAllocation.m_pMappedData;
+            ++m_MapCount;
+            return VK_SUCCESS;
+        }
+        else
+        {
+            VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");
+            return VK_ERROR_MEMORY_MAP_FAILED;
+        }
+    }
+    else
+    {
+        VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
+            hAllocator->m_hDevice,
+            m_DedicatedAllocation.m_hMemory,
+            0, // offset
+            VK_WHOLE_SIZE,
+            0, // flags
+            ppData);
+        if(result == VK_SUCCESS)
+        {
+            m_DedicatedAllocation.m_pMappedData = *ppData;
+            m_MapCount = 1;
+        }
+        return result;
+    }
+}
+
+void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)
+{
+    VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
+
+    if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
+    {
+        --m_MapCount;
+        if(m_MapCount == 0)
+        {
+            m_DedicatedAllocation.m_pMappedData = VMA_NULL;
+            (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(
+                hAllocator->m_hDevice,
+                m_DedicatedAllocation.m_hMemory);
+        }
+    }
+    else
+    {
+        VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");
+    }
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+// Correspond to values of enum VmaSuballocationType.
+static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = {
+    "FREE",
+    "UNKNOWN",
+    "BUFFER",
+    "IMAGE_UNKNOWN",
+    "IMAGE_LINEAR",
+    "IMAGE_OPTIMAL",
+};
+
+static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat)
+{
+    json.BeginObject();
+
+    json.WriteString("Blocks");
+    json.WriteNumber(stat.blockCount);
+
+    json.WriteString("Allocations");
+    json.WriteNumber(stat.allocationCount);
+
+    json.WriteString("UnusedRanges");
+    json.WriteNumber(stat.unusedRangeCount);
+
+    json.WriteString("UsedBytes");
+    json.WriteNumber(stat.usedBytes);
+
+    json.WriteString("UnusedBytes");
+    json.WriteNumber(stat.unusedBytes);
+
+    if(stat.allocationCount > 1)
+    {
+        json.WriteString("AllocationSize");
+        json.BeginObject(true);
+        json.WriteString("Min");
+        json.WriteNumber(stat.allocationSizeMin);
+        json.WriteString("Avg");
+        json.WriteNumber(stat.allocationSizeAvg);
+        json.WriteString("Max");
+        json.WriteNumber(stat.allocationSizeMax);
+        json.EndObject();
+    }
+
+    if(stat.unusedRangeCount > 1)
+    {
+        json.WriteString("UnusedRangeSize");
+        json.BeginObject(true);
+        json.WriteString("Min");
+        json.WriteNumber(stat.unusedRangeSizeMin);
+        json.WriteString("Avg");
+        json.WriteNumber(stat.unusedRangeSizeAvg);
+        json.WriteString("Max");
+        json.WriteNumber(stat.unusedRangeSizeMax);
+        json.EndObject();
+    }
+
+    json.EndObject();
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+struct VmaSuballocationItemSizeLess
+{
+    bool operator()(
+        const VmaSuballocationList::iterator lhs,
+        const VmaSuballocationList::iterator rhs) const
+    {
+        return lhs->size < rhs->size;
+    }
+    bool operator()(
+        const VmaSuballocationList::iterator lhs,
+        VkDeviceSize rhsSize) const
+    {
+        return lhs->size < rhsSize;
+    }
+};
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaBlockMetadata
+
+VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) :
+    m_Size(0),
+    m_FreeCount(0),
+    m_SumFreeSize(0),
+    m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
+    m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks()))
+{
+}
+
+VmaBlockMetadata::~VmaBlockMetadata()
+{
+}
+
+void VmaBlockMetadata::Init(VkDeviceSize size)
+{
+    m_Size = size;
+    m_FreeCount = 1;
+    m_SumFreeSize = size;
+
+    VmaSuballocation suballoc = {};
+    suballoc.offset = 0;
+    suballoc.size = size;
+    suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+    suballoc.hAllocation = VK_NULL_HANDLE;
+
+    m_Suballocations.push_back(suballoc);
+    VmaSuballocationList::iterator suballocItem = m_Suballocations.end();
+    --suballocItem;
+    m_FreeSuballocationsBySize.push_back(suballocItem);
+}
+
+bool VmaBlockMetadata::Validate() const
+{
+    if(m_Suballocations.empty())
+    {
+        return false;
+    }
+    
+    // Expected offset of new suballocation as calculates from previous ones.
+    VkDeviceSize calculatedOffset = 0;
+    // Expected number of free suballocations as calculated from traversing their list.
+    uint32_t calculatedFreeCount = 0;
+    // Expected sum size of free suballocations as calculated from traversing their list.
+    VkDeviceSize calculatedSumFreeSize = 0;
+    // Expected number of free suballocations that should be registered in
+    // m_FreeSuballocationsBySize calculated from traversing their list.
+    size_t freeSuballocationsToRegister = 0;
+    // True if previous visisted suballocation was free.
+    bool prevFree = false;
+
+    for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
+        suballocItem != m_Suballocations.cend();
+        ++suballocItem)
+    {
+        const VmaSuballocation& subAlloc = *suballocItem;
+        
+        // Actual offset of this suballocation doesn't match expected one.
+        if(subAlloc.offset != calculatedOffset)
+        {
+            return false;
+        }
+
+        const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);
+        // Two adjacent free suballocations are invalid. They should be merged.
+        if(prevFree && currFree)
+        {
+            return false;
+        }
+        prevFree = currFree;
+
+        if(currFree != (subAlloc.hAllocation == VK_NULL_HANDLE))
+        {
+            return false;
+        }
+
+        if(currFree)
+        {
+            calculatedSumFreeSize += subAlloc.size;
+            ++calculatedFreeCount;
+            if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+            {
+                ++freeSuballocationsToRegister;
+            }
+        }
+
+        calculatedOffset += subAlloc.size;
+    }
+
+    // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't
+    // match expected one.
+    if(m_FreeSuballocationsBySize.size() != freeSuballocationsToRegister)
+    {
+        return false;
+    }
+
+    VkDeviceSize lastSize = 0;
+    for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i)
+    {
+        VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];
+        
+        // Only free suballocations can be registered in m_FreeSuballocationsBySize.
+        if(suballocItem->type != VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            return false;
+        }
+        // They must be sorted by size ascending.
+        if(suballocItem->size < lastSize)
+        {
+            return false;
+        }
+
+        lastSize = suballocItem->size;
+    }
+
+    // Check if totals match calculacted values.
+    return
+        ValidateFreeSuballocationList() &&
+        (calculatedOffset == m_Size) &&
+        (calculatedSumFreeSize == m_SumFreeSize) &&
+        (calculatedFreeCount == m_FreeCount);
+}
+
+VkDeviceSize VmaBlockMetadata::GetUnusedRangeSizeMax() const
+{
+    if(!m_FreeSuballocationsBySize.empty())
+    {
+        return m_FreeSuballocationsBySize.back()->size;
+    }
+    else
+    {
+        return 0;
+    }
+}
+
+bool VmaBlockMetadata::IsEmpty() const
+{
+    return (m_Suballocations.size() == 1) && (m_FreeCount == 1);
+}
+
+void VmaBlockMetadata::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
+{
+    outInfo.blockCount = 1;
+
+    const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
+    outInfo.allocationCount = rangeCount - m_FreeCount;
+    outInfo.unusedRangeCount = m_FreeCount;
+    
+    outInfo.unusedBytes = m_SumFreeSize;
+    outInfo.usedBytes = m_Size - outInfo.unusedBytes;
+
+    outInfo.allocationSizeMin = UINT64_MAX;
+    outInfo.allocationSizeMax = 0;
+    outInfo.unusedRangeSizeMin = UINT64_MAX;
+    outInfo.unusedRangeSizeMax = 0;
+
+    for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
+        suballocItem != m_Suballocations.cend();
+        ++suballocItem)
+    {
+        const VmaSuballocation& suballoc = *suballocItem;
+        if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
+            outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size);
+        }
+        else
+        {
+            outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size);
+            outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size);
+        }
+    }
+}
+
+void VmaBlockMetadata::AddPoolStats(VmaPoolStats& inoutStats) const
+{
+    const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
+
+    inoutStats.size += m_Size;
+    inoutStats.unusedSize += m_SumFreeSize;
+    inoutStats.allocationCount += rangeCount - m_FreeCount;
+    inoutStats.unusedRangeCount += m_FreeCount;
+    inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaBlockMetadata::PrintDetailedMap(class VmaJsonWriter& json) const
+{
+    json.BeginObject();
+
+    json.WriteString("TotalBytes");
+    json.WriteNumber(m_Size);
+
+    json.WriteString("UnusedBytes");
+    json.WriteNumber(m_SumFreeSize);
+
+    json.WriteString("Allocations");
+    json.WriteNumber(m_Suballocations.size() - m_FreeCount);
+
+    json.WriteString("UnusedRanges");
+    json.WriteNumber(m_FreeCount);
+
+    json.WriteString("Suballocations");
+    json.BeginArray();
+    size_t i = 0;
+    for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
+        suballocItem != m_Suballocations.cend();
+        ++suballocItem, ++i)
+    {
+        json.BeginObject(true);
+        
+        json.WriteString("Type");
+        json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[suballocItem->type]);
+
+        json.WriteString("Size");
+        json.WriteNumber(suballocItem->size);
+
+        json.WriteString("Offset");
+        json.WriteNumber(suballocItem->offset);
+
+        if(suballocItem->type != VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            const void* pUserData = suballocItem->hAllocation->GetUserData();
+            if(pUserData != VMA_NULL)
+            {
+                json.WriteString("UserData");
+                if(suballocItem->hAllocation->IsUserDataString())
+                {
+                    json.WriteString((const char*)pUserData);
+                }
+                else
+                {
+                    json.BeginString();
+                    json.ContinueString_Pointer(pUserData);
+                    json.EndString();
+                }
+            }
+        }
+
+        json.EndObject();
+    }
+    json.EndArray();
+
+    json.EndObject();
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+/*
+How many suitable free suballocations to analyze before choosing best one.
+- Set to 1 to use First-Fit algorithm - first suitable free suballocation will
+  be chosen.
+- Set to UINT32_MAX to use Best-Fit/Worst-Fit algorithm - all suitable free
+  suballocations will be analized and best one will be chosen.
+- Any other value is also acceptable.
+*/
+//static const uint32_t MAX_SUITABLE_SUBALLOCATIONS_TO_CHECK = 8;
+
+void VmaBlockMetadata::CreateFirstAllocationRequest(VmaAllocationRequest* pAllocationRequest)
+{
+    VMA_ASSERT(IsEmpty());
+    pAllocationRequest->offset = 0;
+    pAllocationRequest->sumFreeSize = m_SumFreeSize;
+    pAllocationRequest->sumItemSize = 0;
+    pAllocationRequest->item = m_Suballocations.begin();
+    pAllocationRequest->itemsToMakeLostCount = 0;
+}
+
+bool VmaBlockMetadata::CreateAllocationRequest(
+    uint32_t currentFrameIndex,
+    uint32_t frameInUseCount,
+    VkDeviceSize bufferImageGranularity,
+    VkDeviceSize allocSize,
+    VkDeviceSize allocAlignment,
+    VmaSuballocationType allocType,
+    bool canMakeOtherLost,
+    VmaAllocationRequest* pAllocationRequest)
+{
+    VMA_ASSERT(allocSize > 0);
+    VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
+    VMA_ASSERT(pAllocationRequest != VMA_NULL);
+    VMA_HEAVY_ASSERT(Validate());
+
+    // There is not enough total free space in this block to fullfill the request: Early return.
+    if(canMakeOtherLost == false && m_SumFreeSize < allocSize)
+    {
+        return false;
+    }
+
+    // New algorithm, efficiently searching freeSuballocationsBySize.
+    const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();
+    if(freeSuballocCount > 0)
+    {
+        if(VMA_BEST_FIT)
+        {
+            // Find first free suballocation with size not less than allocSize.
+            VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
+                m_FreeSuballocationsBySize.data(),
+                m_FreeSuballocationsBySize.data() + freeSuballocCount,
+                allocSize,
+                VmaSuballocationItemSizeLess());
+            size_t index = it - m_FreeSuballocationsBySize.data();
+            for(; index < freeSuballocCount; ++index)
+            {
+                if(CheckAllocation(
+                    currentFrameIndex,
+                    frameInUseCount,
+                    bufferImageGranularity,
+                    allocSize,
+                    allocAlignment,
+                    allocType,
+                    m_FreeSuballocationsBySize[index],
+                    false, // canMakeOtherLost
+                    &pAllocationRequest->offset,
+                    &pAllocationRequest->itemsToMakeLostCount,
+                    &pAllocationRequest->sumFreeSize,
+                    &pAllocationRequest->sumItemSize))
+                {
+                    pAllocationRequest->item = m_FreeSuballocationsBySize[index];
+                    return true;
+                }
+            }
+        }
+        else
+        {
+            // Search staring from biggest suballocations.
+            for(size_t index = freeSuballocCount; index--; )
+            {
+                if(CheckAllocation(
+                    currentFrameIndex,
+                    frameInUseCount,
+                    bufferImageGranularity,
+                    allocSize,
+                    allocAlignment,
+                    allocType,
+                    m_FreeSuballocationsBySize[index],
+                    false, // canMakeOtherLost
+                    &pAllocationRequest->offset,
+                    &pAllocationRequest->itemsToMakeLostCount,
+                    &pAllocationRequest->sumFreeSize,
+                    &pAllocationRequest->sumItemSize))
+                {
+                    pAllocationRequest->item = m_FreeSuballocationsBySize[index];
+                    return true;
+                }
+            }
+        }
+    }
+
+    if(canMakeOtherLost)
+    {
+        // Brute-force algorithm. TODO: Come up with something better.
+
+        pAllocationRequest->sumFreeSize = VK_WHOLE_SIZE;
+        pAllocationRequest->sumItemSize = VK_WHOLE_SIZE;
+
+        VmaAllocationRequest tmpAllocRequest = {};
+        for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin();
+            suballocIt != m_Suballocations.end();
+            ++suballocIt)
+        {
+            if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE ||
+                suballocIt->hAllocation->CanBecomeLost())
+            {
+                if(CheckAllocation(
+                    currentFrameIndex,
+                    frameInUseCount,
+                    bufferImageGranularity,
+                    allocSize,
+                    allocAlignment,
+                    allocType,
+                    suballocIt,
+                    canMakeOtherLost,
+                    &tmpAllocRequest.offset,
+                    &tmpAllocRequest.itemsToMakeLostCount,
+                    &tmpAllocRequest.sumFreeSize,
+                    &tmpAllocRequest.sumItemSize))
+                {
+                    tmpAllocRequest.item = suballocIt;
+
+                    if(tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost())
+                    {
+                        *pAllocationRequest = tmpAllocRequest;
+                    }
+                }
+            }
+        }
+
+        if(pAllocationRequest->sumItemSize != VK_WHOLE_SIZE)
+        {
+            return true;
+        }
+    }
+
+    return false;
+}
+
+bool VmaBlockMetadata::MakeRequestedAllocationsLost(
+    uint32_t currentFrameIndex,
+    uint32_t frameInUseCount,
+    VmaAllocationRequest* pAllocationRequest)
+{
+    while(pAllocationRequest->itemsToMakeLostCount > 0)
+    {
+        if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            ++pAllocationRequest->item;
+        }
+        VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
+        VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE);
+        VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost());
+        if(pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+        {
+            pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item);
+            --pAllocationRequest->itemsToMakeLostCount;
+        }
+        else
+        {
+            return false;
+        }
+    }
+
+    VMA_HEAVY_ASSERT(Validate());
+    VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
+    VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE);
+    
+    return true;
+}
+
+uint32_t VmaBlockMetadata::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
+{
+    uint32_t lostAllocationCount = 0;
+    for(VmaSuballocationList::iterator it = m_Suballocations.begin();
+        it != m_Suballocations.end();
+        ++it)
+    {
+        if(it->type != VMA_SUBALLOCATION_TYPE_FREE &&
+            it->hAllocation->CanBecomeLost() &&
+            it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+        {
+            it = FreeSuballocation(it);
+            ++lostAllocationCount;
+        }
+    }
+    return lostAllocationCount;
+}
+
+void VmaBlockMetadata::Alloc(
+    const VmaAllocationRequest& request,
+    VmaSuballocationType type,
+    VkDeviceSize allocSize,
+    VmaAllocation hAllocation)
+{
+    VMA_ASSERT(request.item != m_Suballocations.end());
+    VmaSuballocation& suballoc = *request.item;
+    // Given suballocation is a free block.
+    VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+    // Given offset is inside this suballocation.
+    VMA_ASSERT(request.offset >= suballoc.offset);
+    const VkDeviceSize paddingBegin = request.offset - suballoc.offset;
+    VMA_ASSERT(suballoc.size >= paddingBegin + allocSize);
+    const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize;
+
+    // Unregister this free suballocation from m_FreeSuballocationsBySize and update
+    // it to become used.
+    UnregisterFreeSuballocation(request.item);
+
+    suballoc.offset = request.offset;
+    suballoc.size = allocSize;
+    suballoc.type = type;
+    suballoc.hAllocation = hAllocation;
+
+    // If there are any free bytes remaining at the end, insert new free suballocation after current one.
+    if(paddingEnd)
+    {
+        VmaSuballocation paddingSuballoc = {};
+        paddingSuballoc.offset = request.offset + allocSize;
+        paddingSuballoc.size = paddingEnd;
+        paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+        VmaSuballocationList::iterator next = request.item;
+        ++next;
+        const VmaSuballocationList::iterator paddingEndItem =
+            m_Suballocations.insert(next, paddingSuballoc);
+        RegisterFreeSuballocation(paddingEndItem);
+    }
+
+    // If there are any free bytes remaining at the beginning, insert new free suballocation before current one.
+    if(paddingBegin)
+    {
+        VmaSuballocation paddingSuballoc = {};
+        paddingSuballoc.offset = request.offset - paddingBegin;
+        paddingSuballoc.size = paddingBegin;
+        paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+        const VmaSuballocationList::iterator paddingBeginItem =
+            m_Suballocations.insert(request.item, paddingSuballoc);
+        RegisterFreeSuballocation(paddingBeginItem);
+    }
+
+    // Update totals.
+    m_FreeCount = m_FreeCount - 1;
+    if(paddingBegin > 0)
+    {
+        ++m_FreeCount;
+    }
+    if(paddingEnd > 0)
+    {
+        ++m_FreeCount;
+    }
+    m_SumFreeSize -= allocSize;
+}
+
+void VmaBlockMetadata::Free(const VmaAllocation allocation)
+{
+    for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
+        suballocItem != m_Suballocations.end();
+        ++suballocItem)
+    {
+        VmaSuballocation& suballoc = *suballocItem;
+        if(suballoc.hAllocation == allocation)
+        {
+            FreeSuballocation(suballocItem);
+            VMA_HEAVY_ASSERT(Validate());
+            return;
+        }
+    }
+    VMA_ASSERT(0 && "Not found!");
+}
+
+bool VmaBlockMetadata::ValidateFreeSuballocationList() const
+{
+    VkDeviceSize lastSize = 0;
+    for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i)
+    {
+        const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i];
+
+        if(it->type != VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            VMA_ASSERT(0);
+            return false;
+        }
+        if(it->size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+        {
+            VMA_ASSERT(0);
+            return false;
+        }
+        if(it->size < lastSize)
+        {
+            VMA_ASSERT(0);
+            return false;
+        }
+
+        lastSize = it->size;
+    }
+    return true;
+}
+
+bool VmaBlockMetadata::CheckAllocation(
+    uint32_t currentFrameIndex,
+    uint32_t frameInUseCount,
+    VkDeviceSize bufferImageGranularity,
+    VkDeviceSize allocSize,
+    VkDeviceSize allocAlignment,
+    VmaSuballocationType allocType,
+    VmaSuballocationList::const_iterator suballocItem,
+    bool canMakeOtherLost,
+    VkDeviceSize* pOffset,
+    size_t* itemsToMakeLostCount,
+    VkDeviceSize* pSumFreeSize,
+    VkDeviceSize* pSumItemSize) const
+{
+    VMA_ASSERT(allocSize > 0);
+    VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
+    VMA_ASSERT(suballocItem != m_Suballocations.cend());
+    VMA_ASSERT(pOffset != VMA_NULL);
+    
+    *itemsToMakeLostCount = 0;
+    *pSumFreeSize = 0;
+    *pSumItemSize = 0;
+
+    if(canMakeOtherLost)
+    {
+        if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            *pSumFreeSize = suballocItem->size;
+        }
+        else
+        {
+            if(suballocItem->hAllocation->CanBecomeLost() &&
+                suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+            {
+                ++*itemsToMakeLostCount;
+                *pSumItemSize = suballocItem->size;
+            }
+            else
+            {
+                return false;
+            }
+        }
+
+        // Remaining size is too small for this request: Early return.
+        if(m_Size - suballocItem->offset < allocSize)
+        {
+            return false;
+        }
+
+        // Start from offset equal to beginning of this suballocation.
+        *pOffset = suballocItem->offset;
+    
+        // Apply VMA_DEBUG_MARGIN at the beginning.
+        if((VMA_DEBUG_MARGIN > 0) && suballocItem != m_Suballocations.cbegin())
+        {
+            *pOffset += VMA_DEBUG_MARGIN;
+        }
+    
+        // Apply alignment.
+        const VkDeviceSize alignment = VMA_MAX(allocAlignment, static_cast<VkDeviceSize>(VMA_DEBUG_ALIGNMENT));
+        *pOffset = VmaAlignUp(*pOffset, alignment);
+
+        // Check previous suballocations for BufferImageGranularity conflicts.
+        // Make bigger alignment if necessary.
+        if(bufferImageGranularity > 1)
+        {
+            bool bufferImageGranularityConflict = false;
+            VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
+            while(prevSuballocItem != m_Suballocations.cbegin())
+            {
+                --prevSuballocItem;
+                const VmaSuballocation& prevSuballoc = *prevSuballocItem;
+                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
+                {
+                    if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+                    {
+                        bufferImageGranularityConflict = true;
+                        break;
+                    }
+                }
+                else
+                    // Already on previous page.
+                    break;
+            }
+            if(bufferImageGranularityConflict)
+            {
+                *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
+            }
+        }
+    
+        // Now that we have final *pOffset, check if we are past suballocItem.
+        // If yes, return false - this function should be called for another suballocItem as starting point.
+        if(*pOffset >= suballocItem->offset + suballocItem->size)
+        {
+            return false;
+        }
+    
+        // Calculate padding at the beginning based on current offset.
+        const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset;
+
+        // Calculate required margin at the end if this is not last suballocation.
+        VmaSuballocationList::const_iterator next = suballocItem;
+        ++next;
+        const VkDeviceSize requiredEndMargin =
+            (next != m_Suballocations.cend()) ? VMA_DEBUG_MARGIN : 0;
+
+        const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin;
+        // Another early return check.
+        if(suballocItem->offset + totalSize > m_Size)
+        {
+            return false;
+        }
+
+        // Advance lastSuballocItem until desired size is reached.
+        // Update itemsToMakeLostCount.
+        VmaSuballocationList::const_iterator lastSuballocItem = suballocItem;
+        if(totalSize > suballocItem->size)
+        {
+            VkDeviceSize remainingSize = totalSize - suballocItem->size;
+            while(remainingSize > 0)
+            {
+                ++lastSuballocItem;
+                if(lastSuballocItem == m_Suballocations.cend())
+                {
+                    return false;
+                }
+                if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+                {
+                    *pSumFreeSize += lastSuballocItem->size;
+                }
+                else
+                {
+                    VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE);
+                    if(lastSuballocItem->hAllocation->CanBecomeLost() &&
+                        lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+                    {
+                        ++*itemsToMakeLostCount;
+                        *pSumItemSize += lastSuballocItem->size;
+                    }
+                    else
+                    {
+                        return false;
+                    }
+                }
+                remainingSize = (lastSuballocItem->size < remainingSize) ?
+                    remainingSize - lastSuballocItem->size : 0;
+            }
+        }
+
+        // Check next suballocations for BufferImageGranularity conflicts.
+        // If conflict exists, we must mark more allocations lost or fail.
+        if(bufferImageGranularity > 1)
+        {
+            VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem;
+            ++nextSuballocItem;
+            while(nextSuballocItem != m_Suballocations.cend())
+            {
+                const VmaSuballocation& nextSuballoc = *nextSuballocItem;
+                if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+                {
+                    if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+                    {
+                        VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE);
+                        if(nextSuballoc.hAllocation->CanBecomeLost() &&
+                            nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+                        {
+                            ++*itemsToMakeLostCount;
+                        }
+                        else
+                        {
+                            return false;
+                        }
+                    }
+                }
+                else
+                {
+                    // Already on next page.
+                    break;
+                }
+                ++nextSuballocItem;
+            }
+        }
+    }
+    else
+    {
+        const VmaSuballocation& suballoc = *suballocItem;
+        VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+
+        *pSumFreeSize = suballoc.size;
+
+        // Size of this suballocation is too small for this request: Early return.
+        if(suballoc.size < allocSize)
+        {
+            return false;
+        }
+
+        // Start from offset equal to beginning of this suballocation.
+        *pOffset = suballoc.offset;
+    
+        // Apply VMA_DEBUG_MARGIN at the beginning.
+        if((VMA_DEBUG_MARGIN > 0) && suballocItem != m_Suballocations.cbegin())
+        {
+            *pOffset += VMA_DEBUG_MARGIN;
+        }
+    
+        // Apply alignment.
+        const VkDeviceSize alignment = VMA_MAX(allocAlignment, static_cast<VkDeviceSize>(VMA_DEBUG_ALIGNMENT));
+        *pOffset = VmaAlignUp(*pOffset, alignment);
+    
+        // Check previous suballocations for BufferImageGranularity conflicts.
+        // Make bigger alignment if necessary.
+        if(bufferImageGranularity > 1)
+        {
+            bool bufferImageGranularityConflict = false;
+            VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
+            while(prevSuballocItem != m_Suballocations.cbegin())
+            {
+                --prevSuballocItem;
+                const VmaSuballocation& prevSuballoc = *prevSuballocItem;
+                if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
+                {
+                    if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+                    {
+                        bufferImageGranularityConflict = true;
+                        break;
+                    }
+                }
+                else
+                    // Already on previous page.
+                    break;
+            }
+            if(bufferImageGranularityConflict)
+            {
+                *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
+            }
+        }
+    
+        // Calculate padding at the beginning based on current offset.
+        const VkDeviceSize paddingBegin = *pOffset - suballoc.offset;
+
+        // Calculate required margin at the end if this is not last suballocation.
+        VmaSuballocationList::const_iterator next = suballocItem;
+        ++next;
+        const VkDeviceSize requiredEndMargin =
+            (next != m_Suballocations.cend()) ? VMA_DEBUG_MARGIN : 0;
+
+        // Fail if requested size plus margin before and after is bigger than size of this suballocation.
+        if(paddingBegin + allocSize + requiredEndMargin > suballoc.size)
+        {
+            return false;
+        }
+
+        // Check next suballocations for BufferImageGranularity conflicts.
+        // If conflict exists, allocation cannot be made here.
+        if(bufferImageGranularity > 1)
+        {
+            VmaSuballocationList::const_iterator nextSuballocItem = suballocItem;
+            ++nextSuballocItem;
+            while(nextSuballocItem != m_Suballocations.cend())
+            {
+                const VmaSuballocation& nextSuballoc = *nextSuballocItem;
+                if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+                {
+                    if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+                    {
+                        return false;
+                    }
+                }
+                else
+                {
+                    // Already on next page.
+                    break;
+                }
+                ++nextSuballocItem;
+            }
+        }
+    }
+
+    // All tests passed: Success. pOffset is already filled.
+    return true;
+}
+
+void VmaBlockMetadata::MergeFreeWithNext(VmaSuballocationList::iterator item)
+{
+    VMA_ASSERT(item != m_Suballocations.end());
+    VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
+    
+    VmaSuballocationList::iterator nextItem = item;
+    ++nextItem;
+    VMA_ASSERT(nextItem != m_Suballocations.end());
+    VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);
+
+    item->size += nextItem->size;
+    --m_FreeCount;
+    m_Suballocations.erase(nextItem);
+}
+
+VmaSuballocationList::iterator VmaBlockMetadata::FreeSuballocation(VmaSuballocationList::iterator suballocItem)
+{
+    // Change this suballocation to be marked as free.
+    VmaSuballocation& suballoc = *suballocItem;
+    suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+    suballoc.hAllocation = VK_NULL_HANDLE;
+    
+    // Update totals.
+    ++m_FreeCount;
+    m_SumFreeSize += suballoc.size;
+
+    // Merge with previous and/or next suballocation if it's also free.
+    bool mergeWithNext = false;
+    bool mergeWithPrev = false;
+    
+    VmaSuballocationList::iterator nextItem = suballocItem;
+    ++nextItem;
+    if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE))
+    {
+        mergeWithNext = true;
+    }
+
+    VmaSuballocationList::iterator prevItem = suballocItem;
+    if(suballocItem != m_Suballocations.begin())
+    {
+        --prevItem;
+        if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+        {
+            mergeWithPrev = true;
+        }
+    }
+
+    if(mergeWithNext)
+    {
+        UnregisterFreeSuballocation(nextItem);
+        MergeFreeWithNext(suballocItem);
+    }
+
+    if(mergeWithPrev)
+    {
+        UnregisterFreeSuballocation(prevItem);
+        MergeFreeWithNext(prevItem);
+        RegisterFreeSuballocation(prevItem);
+        return prevItem;
+    }
+    else
+    {
+        RegisterFreeSuballocation(suballocItem);
+        return suballocItem;
+    }
+}
+
+void VmaBlockMetadata::RegisterFreeSuballocation(VmaSuballocationList::iterator item)
+{
+    VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
+    VMA_ASSERT(item->size > 0);
+
+    // You may want to enable this validation at the beginning or at the end of
+    // this function, depending on what do you want to check.
+    VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+
+    if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+    {
+        if(m_FreeSuballocationsBySize.empty())
+        {
+            m_FreeSuballocationsBySize.push_back(item);
+        }
+        else
+        {
+            VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item);
+        }
+    }
+
+    //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+}
+
+
+void VmaBlockMetadata::UnregisterFreeSuballocation(VmaSuballocationList::iterator item)
+{
+    VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
+    VMA_ASSERT(item->size > 0);
+
+    // You may want to enable this validation at the beginning or at the end of
+    // this function, depending on what do you want to check.
+    VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+
+    if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+    {
+        VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
+            m_FreeSuballocationsBySize.data(),
+            m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),
+            item,
+            VmaSuballocationItemSizeLess());
+        for(size_t index = it - m_FreeSuballocationsBySize.data();
+            index < m_FreeSuballocationsBySize.size();
+            ++index)
+        {
+            if(m_FreeSuballocationsBySize[index] == item)
+            {
+                VmaVectorRemove(m_FreeSuballocationsBySize, index);
+                return;
+            }
+            VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");
+        }
+        VMA_ASSERT(0 && "Not found.");
+    }
+
+    //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaDeviceMemoryMapping
+
+VmaDeviceMemoryMapping::VmaDeviceMemoryMapping() :
+    m_MapCount(0),
+    m_pMappedData(VMA_NULL)
+{
+}
+
+VmaDeviceMemoryMapping::~VmaDeviceMemoryMapping()
+{
+    VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");
+}
+
+VkResult VmaDeviceMemoryMapping::Map(VmaAllocator hAllocator, VkDeviceMemory hMemory, void **ppData)
+{
+    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+    if(m_MapCount != 0)
+    {
+        ++m_MapCount;
+        VMA_ASSERT(m_pMappedData != VMA_NULL);
+        if(ppData != VMA_NULL)
+        {
+            *ppData = m_pMappedData;
+        }
+        return VK_SUCCESS;
+    }
+    else
+    {
+        VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
+            hAllocator->m_hDevice,
+            hMemory,
+            0, // offset
+            VK_WHOLE_SIZE,
+            0, // flags
+            &m_pMappedData);
+        if(result == VK_SUCCESS)
+        {
+            if(ppData != VMA_NULL)
+            {
+                *ppData = m_pMappedData;
+            }
+            m_MapCount = 1;
+        }
+        return result;
+    }
+}
+
+void VmaDeviceMemoryMapping::Unmap(VmaAllocator hAllocator, VkDeviceMemory hMemory)
+{
+    VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+    if(m_MapCount != 0)
+    {
+        if(--m_MapCount == 0)
+        {
+            m_pMappedData = VMA_NULL;
+            (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, hMemory);
+        }
+    }
+    else
+    {
+        VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaDeviceMemoryBlock
+
+VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) :
+    m_MemoryTypeIndex(UINT32_MAX),
+    m_hMemory(VK_NULL_HANDLE),
+    m_Metadata(hAllocator)
+{
+}
+
+void VmaDeviceMemoryBlock::Init(
+    uint32_t newMemoryTypeIndex,
+    VkDeviceMemory newMemory,
+    VkDeviceSize newSize)
+{
+    VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
+
+    m_MemoryTypeIndex = newMemoryTypeIndex;
+    m_hMemory = newMemory;
+
+    m_Metadata.Init(newSize);
+}
+
+void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)
+{
+    // This is the most important assert in the entire library.
+    // Hitting it means you have some memory leak - unreleased VmaAllocation objects.
+    VMA_ASSERT(m_Metadata.IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
+    
+    VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);
+    allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_Metadata.GetSize(), m_hMemory);
+    m_hMemory = VK_NULL_HANDLE;
+}
+
+bool VmaDeviceMemoryBlock::Validate() const
+{
+    if((m_hMemory == VK_NULL_HANDLE) ||
+        (m_Metadata.GetSize() == 0))
+    {
+        return false;
+    }
+    
+    return m_Metadata.Validate();
+}
+
+VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, void** ppData)
+{
+    return m_Mapping.Map(hAllocator, m_hMemory, ppData);
+}
+
+void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator)
+{
+    m_Mapping.Unmap(hAllocator, m_hMemory);
+}
+
+static void InitStatInfo(VmaStatInfo& outInfo)
+{
+    memset(&outInfo, 0, sizeof(outInfo));
+    outInfo.allocationSizeMin = UINT64_MAX;
+    outInfo.unusedRangeSizeMin = UINT64_MAX;
+}
+
+// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo.
+static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo)
+{
+    inoutInfo.blockCount += srcInfo.blockCount;
+    inoutInfo.allocationCount += srcInfo.allocationCount;
+    inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount;
+    inoutInfo.usedBytes += srcInfo.usedBytes;
+    inoutInfo.unusedBytes += srcInfo.unusedBytes;
+    inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin);
+    inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax);
+    inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin);
+    inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax);
+}
+
+static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo)
+{
+    inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ?
+        VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0;
+    inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ?
+        VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0;
+}
+
+VmaPool_T::VmaPool_T(
+    VmaAllocator hAllocator,
+    const VmaPoolCreateInfo& createInfo) :
+    m_BlockVector(
+        hAllocator,
+        createInfo.memoryTypeIndex,
+        createInfo.blockSize,
+        createInfo.minBlockCount,
+        createInfo.maxBlockCount,
+        (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
+        createInfo.frameInUseCount,
+        true) // isCustomPool
+{
+}
+
+VmaPool_T::~VmaPool_T()
+{
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+VmaBlockVector::VmaBlockVector(
+    VmaAllocator hAllocator,
+    uint32_t memoryTypeIndex,
+    VkDeviceSize preferredBlockSize,
+    size_t minBlockCount,
+    size_t maxBlockCount,
+    VkDeviceSize bufferImageGranularity,
+    uint32_t frameInUseCount,
+    bool isCustomPool) :
+    m_hAllocator(hAllocator),
+    m_MemoryTypeIndex(memoryTypeIndex),
+    m_PreferredBlockSize(preferredBlockSize),
+    m_MinBlockCount(minBlockCount),
+    m_MaxBlockCount(maxBlockCount),
+    m_BufferImageGranularity(bufferImageGranularity),
+    m_FrameInUseCount(frameInUseCount),
+    m_IsCustomPool(isCustomPool),
+    m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),
+    m_HasEmptyBlock(false),
+    m_pDefragmentator(VMA_NULL)
+{
+}
+
+VmaBlockVector::~VmaBlockVector()
+{
+    VMA_ASSERT(m_pDefragmentator == VMA_NULL);
+
+    for(size_t i = m_Blocks.size(); i--; )
+    {
+        m_Blocks[i]->Destroy(m_hAllocator);
+        vma_delete(m_hAllocator, m_Blocks[i]);
+    }
+}
+
+VkResult VmaBlockVector::CreateMinBlocks()
+{
+    for(size_t i = 0; i < m_MinBlockCount; ++i)
+    {
+        VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
+        if(res != VK_SUCCESS)
+        {
+            return res;
+        }
+    }
+    return VK_SUCCESS;
+}
+
+void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats)
+{
+    pStats->size = 0;
+    pStats->unusedSize = 0;
+    pStats->allocationCount = 0;
+    pStats->unusedRangeCount = 0;
+    pStats->unusedRangeSizeMax = 0;
+
+    VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+    {
+        const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+        VMA_ASSERT(pBlock);
+        VMA_HEAVY_ASSERT(pBlock->Validate());
+        pBlock->m_Metadata.AddPoolStats(*pStats);
+    }
+}
+
+static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
+
+VkResult VmaBlockVector::Allocate(
+    VmaPool hCurrentPool,
+    uint32_t currentFrameIndex,
+    const VkMemoryRequirements& vkMemReq,
+    const VmaAllocationCreateInfo& createInfo,
+    VmaSuballocationType suballocType,
+    VmaAllocation* pAllocation)
+{
+    const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
+    const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
+
+    VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+    // 1. Search existing allocations. Try to allocate without making other allocations lost.
+    // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
+    for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
+    {
+        VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+        VMA_ASSERT(pCurrBlock);
+        VmaAllocationRequest currRequest = {};
+        if(pCurrBlock->m_Metadata.CreateAllocationRequest(
+            currentFrameIndex,
+            m_FrameInUseCount,
+            m_BufferImageGranularity,
+            vkMemReq.size,
+            vkMemReq.alignment,
+            suballocType,
+            false, // canMakeOtherLost
+            &currRequest))
+        {
+            // Allocate from pCurrBlock.
+            VMA_ASSERT(currRequest.itemsToMakeLostCount == 0);
+
+            if(mapped)
+            {
+                VkResult res = pCurrBlock->Map(m_hAllocator, nullptr);
+                if(res != VK_SUCCESS)
+                {
+                    return res;
+                }
+            }
+            
+            // We no longer have an empty Allocation.
+            if(pCurrBlock->m_Metadata.IsEmpty())
+            {
+                m_HasEmptyBlock = false;
+            }
+            
+            *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);
+            pCurrBlock->m_Metadata.Alloc(currRequest, suballocType, vkMemReq.size, *pAllocation);
+            (*pAllocation)->InitBlockAllocation(
+                hCurrentPool,
+                pCurrBlock,
+                currRequest.offset,
+                vkMemReq.alignment,
+                vkMemReq.size,
+                suballocType,
+                mapped,
+                (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
+            VMA_HEAVY_ASSERT(pCurrBlock->Validate());
+            VMA_DEBUG_LOG("    Returned from existing allocation #%u", (uint32_t)blockIndex);
+            (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
+            return VK_SUCCESS;
+        }
+    }
+
+    const bool canCreateNewBlock =
+        ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
+        (m_Blocks.size() < m_MaxBlockCount);
+
+    // 2. Try to create new block.
+    if(canCreateNewBlock)
+    {
+        // 2.1. Start with full preferredBlockSize.
+        VkDeviceSize blockSize = m_PreferredBlockSize;
+        size_t newBlockIndex = 0;
+        VkResult res = CreateBlock(blockSize, &newBlockIndex);
+        // Allocating blocks of other sizes is allowed only in default pools.
+        // In custom pools block size is fixed.
+        if(res < 0 && m_IsCustomPool == false)
+        {
+            // 2.2. Try half the size.
+            blockSize /= 2;
+            if(blockSize >= vkMemReq.size)
+            {
+                res = CreateBlock(blockSize, &newBlockIndex);
+                if(res < 0)
+                {
+                    // 2.3. Try quarter the size.
+                    blockSize /= 2;
+                    if(blockSize >= vkMemReq.size)
+                    {
+                        res = CreateBlock(blockSize, &newBlockIndex);
+                    }
+                }
+            }
+        }
+        if(res == VK_SUCCESS)
+        {
+            VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
+            VMA_ASSERT(pBlock->m_Metadata.GetSize() >= vkMemReq.size);
+
+            if(mapped)
+            {
+                res = pBlock->Map(m_hAllocator, nullptr);
+                if(res != VK_SUCCESS)
+                {
+                    return res;
+                }
+            }
+
+            // Allocate from pBlock. Because it is empty, dstAllocRequest can be trivially filled.
+            VmaAllocationRequest allocRequest;
+            pBlock->m_Metadata.CreateFirstAllocationRequest(&allocRequest);
+            *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);
+            pBlock->m_Metadata.Alloc(allocRequest, suballocType, vkMemReq.size, *pAllocation);
+            (*pAllocation)->InitBlockAllocation(
+                hCurrentPool,
+                pBlock,
+                allocRequest.offset,
+                vkMemReq.alignment,
+                vkMemReq.size,
+                suballocType,
+                mapped,
+                (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
+            VMA_HEAVY_ASSERT(pBlock->Validate());
+            VMA_DEBUG_LOG("    Created new allocation Size=%llu", allocInfo.allocationSize);
+            (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
+            return VK_SUCCESS;
+        }
+    }
+
+    const bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0;
+
+    // 3. Try to allocate from existing blocks with making other allocations lost.
+    if(canMakeOtherLost)
+    {
+        uint32_t tryIndex = 0;
+        for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex)
+        {
+            VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL;
+            VmaAllocationRequest bestRequest = {};
+            VkDeviceSize bestRequestCost = VK_WHOLE_SIZE;
+
+            // 1. Search existing allocations.
+            // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
+            for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
+            {
+                VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+                VMA_ASSERT(pCurrBlock);
+                VmaAllocationRequest currRequest = {};
+                if(pCurrBlock->m_Metadata.CreateAllocationRequest(
+                    currentFrameIndex,
+                    m_FrameInUseCount,
+                    m_BufferImageGranularity,
+                    vkMemReq.size,
+                    vkMemReq.alignment,
+                    suballocType,
+                    canMakeOtherLost,
+                    &currRequest))
+                {
+                    const VkDeviceSize currRequestCost = currRequest.CalcCost();
+                    if(pBestRequestBlock == VMA_NULL ||
+                        currRequestCost < bestRequestCost)
+                    {
+                        pBestRequestBlock = pCurrBlock;
+                        bestRequest = currRequest;
+                        bestRequestCost = currRequestCost;
+
+                        if(bestRequestCost == 0)
+                        {
+                            break;
+                        }
+                    }
+                }
+            }
+
+            if(pBestRequestBlock != VMA_NULL)
+            {
+                if(mapped)
+                {
+                    VkResult res = pBestRequestBlock->Map(m_hAllocator, nullptr);
+                    if(res != VK_SUCCESS)
+                    {
+                        return res;
+                    }
+                }
+
+                if(pBestRequestBlock->m_Metadata.MakeRequestedAllocationsLost(
+                    currentFrameIndex,
+                    m_FrameInUseCount,
+                    &bestRequest))
+                {
+                    // We no longer have an empty Allocation.
+                    if(pBestRequestBlock->m_Metadata.IsEmpty())
+                    {
+                        m_HasEmptyBlock = false;
+                    }
+                    // Allocate from this pBlock.
+                    *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);
+                    pBestRequestBlock->m_Metadata.Alloc(bestRequest, suballocType, vkMemReq.size, *pAllocation);
+                    (*pAllocation)->InitBlockAllocation(
+                        hCurrentPool,
+                        pBestRequestBlock,
+                        bestRequest.offset,
+                        vkMemReq.alignment,
+                        vkMemReq.size,
+                        suballocType,
+                        mapped,
+                        (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
+                    VMA_HEAVY_ASSERT(pBlock->Validate());
+                    VMA_DEBUG_LOG("    Returned from existing allocation #%u", (uint32_t)blockIndex);
+                    (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
+                    return VK_SUCCESS;
+                }
+                // else: Some allocations must have been touched while we are here. Next try.
+            }
+            else
+            {
+                // Could not find place in any of the blocks - break outer loop.
+                break;
+            }
+        }
+        /* Maximum number of tries exceeded - a very unlike event when many other
+        threads are simultaneously touching allocations making it impossible to make
+        lost at the same time as we try to allocate. */
+        if(tryIndex == VMA_ALLOCATION_TRY_COUNT)
+        {
+            return VK_ERROR_TOO_MANY_OBJECTS;
+        }
+    }
+
+    return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+}
+
+void VmaBlockVector::Free(
+    VmaAllocation hAllocation)
+{
+    VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;
+
+    // Scope for lock.
+    {
+        VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+        VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
+
+        if(hAllocation->IsPersistentMap())
+        {
+            pBlock->m_Mapping.Unmap(m_hAllocator, pBlock->m_hMemory);
+        }
+
+        pBlock->m_Metadata.Free(hAllocation);
+        VMA_HEAVY_ASSERT(pBlock->Validate());
+
+        VMA_DEBUG_LOG("  Freed from MemoryTypeIndex=%u", memTypeIndex);
+
+        // pBlock became empty after this deallocation.
+        if(pBlock->m_Metadata.IsEmpty())
+        {
+            // Already has empty Allocation. We don't want to have two, so delete this one.
+            if(m_HasEmptyBlock && m_Blocks.size() > m_MinBlockCount)
+            {
+                pBlockToDelete = pBlock;
+                Remove(pBlock);
+            }
+            // We now have first empty Allocation.
+            else
+            {
+                m_HasEmptyBlock = true;
+            }
+        }
+        // pBlock didn't become empty, but we have another empty block - find and free that one.
+        // (This is optional, heuristics.)
+        else if(m_HasEmptyBlock)
+        {
+            VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();
+            if(pLastBlock->m_Metadata.IsEmpty() && m_Blocks.size() > m_MinBlockCount)
+            {
+                pBlockToDelete = pLastBlock;
+                m_Blocks.pop_back();
+                m_HasEmptyBlock = false;
+            }
+        }
+
+        IncrementallySortBlocks();
+    }
+
+    // Destruction of a free Allocation. Deferred until this point, outside of mutex
+    // lock, for performance reason.
+    if(pBlockToDelete != VMA_NULL)
+    {
+        VMA_DEBUG_LOG("    Deleted empty allocation");
+        pBlockToDelete->Destroy(m_hAllocator);
+        vma_delete(m_hAllocator, pBlockToDelete);
+    }
+}
+
+void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
+{
+    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+    {
+        if(m_Blocks[blockIndex] == pBlock)
+        {
+            VmaVectorRemove(m_Blocks, blockIndex);
+            return;
+        }
+    }
+    VMA_ASSERT(0);
+}
+
+void VmaBlockVector::IncrementallySortBlocks()
+{
+    // Bubble sort only until first swap.
+    for(size_t i = 1; i < m_Blocks.size(); ++i)
+    {
+        if(m_Blocks[i - 1]->m_Metadata.GetSumFreeSize() > m_Blocks[i]->m_Metadata.GetSumFreeSize())
+        {
+            VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
+            return;
+        }
+    }
+}
+
+VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
+{
+    VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
+    allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
+    allocInfo.allocationSize = blockSize;
+    VkDeviceMemory mem = VK_NULL_HANDLE;
+    VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
+    if(res < 0)
+    {
+        return res;
+    }
+
+    // New VkDeviceMemory successfully created.
+
+    // Create new Allocation for it.
+    VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
+    pBlock->Init(
+        m_MemoryTypeIndex,
+        mem,
+        allocInfo.allocationSize);
+
+    m_Blocks.push_back(pBlock);
+    if(pNewBlockIndex != VMA_NULL)
+    {
+        *pNewBlockIndex = m_Blocks.size() - 1;
+    }
+
+    return VK_SUCCESS;
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
+{
+    VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+    json.BeginObject();
+
+    if(m_IsCustomPool)
+    {
+        json.WriteString("MemoryTypeIndex");
+        json.WriteNumber(m_MemoryTypeIndex);
+
+        json.WriteString("BlockSize");
+        json.WriteNumber(m_PreferredBlockSize);
+
+        json.WriteString("BlockCount");
+        json.BeginObject(true);
+        if(m_MinBlockCount > 0)
+        {
+            json.WriteString("Min");
+            json.WriteNumber(m_MinBlockCount);
+        }
+        if(m_MaxBlockCount < SIZE_MAX)
+        {
+            json.WriteString("Max");
+            json.WriteNumber(m_MaxBlockCount);
+        }
+        json.WriteString("Cur");
+        json.WriteNumber(m_Blocks.size());
+        json.EndObject();
+
+        if(m_FrameInUseCount > 0)
+        {
+            json.WriteString("FrameInUseCount");
+            json.WriteNumber(m_FrameInUseCount);
+        }
+    }
+    else
+    {
+        json.WriteString("PreferredBlockSize");
+        json.WriteNumber(m_PreferredBlockSize);
+    }
+
+    json.WriteString("Blocks");
+    json.BeginArray();
+    for(size_t i = 0; i < m_Blocks.size(); ++i)
+    {
+        m_Blocks[i]->m_Metadata.PrintDetailedMap(json);
+    }
+    json.EndArray();
+
+    json.EndObject();
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+VmaDefragmentator* VmaBlockVector::EnsureDefragmentator(
+    VmaAllocator hAllocator,
+    uint32_t currentFrameIndex)
+{
+    if(m_pDefragmentator == VMA_NULL)
+    {
+        m_pDefragmentator = vma_new(m_hAllocator, VmaDefragmentator)(
+            hAllocator,
+            this,
+            currentFrameIndex);
+    }
+
+    return m_pDefragmentator;
+}
+
+VkResult VmaBlockVector::Defragment(
+    VmaDefragmentationStats* pDefragmentationStats,
+    VkDeviceSize& maxBytesToMove,
+    uint32_t& maxAllocationsToMove)
+{
+    if(m_pDefragmentator == VMA_NULL)
+    {
+        return VK_SUCCESS;
+    }
+
+    VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+    // Defragment.
+    VkResult result = m_pDefragmentator->Defragment(maxBytesToMove, maxAllocationsToMove);
+
+    // Accumulate statistics.
+    if(pDefragmentationStats != VMA_NULL)
+    {
+        const VkDeviceSize bytesMoved = m_pDefragmentator->GetBytesMoved();
+        const uint32_t allocationsMoved = m_pDefragmentator->GetAllocationsMoved();
+        pDefragmentationStats->bytesMoved += bytesMoved;
+        pDefragmentationStats->allocationsMoved += allocationsMoved;
+        VMA_ASSERT(bytesMoved <= maxBytesToMove);
+        VMA_ASSERT(allocationsMoved <= maxAllocationsToMove);
+        maxBytesToMove -= bytesMoved;
+        maxAllocationsToMove -= allocationsMoved;
+    }
+    
+    // Free empty blocks.
+    m_HasEmptyBlock = false;
+    for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
+    {
+        VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
+        if(pBlock->m_Metadata.IsEmpty())
+        {
+            if(m_Blocks.size() > m_MinBlockCount)
+            {
+                if(pDefragmentationStats != VMA_NULL)
+                {
+                    ++pDefragmentationStats->deviceMemoryBlocksFreed;
+                    pDefragmentationStats->bytesFreed += pBlock->m_Metadata.GetSize();
+                }
+
+                VmaVectorRemove(m_Blocks, blockIndex);
+                pBlock->Destroy(m_hAllocator);
+                vma_delete(m_hAllocator, pBlock);
+            }
+            else
+            {
+                m_HasEmptyBlock = true;
+            }
+        }
+    }
+
+    return result;
+}
+
+void VmaBlockVector::DestroyDefragmentator()
+{
+    if(m_pDefragmentator != VMA_NULL)
+    {
+        vma_delete(m_hAllocator, m_pDefragmentator);
+        m_pDefragmentator = VMA_NULL;
+    }
+}
+
+void VmaBlockVector::MakePoolAllocationsLost(
+    uint32_t currentFrameIndex,
+    size_t* pLostAllocationCount)
+{
+    VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+    {
+        VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+        VMA_ASSERT(pBlock);
+        pBlock->m_Metadata.MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount);
+    }
+}
+
+void VmaBlockVector::AddStats(VmaStats* pStats)
+{
+    const uint32_t memTypeIndex = m_MemoryTypeIndex;
+    const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex);
+
+    VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+    for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+    {
+        const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+        VMA_ASSERT(pBlock);
+        VMA_HEAVY_ASSERT(pBlock->Validate());
+        VmaStatInfo allocationStatInfo;
+        pBlock->m_Metadata.CalcAllocationStatInfo(allocationStatInfo);
+        VmaAddStatInfo(pStats->total, allocationStatInfo);
+        VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
+        VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
+    }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaDefragmentator members definition
+
+VmaDefragmentator::VmaDefragmentator(
+    VmaAllocator hAllocator,
+    VmaBlockVector* pBlockVector,
+    uint32_t currentFrameIndex) :
+    m_hAllocator(hAllocator),
+    m_pBlockVector(pBlockVector),
+    m_CurrentFrameIndex(currentFrameIndex),
+    m_BytesMoved(0),
+    m_AllocationsMoved(0),
+    m_Allocations(VmaStlAllocator<AllocationInfo>(hAllocator->GetAllocationCallbacks())),
+    m_Blocks(VmaStlAllocator<BlockInfo*>(hAllocator->GetAllocationCallbacks()))
+{
+}
+
+VmaDefragmentator::~VmaDefragmentator()
+{
+    for(size_t i = m_Blocks.size(); i--; )
+    {
+        vma_delete(m_hAllocator, m_Blocks[i]);
+    }
+}
+
+void VmaDefragmentator::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)
+{
+    AllocationInfo allocInfo;
+    allocInfo.m_hAllocation = hAlloc;
+    allocInfo.m_pChanged = pChanged;
+    m_Allocations.push_back(allocInfo);
+}
+
+VkResult VmaDefragmentator::BlockInfo::EnsureMapping(VmaAllocator hAllocator, void** ppMappedData)
+{
+    // It has already been mapped for defragmentation.
+    if(m_pMappedDataForDefragmentation)
+    {
+        *ppMappedData = m_pMappedDataForDefragmentation;
+        return VK_SUCCESS;
+    }
+            
+    // It is originally mapped.
+    if(m_pBlock->m_Mapping.GetMappedData())
+    {
+        *ppMappedData = m_pBlock->m_Mapping.GetMappedData();
+        return VK_SUCCESS;
+    }
+            
+    // Map on first usage.
+    VkResult res = m_pBlock->Map(hAllocator, &m_pMappedDataForDefragmentation);
+    *ppMappedData = m_pMappedDataForDefragmentation;
+    return res;
+}
+
+void VmaDefragmentator::BlockInfo::Unmap(VmaAllocator hAllocator)
+{
+    if(m_pMappedDataForDefragmentation != VMA_NULL)
+    {
+        m_pBlock->Unmap(hAllocator);
+    }
+}
+
+VkResult VmaDefragmentator::DefragmentRound(
+    VkDeviceSize maxBytesToMove,
+    uint32_t maxAllocationsToMove)
+{
+    if(m_Blocks.empty())
+    {
+        return VK_SUCCESS;
+    }
+
+    size_t srcBlockIndex = m_Blocks.size() - 1;
+    size_t srcAllocIndex = SIZE_MAX;
+    for(;;)
+    {
+        // 1. Find next allocation to move.
+        // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source".
+        // 1.2. Then start from last to first m_Allocations - they are sorted from largest to smallest.
+        while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size())
+        {
+            if(m_Blocks[srcBlockIndex]->m_Allocations.empty())
+            {
+                // Finished: no more allocations to process.
+                if(srcBlockIndex == 0)
+                {
+                    return VK_SUCCESS;
+                }
+                else
+                {
+                    --srcBlockIndex;
+                    srcAllocIndex = SIZE_MAX;
+                }
+            }
+            else
+            {
+                srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1;
+            }
+        }
+        
+        BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex];
+        AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex];
+
+        const VkDeviceSize size = allocInfo.m_hAllocation->GetSize();
+        const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset();
+        const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment();
+        const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType();
+
+        // 2. Try to find new place for this allocation in preceding or current block.
+        for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex)
+        {
+            BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex];
+            VmaAllocationRequest dstAllocRequest;
+            if(pDstBlockInfo->m_pBlock->m_Metadata.CreateAllocationRequest(
+                m_CurrentFrameIndex,
+                m_pBlockVector->GetFrameInUseCount(),
+                m_pBlockVector->GetBufferImageGranularity(),
+                size,
+                alignment,
+                suballocType,
+                false, // canMakeOtherLost
+                &dstAllocRequest) &&
+            MoveMakesSense(
+                dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset))
+            {
+                VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0);
+
+                // Reached limit on number of allocations or bytes to move.
+                if((m_AllocationsMoved + 1 > maxAllocationsToMove) ||
+                    (m_BytesMoved + size > maxBytesToMove))
+                {
+                    return VK_INCOMPLETE;
+                }
+
+                void* pDstMappedData = VMA_NULL;
+                VkResult res = pDstBlockInfo->EnsureMapping(m_hAllocator, &pDstMappedData);
+                if(res != VK_SUCCESS)
+                {
+                    return res;
+                }
+
+                void* pSrcMappedData = VMA_NULL;
+                res = pSrcBlockInfo->EnsureMapping(m_hAllocator, &pSrcMappedData);
+                if(res != VK_SUCCESS)
+                {
+                    return res;
+                }
+                
+                // THE PLACE WHERE ACTUAL DATA COPY HAPPENS.
+                memcpy(
+                    reinterpret_cast<char*>(pDstMappedData) + dstAllocRequest.offset,
+                    reinterpret_cast<char*>(pSrcMappedData) + srcOffset,
+                    static_cast<size_t>(size));
+                
+                pDstBlockInfo->m_pBlock->m_Metadata.Alloc(dstAllocRequest, suballocType, size, allocInfo.m_hAllocation);
+                pSrcBlockInfo->m_pBlock->m_Metadata.Free(allocInfo.m_hAllocation);
+                
+                allocInfo.m_hAllocation->ChangeBlockAllocation(pDstBlockInfo->m_pBlock, dstAllocRequest.offset);
+                
+                if(allocInfo.m_pChanged != VMA_NULL)
+                {
+                    *allocInfo.m_pChanged = VK_TRUE;
+                }
+
+                ++m_AllocationsMoved;
+                m_BytesMoved += size;
+
+                VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex);
+
+                break;
+            }
+        }
+
+        // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round.
+
+        if(srcAllocIndex > 0)
+        {
+            --srcAllocIndex;
+        }
+        else
+        {
+            if(srcBlockIndex > 0)
+            {
+                --srcBlockIndex;
+                srcAllocIndex = SIZE_MAX;
+            }
+            else
+            {
+                return VK_SUCCESS;
+            }
+        }
+    }
+}
+
+VkResult VmaDefragmentator::Defragment(
+    VkDeviceSize maxBytesToMove,
+    uint32_t maxAllocationsToMove)
+{
+    if(m_Allocations.empty())
+    {
+        return VK_SUCCESS;
+    }
+
+    // Create block info for each block.
+    const size_t blockCount = m_pBlockVector->m_Blocks.size();
+    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+    {
+        BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks());
+        pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex];
+        m_Blocks.push_back(pBlockInfo);
+    }
+
+    // Sort them by m_pBlock pointer value.
+    VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess());
+
+    // Move allocation infos from m_Allocations to appropriate m_Blocks[memTypeIndex].m_Allocations.
+    for(size_t blockIndex = 0, allocCount = m_Allocations.size(); blockIndex < allocCount; ++blockIndex)
+    {
+        AllocationInfo& allocInfo = m_Allocations[blockIndex];
+        // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost.
+        if(allocInfo.m_hAllocation->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)
+        {
+            VmaDeviceMemoryBlock* pBlock = allocInfo.m_hAllocation->GetBlock();
+            BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess());
+            if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock)
+            {
+                (*it)->m_Allocations.push_back(allocInfo);
+            }
+            else
+            {
+                VMA_ASSERT(0);
+            }
+        }
+    }
+    m_Allocations.clear();
+
+    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+    {
+        BlockInfo* pBlockInfo = m_Blocks[blockIndex];
+        pBlockInfo->CalcHasNonMovableAllocations();
+        pBlockInfo->SortAllocationsBySizeDescecnding();
+    }
+
+    // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks.
+    VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination());
+
+    // Execute defragmentation rounds (the main part).
+    VkResult result = VK_SUCCESS;
+    for(size_t round = 0; (round < 2) && (result == VK_SUCCESS); ++round)
+    {
+        result = DefragmentRound(maxBytesToMove, maxAllocationsToMove);
+    }
+
+    // Unmap blocks that were mapped for defragmentation.
+    for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+    {
+        m_Blocks[blockIndex]->Unmap(m_hAllocator);
+    }
+
+    return result;
+}
+
+bool VmaDefragmentator::MoveMakesSense(
+        size_t dstBlockIndex, VkDeviceSize dstOffset,
+        size_t srcBlockIndex, VkDeviceSize srcOffset)
+{
+    if(dstBlockIndex < srcBlockIndex)
+    {
+        return true;
+    }
+    if(dstBlockIndex > srcBlockIndex)
+    {
+        return false;
+    }
+    if(dstOffset < srcOffset)
+    {
+        return true;
+    }
+    return false;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaAllocator_T
+
+VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
+    m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
+    m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),
+    m_PhysicalDevice(pCreateInfo->physicalDevice),
+    m_hDevice(pCreateInfo->device),
+    m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
+    m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
+        *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
+    m_PreferredLargeHeapBlockSize(0),
+    m_PreferredSmallHeapBlockSize(0),
+    m_CurrentFrameIndex(0),
+    m_Pools(VmaStlAllocator<VmaPool>(GetAllocationCallbacks()))
+{
+    VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device);    
+
+    memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
+    memset(&m_MemProps, 0, sizeof(m_MemProps));
+    memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
+        
+    memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
+    memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations));
+
+    for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
+    {
+        m_HeapSizeLimit[i] = VK_WHOLE_SIZE;
+    }
+
+    if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
+    {
+        m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
+        m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
+    }
+
+    ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
+
+    (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
+    (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
+
+    m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
+        pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
+    m_PreferredSmallHeapBlockSize = (pCreateInfo->preferredSmallHeapBlockSize != 0) ?
+        pCreateInfo->preferredSmallHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_SMALL_HEAP_BLOCK_SIZE);
+
+    if(pCreateInfo->pHeapSizeLimit != VMA_NULL)
+    {
+        for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
+        {
+            const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
+            if(limit != VK_WHOLE_SIZE)
+            {
+                m_HeapSizeLimit[heapIndex] = limit;
+                if(limit < m_MemProps.memoryHeaps[heapIndex].size)
+                {
+                    m_MemProps.memoryHeaps[heapIndex].size = limit;
+                }
+            }
+        }
+    }
+
+    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+    {
+        const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
+
+        m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(
+            this,
+            memTypeIndex,
+            preferredBlockSize,
+            0,
+            SIZE_MAX,
+            GetBufferImageGranularity(),
+            pCreateInfo->frameInUseCount,
+            false); // isCustomPool
+        // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
+        // becase minBlockCount is 0.
+        m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks()));
+    }
+}
+
+VmaAllocator_T::~VmaAllocator_T()
+{
+    VMA_ASSERT(m_Pools.empty());
+
+    for(size_t i = GetMemoryTypeCount(); i--; )
+    {
+        vma_delete(this, m_pDedicatedAllocations[i]);
+        vma_delete(this, m_pBlockVectors[i]);
+    }
+}
+
+void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)
+{
+#if VMA_STATIC_VULKAN_FUNCTIONS == 1
+    m_VulkanFunctions.vkGetPhysicalDeviceProperties = &vkGetPhysicalDeviceProperties;
+    m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = &vkGetPhysicalDeviceMemoryProperties;
+    m_VulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
+    m_VulkanFunctions.vkFreeMemory = &vkFreeMemory;
+    m_VulkanFunctions.vkMapMemory = &vkMapMemory;
+    m_VulkanFunctions.vkUnmapMemory = &vkUnmapMemory;
+    m_VulkanFunctions.vkBindBufferMemory = &vkBindBufferMemory;
+    m_VulkanFunctions.vkBindImageMemory = &vkBindImageMemory;
+    m_VulkanFunctions.vkGetBufferMemoryRequirements = &vkGetBufferMemoryRequirements;
+    m_VulkanFunctions.vkGetImageMemoryRequirements = &vkGetImageMemoryRequirements;
+    m_VulkanFunctions.vkCreateBuffer = &vkCreateBuffer;
+    m_VulkanFunctions.vkDestroyBuffer = &vkDestroyBuffer;
+    m_VulkanFunctions.vkCreateImage = &vkCreateImage;
+    m_VulkanFunctions.vkDestroyImage = &vkDestroyImage;
+    if(m_UseKhrDedicatedAllocation)
+    {
+        m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR =
+            (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2KHR");
+        m_VulkanFunctions.vkGetImageMemoryRequirements2KHR =
+            (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2KHR");
+    }
+#endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1
+
+#define VMA_COPY_IF_NOT_NULL(funcName) \
+    if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;
+
+    if(pVulkanFunctions != VMA_NULL)
+    {
+        VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);
+        VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);
+        VMA_COPY_IF_NOT_NULL(vkAllocateMemory);
+        VMA_COPY_IF_NOT_NULL(vkFreeMemory);
+        VMA_COPY_IF_NOT_NULL(vkMapMemory);
+        VMA_COPY_IF_NOT_NULL(vkUnmapMemory);
+        VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);
+        VMA_COPY_IF_NOT_NULL(vkBindImageMemory);
+        VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);
+        VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);
+        VMA_COPY_IF_NOT_NULL(vkCreateBuffer);
+        VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);
+        VMA_COPY_IF_NOT_NULL(vkCreateImage);
+        VMA_COPY_IF_NOT_NULL(vkDestroyImage);
+        VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);
+        VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);
+    }
+
+#undef VMA_COPY_IF_NOT_NULL
+
+    // If these asserts are hit, you must either #define VMA_STATIC_VULKAN_FUNCTIONS 1
+    // or pass valid pointers as VmaAllocatorCreateInfo::pVulkanFunctions.
+    VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
+    VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
+    if(m_UseKhrDedicatedAllocation)
+    {
+        VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);
+        VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);
+    }
+}
+
+VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)
+{
+    const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
+    const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
+    return (heapSize <= VMA_SMALL_HEAP_MAX_SIZE) ?
+        m_PreferredSmallHeapBlockSize : m_PreferredLargeHeapBlockSize;
+}
+
+VkResult VmaAllocator_T::AllocateMemoryOfType(
+    const VkMemoryRequirements& vkMemReq,
+    bool dedicatedAllocation,
+    VkBuffer dedicatedBuffer,
+    VkImage dedicatedImage,
+    const VmaAllocationCreateInfo& createInfo,
+    uint32_t memTypeIndex,
+    VmaSuballocationType suballocType,
+    VmaAllocation* pAllocation)
+{
+    VMA_ASSERT(pAllocation != VMA_NULL);
+    VMA_DEBUG_LOG("  AllocateMemory: MemoryTypeIndex=%u, Size=%llu", memTypeIndex, vkMemReq.size);
+
+    VmaAllocationCreateInfo finalCreateInfo = createInfo;
+
+    // If memory type is not HOST_VISIBLE, disable MAPPED.
+    if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
+        (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+    {
+        finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
+    }
+
+    VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex];
+    VMA_ASSERT(blockVector);
+
+    const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize();
+    bool preferDedicatedMemory =
+        VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ||
+        dedicatedAllocation ||
+        // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.
+        vkMemReq.size > preferredBlockSize / 2;
+
+    if(preferDedicatedMemory &&
+        (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
+        finalCreateInfo.pool == VK_NULL_HANDLE)
+    {
+        finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
+    }
+
+    if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
+    {
+        if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+        {
+            return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+        }
+        else
+        {
+            return AllocateDedicatedMemory(
+                vkMemReq.size,
+                suballocType,
+                memTypeIndex,
+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
+                finalCreateInfo.pUserData,
+                dedicatedBuffer,
+                dedicatedImage,
+                pAllocation);
+        }
+    }
+    else
+    {
+        VkResult res = blockVector->Allocate(
+            VK_NULL_HANDLE, // hCurrentPool
+            m_CurrentFrameIndex.load(),
+            vkMemReq,
+            finalCreateInfo,
+            suballocType,
+            pAllocation);
+        if(res == VK_SUCCESS)
+        {
+            return res;
+        }
+
+        // 5. Try dedicated memory.
+        if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+        {
+            return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+        }
+        else
+        {
+            res = AllocateDedicatedMemory(
+                vkMemReq.size,
+                suballocType,
+                memTypeIndex,
+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
+                (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
+                finalCreateInfo.pUserData,
+                dedicatedBuffer,
+                dedicatedImage,
+                pAllocation);
+            if(res == VK_SUCCESS)
+            {
+                // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here.
+                VMA_DEBUG_LOG("    Allocated as DedicatedMemory");
+                return VK_SUCCESS;
+            }
+            else
+            {
+                // Everything failed: Return error code.
+                VMA_DEBUG_LOG("    vkAllocateMemory FAILED");
+                return res;
+            }
+        }
+    }
+}
+
+VkResult VmaAllocator_T::AllocateDedicatedMemory(
+    VkDeviceSize size,
+    VmaSuballocationType suballocType,
+    uint32_t memTypeIndex,
+    bool map,
+    bool isUserDataString,
+    void* pUserData,
+    VkBuffer dedicatedBuffer,
+    VkImage dedicatedImage,
+    VmaAllocation* pAllocation)
+{
+    VMA_ASSERT(pAllocation);
+
+    VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
+    allocInfo.memoryTypeIndex = memTypeIndex;
+    allocInfo.allocationSize = size;
+
+    VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
+    if(m_UseKhrDedicatedAllocation)
+    {
+        if(dedicatedBuffer != VK_NULL_HANDLE)
+        {
+            VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);
+            dedicatedAllocInfo.buffer = dedicatedBuffer;
+            allocInfo.pNext = &dedicatedAllocInfo;
+        }
+        else if(dedicatedImage != VK_NULL_HANDLE)
+        {
+            dedicatedAllocInfo.image = dedicatedImage;
+            allocInfo.pNext = &dedicatedAllocInfo;
+        }
+    }
+
+    // Allocate VkDeviceMemory.
+    VkDeviceMemory hMemory = VK_NULL_HANDLE;
+    VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
+    if(res < 0)
+    {
+        VMA_DEBUG_LOG("    vkAllocateMemory FAILED");
+        return res;
+    }
+
+    void* pMappedData = nullptr;
+    if(map)
+    {
+        res = (*m_VulkanFunctions.vkMapMemory)(
+            m_hDevice,
+            hMemory,
+            0,
+            VK_WHOLE_SIZE,
+            0,
+            &pMappedData);
+        if(res < 0)
+        {
+            VMA_DEBUG_LOG("    vkMapMemory FAILED");
+            FreeVulkanMemory(memTypeIndex, size, hMemory);
+            return res;
+        }
+    }
+
+    *pAllocation = vma_new(this, VmaAllocation_T)(m_CurrentFrameIndex.load(), isUserDataString);
+    (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size);
+    (*pAllocation)->SetUserData(this, pUserData);
+
+    // Register it in m_pDedicatedAllocations.
+    {
+        VmaMutexLock lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+        AllocationVectorType* pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
+        VMA_ASSERT(pDedicatedAllocations);
+        VmaVectorInsertSorted<VmaPointerLess>(*pDedicatedAllocations, *pAllocation);
+    }
+
+    VMA_DEBUG_LOG("    Allocated DedicatedMemory MemoryTypeIndex=#%u", memTypeIndex);
+
+    return VK_SUCCESS;
+}
+
+void VmaAllocator_T::GetBufferMemoryRequirements(
+    VkBuffer hBuffer,
+    VkMemoryRequirements& memReq,
+    bool& requiresDedicatedAllocation,
+    bool& prefersDedicatedAllocation) const
+{
+    if(m_UseKhrDedicatedAllocation)
+    {
+        VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };
+        memReqInfo.buffer = hBuffer;
+
+        VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
+
+        VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
+        memReq2.pNext = &memDedicatedReq;
+
+        (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
+
+        memReq = memReq2.memoryRequirements;
+        requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
+        prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);
+    }
+    else
+    {
+        (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);
+        requiresDedicatedAllocation = false;
+        prefersDedicatedAllocation  = false;
+    }
+}
+
+void VmaAllocator_T::GetImageMemoryRequirements(
+    VkImage hImage,
+    VkMemoryRequirements& memReq,
+    bool& requiresDedicatedAllocation,
+    bool& prefersDedicatedAllocation) const
+{
+    if(m_UseKhrDedicatedAllocation)
+    {
+        VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };
+        memReqInfo.image = hImage;
+
+        VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
+
+        VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
+        memReq2.pNext = &memDedicatedReq;
+
+        (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
+
+        memReq = memReq2.memoryRequirements;
+        requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
+        prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);
+    }
+    else
+    {
+        (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);
+        requiresDedicatedAllocation = false;
+        prefersDedicatedAllocation  = false;
+    }
+}
+
+VkResult VmaAllocator_T::AllocateMemory(
+    const VkMemoryRequirements& vkMemReq,
+    bool requiresDedicatedAllocation,
+    bool prefersDedicatedAllocation,
+    VkBuffer dedicatedBuffer,
+    VkImage dedicatedImage,
+    const VmaAllocationCreateInfo& createInfo,
+    VmaSuballocationType suballocType,
+    VmaAllocation* pAllocation)
+{
+    if((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
+        (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+    {
+        VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
+        return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+    }
+    if((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
+        (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0)
+    {
+        VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid.");
+        return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+    }
+    if(requiresDedicatedAllocation)
+    {
+        if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+        {
+            VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required.");
+            return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+        }
+        if(createInfo.pool != VK_NULL_HANDLE)
+        {
+            VMA_ASSERT(0 && "Pool specified while dedicated allocation is required.");
+            return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+        }
+    }
+    if((createInfo.pool != VK_NULL_HANDLE) &&
+        ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0))
+    {
+        VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid.");
+        return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+    }
+
+    if(createInfo.pool != VK_NULL_HANDLE)
+    {
+        return createInfo.pool->m_BlockVector.Allocate(
+            createInfo.pool,
+            m_CurrentFrameIndex.load(),
+            vkMemReq,
+            createInfo,
+            suballocType,
+            pAllocation);
+    }
+    else
+    {
+        // Bit mask of memory Vulkan types acceptable for this allocation.
+        uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
+        uint32_t memTypeIndex = UINT32_MAX;
+        VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
+        if(res == VK_SUCCESS)
+        {
+            res = AllocateMemoryOfType(
+                vkMemReq,
+                requiresDedicatedAllocation || prefersDedicatedAllocation,
+                dedicatedBuffer,
+                dedicatedImage,
+                createInfo,
+                memTypeIndex,
+                suballocType,
+                pAllocation);
+            // Succeeded on first try.
+            if(res == VK_SUCCESS)
+            {
+                return res;
+            }
+            // Allocation from this memory type failed. Try other compatible memory types.
+            else
+            {
+                for(;;)
+                {
+                    // Remove old memTypeIndex from list of possibilities.
+                    memoryTypeBits &= ~(1u << memTypeIndex);
+                    // Find alternative memTypeIndex.
+                    res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
+                    if(res == VK_SUCCESS)
+                    {
+                        res = AllocateMemoryOfType(
+                            vkMemReq,
+                            requiresDedicatedAllocation || prefersDedicatedAllocation,
+                            dedicatedBuffer,
+                            dedicatedImage,
+                            createInfo,
+                            memTypeIndex,
+                            suballocType,
+                            pAllocation);
+                        // Allocation from this alternative memory type succeeded.
+                        if(res == VK_SUCCESS)
+                        {
+                            return res;
+                        }
+                        // else: Allocation from this memory type failed. Try next one - next loop iteration.
+                    }
+                    // No other matching memory type index could be found.
+                    else
+                    {
+                        // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
+                        return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+                    }
+                }
+            }
+        }
+        // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
+        else
+            return res;
+    }
+}
+
+void VmaAllocator_T::FreeMemory(const VmaAllocation allocation)
+{
+    VMA_ASSERT(allocation);
+
+    if(allocation->CanBecomeLost() == false ||
+        allocation->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)
+    {
+        switch(allocation->GetType())
+        {
+        case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+            {
+                VmaBlockVector* pBlockVector = VMA_NULL;
+                VmaPool hPool = allocation->GetPool();
+                if(hPool != VK_NULL_HANDLE)
+                {
+                    pBlockVector = &hPool->m_BlockVector;
+                }
+                else
+                {
+                    const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
+                    pBlockVector = m_pBlockVectors[memTypeIndex];
+                }
+                pBlockVector->Free(allocation);
+            }
+            break;
+        case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+            FreeDedicatedMemory(allocation);
+            break;
+        default:
+            VMA_ASSERT(0);
+        }
+    }
+
+    allocation->SetUserData(this, VMA_NULL);
+    vma_delete(this, allocation);
+}
+
+void VmaAllocator_T::CalculateStats(VmaStats* pStats)
+{
+    // Initialize.
+    InitStatInfo(pStats->total);
+    for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
+        InitStatInfo(pStats->memoryType[i]);
+    for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
+        InitStatInfo(pStats->memoryHeap[i]);
+    
+    // Process default pools.
+    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+    {
+        const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
+        VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
+        VMA_ASSERT(pBlockVector);
+        pBlockVector->AddStats(pStats);
+    }
+
+    // Process custom pools.
+    {
+        VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
+        for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)
+        {
+            m_Pools[poolIndex]->GetBlockVector().AddStats(pStats);
+        }
+    }
+
+    // Process dedicated allocations.
+    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+    {
+        const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
+        VmaMutexLock dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+        AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
+        VMA_ASSERT(pDedicatedAllocVector);
+        for(size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex)
+        {
+            VmaStatInfo allocationStatInfo;
+            (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo);
+            VmaAddStatInfo(pStats->total, allocationStatInfo);
+            VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
+            VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
+        }
+    }
+
+    // Postprocess.
+    VmaPostprocessCalcStatInfo(pStats->total);
+    for(size_t i = 0; i < GetMemoryTypeCount(); ++i)
+        VmaPostprocessCalcStatInfo(pStats->memoryType[i]);
+    for(size_t i = 0; i < GetMemoryHeapCount(); ++i)
+        VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]);
+}
+
+static const uint32_t VMA_VENDOR_ID_AMD = 4098;
+
+VkResult VmaAllocator_T::Defragment(
+    VmaAllocation* pAllocations,
+    size_t allocationCount,
+    VkBool32* pAllocationsChanged,
+    const VmaDefragmentationInfo* pDefragmentationInfo,
+    VmaDefragmentationStats* pDefragmentationStats)
+{
+    if(pAllocationsChanged != VMA_NULL)
+    {
+        memset(pAllocationsChanged, 0, sizeof(*pAllocationsChanged));
+    }
+    if(pDefragmentationStats != VMA_NULL)
+    {
+        memset(pDefragmentationStats, 0, sizeof(*pDefragmentationStats));
+    }
+
+    const uint32_t currentFrameIndex = m_CurrentFrameIndex.load();
+
+    VmaMutexLock poolsLock(m_PoolsMutex, m_UseMutex);
+
+    const size_t poolCount = m_Pools.size();
+
+    // Dispatch pAllocations among defragmentators. Create them in BlockVectors when necessary.
+    for(size_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+    {
+        VmaAllocation hAlloc = pAllocations[allocIndex];
+        VMA_ASSERT(hAlloc);
+        const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
+        // DedicatedAlloc cannot be defragmented.
+        if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) &&
+            // Only HOST_VISIBLE memory types can be defragmented.
+            ((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) &&
+            // Lost allocation cannot be defragmented.
+            (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST))
+        {
+            VmaBlockVector* pAllocBlockVector = nullptr;
+
+            const VmaPool hAllocPool = hAlloc->GetPool();
+            // This allocation belongs to custom pool.
+            if(hAllocPool != VK_NULL_HANDLE)
+            {
+                pAllocBlockVector = &hAllocPool->GetBlockVector();
+            }
+            // This allocation belongs to general pool.
+            else
+            {
+                pAllocBlockVector = m_pBlockVectors[memTypeIndex];
+            }
+
+            VmaDefragmentator* const pDefragmentator = pAllocBlockVector->EnsureDefragmentator(this, currentFrameIndex);
+
+            VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ?
+                &pAllocationsChanged[allocIndex] : VMA_NULL;
+            pDefragmentator->AddAllocation(hAlloc, pChanged);
+        }
+    }
+
+    VkResult result = VK_SUCCESS;
+
+    // ======== Main processing.
+
+    VkDeviceSize maxBytesToMove = SIZE_MAX;
+    uint32_t maxAllocationsToMove = UINT32_MAX;
+    if(pDefragmentationInfo != VMA_NULL)
+    {
+        maxBytesToMove = pDefragmentationInfo->maxBytesToMove;
+        maxAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove;
+    }
+
+    // Process standard memory.
+    for(uint32_t memTypeIndex = 0;
+        (memTypeIndex < GetMemoryTypeCount()) && (result == VK_SUCCESS);
+        ++memTypeIndex)
+    {
+        // Only HOST_VISIBLE memory types can be defragmented.
+        if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
+        {
+            result = m_pBlockVectors[memTypeIndex]->Defragment(
+                pDefragmentationStats,
+                maxBytesToMove,
+                maxAllocationsToMove);
+        }
+    }
+
+    // Process custom pools.
+    for(size_t poolIndex = 0; (poolIndex < poolCount) && (result == VK_SUCCESS); ++poolIndex)
+    {
+        result = m_Pools[poolIndex]->GetBlockVector().Defragment(
+            pDefragmentationStats,
+            maxBytesToMove,
+            maxAllocationsToMove);
+    }
+
+    // ========  Destroy defragmentators.
+
+    // Process custom pools.
+    for(size_t poolIndex = poolCount; poolIndex--; )
+    {
+        m_Pools[poolIndex]->GetBlockVector().DestroyDefragmentator();
+    }
+
+    // Process standard memory.
+    for(uint32_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; )
+    {
+        if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
+        {
+            m_pBlockVectors[memTypeIndex]->DestroyDefragmentator();
+        }
+    }
+
+    return result;
+}
+
+void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
+{
+    if(hAllocation->CanBecomeLost())
+    {
+        /*
+        Warning: This is a carefully designed algorithm.
+        Do not modify unless you really know what you're doing :)
+        */
+        uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
+        uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
+        for(;;)
+        {
+            if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
+            {
+                pAllocationInfo->memoryType = UINT32_MAX;
+                pAllocationInfo->deviceMemory = VK_NULL_HANDLE;
+                pAllocationInfo->offset = 0;
+                pAllocationInfo->size = hAllocation->GetSize();
+                pAllocationInfo->pMappedData = VMA_NULL;
+                pAllocationInfo->pUserData = hAllocation->GetUserData();
+                return;
+            }
+            else if(localLastUseFrameIndex == localCurrFrameIndex)
+            {
+                pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
+                pAllocationInfo->deviceMemory = hAllocation->GetMemory();
+                pAllocationInfo->offset = hAllocation->GetOffset();
+                pAllocationInfo->size = hAllocation->GetSize();
+                pAllocationInfo->pMappedData = VMA_NULL;
+                pAllocationInfo->pUserData = hAllocation->GetUserData();
+                return;
+            }
+            else // Last use time earlier than current time.
+            {
+                if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
+                {
+                    localLastUseFrameIndex = localCurrFrameIndex;
+                }
+            }
+        }
+    }
+    else
+    {
+        pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
+        pAllocationInfo->deviceMemory = hAllocation->GetMemory();
+        pAllocationInfo->offset = hAllocation->GetOffset();
+        pAllocationInfo->size = hAllocation->GetSize();
+        pAllocationInfo->pMappedData = hAllocation->GetMappedData();
+        pAllocationInfo->pUserData = hAllocation->GetUserData();
+    }
+}
+
+VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)
+{
+    VMA_DEBUG_LOG("  CreatePool: MemoryTypeIndex=%u", pCreateInfo->memoryTypeIndex);
+
+    VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
+
+    if(newCreateInfo.maxBlockCount == 0)
+    {
+        newCreateInfo.maxBlockCount = SIZE_MAX;
+    }
+    if(newCreateInfo.blockSize == 0)
+    {
+        newCreateInfo.blockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
+    }
+
+    *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo);
+
+    VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
+    if(res != VK_SUCCESS)
+    {
+        vma_delete(this, *pPool);
+        *pPool = VMA_NULL;
+        return res;
+    }
+
+    // Add to m_Pools.
+    {
+        VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
+        VmaVectorInsertSorted<VmaPointerLess>(m_Pools, *pPool);
+    }
+
+    return VK_SUCCESS;
+}
+
+void VmaAllocator_T::DestroyPool(VmaPool pool)
+{
+    // Remove from m_Pools.
+    {
+        VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
+        bool success = VmaVectorRemoveSorted<VmaPointerLess>(m_Pools, pool);
+        VMA_ASSERT(success && "Pool not found in Allocator.");
+    }
+
+    vma_delete(this, pool);
+}
+
+void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats)
+{
+    pool->m_BlockVector.GetPoolStats(pPoolStats);
+}
+
+void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
+{
+    m_CurrentFrameIndex.store(frameIndex);
+}
+
+void VmaAllocator_T::MakePoolAllocationsLost(
+    VmaPool hPool,
+    size_t* pLostAllocationCount)
+{
+    hPool->m_BlockVector.MakePoolAllocationsLost(
+        m_CurrentFrameIndex.load(),
+        pLostAllocationCount);
+}
+
+void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation)
+{
+    *pAllocation = vma_new(this, VmaAllocation_T)(VMA_FRAME_INDEX_LOST, false);
+    (*pAllocation)->InitLost();
+}
+
+VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)
+{
+    const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
+
+    VkResult res;
+    if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE)
+    {
+        VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);
+        if(m_HeapSizeLimit[heapIndex] >= pAllocateInfo->allocationSize)
+        {
+            res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
+            if(res == VK_SUCCESS)
+            {
+                m_HeapSizeLimit[heapIndex] -= pAllocateInfo->allocationSize;
+            }
+        }
+        else
+        {
+            res = VK_ERROR_OUT_OF_DEVICE_MEMORY;
+        }
+    }
+    else
+    {
+        res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
+    }
+
+    if(res == VK_SUCCESS && m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
+    {
+        (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize);
+    }
+
+    return res;
+}
+
+void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)
+{
+    if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
+    {
+        (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size);
+    }
+
+    (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
+
+    const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType);
+    if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE)
+    {
+        VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);
+        m_HeapSizeLimit[heapIndex] += size;
+    }
+}
+
+VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)
+{
+    if(hAllocation->CanBecomeLost())
+    {
+        return VK_ERROR_MEMORY_MAP_FAILED;
+    }
+
+    switch(hAllocation->GetType())
+    {
+    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+        {
+            VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
+            char *pBytes = nullptr;
+            VkResult res = pBlock->Map(this, (void**)&pBytes);
+            if(res == VK_SUCCESS)
+            {
+                *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();
+                hAllocation->BlockAllocMap();
+            }
+            return res;
+        }
+    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+        return hAllocation->DedicatedAllocMap(this, ppData);
+    default:
+        VMA_ASSERT(0);
+        return VK_ERROR_MEMORY_MAP_FAILED;
+    }
+}
+
+void VmaAllocator_T::Unmap(VmaAllocation hAllocation)
+{
+    switch(hAllocation->GetType())
+    {
+    case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+        {
+            VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
+            hAllocation->BlockAllocUnmap();
+            pBlock->Unmap(this);
+        }
+        break;
+    case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+        hAllocation->DedicatedAllocUnmap(this);
+        break;
+    default:
+        VMA_ASSERT(0);
+    }
+}
+
+void VmaAllocator_T::FreeDedicatedMemory(VmaAllocation allocation)
+{
+    VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
+
+    const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
+    {
+        VmaMutexLock lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+        AllocationVectorType* const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
+        VMA_ASSERT(pDedicatedAllocations);
+        bool success = VmaVectorRemoveSorted<VmaPointerLess>(*pDedicatedAllocations, allocation);
+        VMA_ASSERT(success);
+    }
+
+    VkDeviceMemory hMemory = allocation->GetMemory();
+    
+    if(allocation->GetMappedData() != VMA_NULL)
+    {
+        (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
+    }
+    
+    FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
+
+    VMA_DEBUG_LOG("    Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex);
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
+{
+    bool dedicatedAllocationsStarted = false;
+    for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+    {
+        VmaMutexLock dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+        AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
+        VMA_ASSERT(pDedicatedAllocVector);
+        if(pDedicatedAllocVector->empty() == false)
+        {
+            if(dedicatedAllocationsStarted == false)
+            {
+                dedicatedAllocationsStarted = true;
+                json.WriteString("DedicatedAllocations");
+                json.BeginObject();
+            }
+
+            json.BeginString("Type ");
+            json.ContinueString(memTypeIndex);
+            json.EndString();
+                
+            json.BeginArray();
+
+            for(size_t i = 0; i < pDedicatedAllocVector->size(); ++i)
+            {
+                const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i];
+                json.BeginObject(true);
+                    
+                json.WriteString("Type");
+                json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[hAlloc->GetSuballocationType()]);
+
+                json.WriteString("Size");
+                json.WriteNumber(hAlloc->GetSize());
+
+                const void* pUserData = hAlloc->GetUserData();
+                if(pUserData != VMA_NULL)
+                {
+                    json.WriteString("UserData");
+                    if(hAlloc->IsUserDataString())
+                    {
+                        json.WriteString((const char*)pUserData);
+                    }
+                    else
+                    {
+                        json.BeginString();
+                        json.ContinueString_Pointer(pUserData);
+                        json.EndString();
+                    }
+                }
+
+                json.EndObject();
+            }
+
+            json.EndArray();
+        }
+    }
+    if(dedicatedAllocationsStarted)
+    {
+        json.EndObject();
+    }
+
+    {
+        bool allocationsStarted = false;
+        for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+        {
+            if(m_pBlockVectors[memTypeIndex]->IsEmpty() == false)
+            {
+                if(allocationsStarted == false)
+                {
+                    allocationsStarted = true;
+                    json.WriteString("DefaultPools");
+                    json.BeginObject();
+                }
+
+                json.BeginString("Type ");
+                json.ContinueString(memTypeIndex);
+                json.EndString();
+
+                m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json);
+            }
+        }
+        if(allocationsStarted)
+        {
+            json.EndObject();
+        }
+    }
+
+    {
+        VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
+        const size_t poolCount = m_Pools.size();
+        if(poolCount > 0)
+        {
+            json.WriteString("Pools");
+            json.BeginArray();
+            for(size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)
+            {
+                m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json);
+            }
+            json.EndArray();
+        }
+    }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+static VkResult AllocateMemoryForImage(
+    VmaAllocator allocator,
+    VkImage image,
+    const VmaAllocationCreateInfo* pAllocationCreateInfo,
+    VmaSuballocationType suballocType,
+    VmaAllocation* pAllocation)
+{
+    VMA_ASSERT(allocator && (image != VK_NULL_HANDLE) && pAllocationCreateInfo && pAllocation);
+    
+    VkMemoryRequirements vkMemReq = {};
+    bool requiresDedicatedAllocation = false;
+    bool prefersDedicatedAllocation  = false;
+    allocator->GetImageMemoryRequirements(image, vkMemReq,
+        requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+    return allocator->AllocateMemory(
+        vkMemReq,
+        requiresDedicatedAllocation,
+        prefersDedicatedAllocation,
+        VK_NULL_HANDLE, // dedicatedBuffer
+        image, // dedicatedImage
+        *pAllocationCreateInfo,
+        suballocType,
+        pAllocation);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Public interface
+
+VkResult vmaCreateAllocator(
+    const VmaAllocatorCreateInfo* pCreateInfo,
+    VmaAllocator* pAllocator)
+{
+    VMA_ASSERT(pCreateInfo && pAllocator);
+    VMA_DEBUG_LOG("vmaCreateAllocator");
+    *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
+    return VK_SUCCESS;
+}
+
+void vmaDestroyAllocator(
+    VmaAllocator allocator)
+{
+    if(allocator != VK_NULL_HANDLE)
+    {
+        VMA_DEBUG_LOG("vmaDestroyAllocator");
+        VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks;
+        vma_delete(&allocationCallbacks, allocator);
+    }
+}
+
+void vmaGetPhysicalDeviceProperties(
+    VmaAllocator allocator,
+    const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
+{
+    VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
+    *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
+}
+
+void vmaGetMemoryProperties(
+    VmaAllocator allocator,
+    const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
+{
+    VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
+    *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
+}
+
+void vmaGetMemoryTypeProperties(
+    VmaAllocator allocator,
+    uint32_t memoryTypeIndex,
+    VkMemoryPropertyFlags* pFlags)
+{
+    VMA_ASSERT(allocator && pFlags);
+    VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
+    *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
+}
+
+void vmaSetCurrentFrameIndex(
+    VmaAllocator allocator,
+    uint32_t frameIndex)
+{
+    VMA_ASSERT(allocator);
+    VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    allocator->SetCurrentFrameIndex(frameIndex);
+}
+
+void vmaCalculateStats(
+    VmaAllocator allocator,
+    VmaStats* pStats)
+{
+    VMA_ASSERT(allocator && pStats);
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+    allocator->CalculateStats(pStats);
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void vmaBuildStatsString(
+    VmaAllocator allocator,
+    char** ppStatsString,
+    VkBool32 detailedMap)
+{
+    VMA_ASSERT(allocator && ppStatsString);
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    VmaStringBuilder sb(allocator);
+    {
+        VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
+        json.BeginObject();
+
+        VmaStats stats;
+        allocator->CalculateStats(&stats);
+
+        json.WriteString("Total");
+        VmaPrintStatInfo(json, stats.total);
+    
+        for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
+        {
+            json.BeginString("Heap ");
+            json.ContinueString(heapIndex);
+            json.EndString();
+            json.BeginObject();
+
+            json.WriteString("Size");
+            json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size);
+
+            json.WriteString("Flags");
+            json.BeginArray(true);
+            if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0)
+            {
+                json.WriteString("DEVICE_LOCAL");
+            }
+            json.EndArray();
+
+            if(stats.memoryHeap[heapIndex].blockCount > 0)
+            {
+                json.WriteString("Stats");
+                VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]);
+            }
+
+            for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
+            {
+                if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)
+                {
+                    json.BeginString("Type ");
+                    json.ContinueString(typeIndex);
+                    json.EndString();
+
+                    json.BeginObject();
+
+                    json.WriteString("Flags");
+                    json.BeginArray(true);
+                    VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
+                    if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
+                    {
+                        json.WriteString("DEVICE_LOCAL");
+                    }
+                    if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
+                    {
+                        json.WriteString("HOST_VISIBLE");
+                    }
+                    if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0)
+                    {
+                        json.WriteString("HOST_COHERENT");
+                    }
+                    if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0)
+                    {
+                        json.WriteString("HOST_CACHED");
+                    }
+                    if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0)
+                    {
+                        json.WriteString("LAZILY_ALLOCATED");
+                    }
+                    json.EndArray();
+
+                    if(stats.memoryType[typeIndex].blockCount > 0)
+                    {
+                        json.WriteString("Stats");
+                        VmaPrintStatInfo(json, stats.memoryType[typeIndex]);
+                    }
+
+                    json.EndObject();
+                }
+            }
+
+            json.EndObject();
+        }
+        if(detailedMap == VK_TRUE)
+        {
+            allocator->PrintDetailedMap(json);
+        }
+
+        json.EndObject();
+    }
+
+    const size_t len = sb.GetLength();
+    char* const pChars = vma_new_array(allocator, char, len + 1);
+    if(len > 0)
+    {
+        memcpy(pChars, sb.GetData(), len);
+    }
+    pChars[len] = '\0';
+    *ppStatsString = pChars;
+}
+
+void vmaFreeStatsString(
+    VmaAllocator allocator,
+    char* pStatsString)
+{
+    if(pStatsString != VMA_NULL)
+    {
+        VMA_ASSERT(allocator);
+        size_t len = strlen(pStatsString);
+        vma_delete_array(allocator, pStatsString, len + 1);
+    }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+/*
+This function is not protected by any mutex because it just reads immutable data.
+*/
+VkResult vmaFindMemoryTypeIndex(
+    VmaAllocator allocator,
+    uint32_t memoryTypeBits,
+    const VmaAllocationCreateInfo* pAllocationCreateInfo,
+    uint32_t* pMemoryTypeIndex)
+{
+    VMA_ASSERT(allocator != VK_NULL_HANDLE);
+    VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
+    VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
+
+    if(pAllocationCreateInfo->memoryTypeBits != 0)
+    {
+        memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;
+    }
+    
+    uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags;
+    uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags;
+
+    // Convert usage to requiredFlags and preferredFlags.
+    switch(pAllocationCreateInfo->usage)
+    {
+    case VMA_MEMORY_USAGE_UNKNOWN:
+        break;
+    case VMA_MEMORY_USAGE_GPU_ONLY:
+        preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+        break;
+    case VMA_MEMORY_USAGE_CPU_ONLY:
+        requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
+        break;
+    case VMA_MEMORY_USAGE_CPU_TO_GPU:
+        requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+        preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+        break;
+    case VMA_MEMORY_USAGE_GPU_TO_CPU:
+        requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+        preferredFlags |= VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+        break;
+    default:
+        break;
+    }
+
+    *pMemoryTypeIndex = UINT32_MAX;
+    uint32_t minCost = UINT32_MAX;
+    for(uint32_t memTypeIndex = 0, memTypeBit = 1;
+        memTypeIndex < allocator->GetMemoryTypeCount();
+        ++memTypeIndex, memTypeBit <<= 1)
+    {
+        // This memory type is acceptable according to memoryTypeBits bitmask.
+        if((memTypeBit & memoryTypeBits) != 0)
+        {
+            const VkMemoryPropertyFlags currFlags =
+                allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
+            // This memory type contains requiredFlags.
+            if((requiredFlags & ~currFlags) == 0)
+            {
+                // Calculate cost as number of bits from preferredFlags not present in this memory type.
+                uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags);
+                // Remember memory type with lowest cost.
+                if(currCost < minCost)
+                {
+                    *pMemoryTypeIndex = memTypeIndex;
+                    if(currCost == 0)
+                    {
+                        return VK_SUCCESS;
+                    }
+                    minCost = currCost;
+                }
+            }
+        }
+    }
+    return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
+}
+
+VkResult vmaCreatePool(
+	VmaAllocator allocator,
+	const VmaPoolCreateInfo* pCreateInfo,
+	VmaPool* pPool)
+{
+    VMA_ASSERT(allocator && pCreateInfo && pPool);
+
+    VMA_DEBUG_LOG("vmaCreatePool");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    return allocator->CreatePool(pCreateInfo, pPool);
+}
+
+void vmaDestroyPool(
+    VmaAllocator allocator,
+    VmaPool pool)
+{
+    VMA_ASSERT(allocator);
+
+    if(pool == VK_NULL_HANDLE)
+    {
+        return;
+    }
+
+    VMA_DEBUG_LOG("vmaDestroyPool");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    allocator->DestroyPool(pool);
+}
+
+void vmaGetPoolStats(
+    VmaAllocator allocator,
+    VmaPool pool,
+    VmaPoolStats* pPoolStats)
+{
+    VMA_ASSERT(allocator && pool && pPoolStats);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    allocator->GetPoolStats(pool, pPoolStats);
+}
+
+void vmaMakePoolAllocationsLost(
+    VmaAllocator allocator,
+    VmaPool pool,
+    size_t* pLostAllocationCount)
+{
+    VMA_ASSERT(allocator && pool);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    allocator->MakePoolAllocationsLost(pool, pLostAllocationCount);
+}
+
+VkResult vmaAllocateMemory(
+    VmaAllocator allocator,
+    const VkMemoryRequirements* pVkMemoryRequirements,
+    const VmaAllocationCreateInfo* pCreateInfo,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo)
+{
+    VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
+
+    VMA_DEBUG_LOG("vmaAllocateMemory");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+	VkResult result = allocator->AllocateMemory(
+        *pVkMemoryRequirements,
+        false, // requiresDedicatedAllocation
+        false, // prefersDedicatedAllocation
+        VK_NULL_HANDLE, // dedicatedBuffer
+        VK_NULL_HANDLE, // dedicatedImage
+        *pCreateInfo,
+        VMA_SUBALLOCATION_TYPE_UNKNOWN,
+        pAllocation);
+
+    if(pAllocationInfo && result == VK_SUCCESS)
+    {
+        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+    }
+
+	return result;
+}
+
+VkResult vmaAllocateMemoryForBuffer(
+    VmaAllocator allocator,
+    VkBuffer buffer,
+    const VmaAllocationCreateInfo* pCreateInfo,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo)
+{
+    VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
+
+    VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    VkMemoryRequirements vkMemReq = {};
+    bool requiresDedicatedAllocation = false;
+    bool prefersDedicatedAllocation = false;
+    allocator->GetBufferMemoryRequirements(buffer, vkMemReq,
+        requiresDedicatedAllocation,
+        prefersDedicatedAllocation);
+
+    VkResult result = allocator->AllocateMemory(
+        vkMemReq,
+        requiresDedicatedAllocation,
+        prefersDedicatedAllocation,
+        buffer, // dedicatedBuffer
+        VK_NULL_HANDLE, // dedicatedImage
+        *pCreateInfo,
+        VMA_SUBALLOCATION_TYPE_BUFFER,
+        pAllocation);
+
+    if(pAllocationInfo && result == VK_SUCCESS)
+    {
+        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+    }
+
+	return result;
+}
+
+VkResult vmaAllocateMemoryForImage(
+    VmaAllocator allocator,
+    VkImage image,
+    const VmaAllocationCreateInfo* pCreateInfo,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo)
+{
+    VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
+
+    VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    VkResult result = AllocateMemoryForImage(
+        allocator,
+        image,
+        pCreateInfo,
+        VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
+        pAllocation);
+
+    if(pAllocationInfo && result == VK_SUCCESS)
+    {
+        allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+    }
+
+	return result;
+}
+
+void vmaFreeMemory(
+    VmaAllocator allocator,
+    VmaAllocation allocation)
+{
+    VMA_ASSERT(allocator && allocation);
+
+    VMA_DEBUG_LOG("vmaFreeMemory");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    allocator->FreeMemory(allocation);
+}
+
+void vmaGetAllocationInfo(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    VmaAllocationInfo* pAllocationInfo)
+{
+    VMA_ASSERT(allocator && allocation && pAllocationInfo);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    allocator->GetAllocationInfo(allocation, pAllocationInfo);
+}
+
+void vmaSetAllocationUserData(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    void* pUserData)
+{
+    VMA_ASSERT(allocator && allocation);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    allocation->SetUserData(allocator, pUserData);
+}
+
+void vmaCreateLostAllocation(
+    VmaAllocator allocator,
+    VmaAllocation* pAllocation)
+{
+    VMA_ASSERT(allocator && pAllocation);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+
+    allocator->CreateLostAllocation(pAllocation);
+}
+
+VkResult vmaMapMemory(
+    VmaAllocator allocator,
+    VmaAllocation allocation,
+    void** ppData)
+{
+    VMA_ASSERT(allocator && allocation && ppData);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    return allocator->Map(allocation, ppData);
+}
+
+void vmaUnmapMemory(
+    VmaAllocator allocator,
+    VmaAllocation allocation)
+{
+    VMA_ASSERT(allocator && allocation);
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    allocator->Unmap(allocation);
+}
+
+VkResult vmaDefragment(
+    VmaAllocator allocator,
+    VmaAllocation* pAllocations,
+    size_t allocationCount,
+    VkBool32* pAllocationsChanged,
+    const VmaDefragmentationInfo *pDefragmentationInfo,
+    VmaDefragmentationStats* pDefragmentationStats)
+{
+    VMA_ASSERT(allocator && pAllocations);
+
+    VMA_DEBUG_LOG("vmaDefragment");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    return allocator->Defragment(pAllocations, allocationCount, pAllocationsChanged, pDefragmentationInfo, pDefragmentationStats);
+}
+
+VkResult vmaCreateBuffer(
+    VmaAllocator allocator,
+    const VkBufferCreateInfo* pBufferCreateInfo,
+    const VmaAllocationCreateInfo* pAllocationCreateInfo,
+    VkBuffer* pBuffer,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo)
+{
+    VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
+    
+    VMA_DEBUG_LOG("vmaCreateBuffer");
+    
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    *pBuffer = VK_NULL_HANDLE;
+    *pAllocation = VK_NULL_HANDLE;
+
+    // 1. Create VkBuffer.
+    VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
+        allocator->m_hDevice,
+        pBufferCreateInfo,
+        allocator->GetAllocationCallbacks(),
+        pBuffer);
+    if(res >= 0)
+    {
+        // 2. vkGetBufferMemoryRequirements.
+        VkMemoryRequirements vkMemReq = {};
+        bool requiresDedicatedAllocation = false;
+        bool prefersDedicatedAllocation  = false;
+        allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
+            requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+         // Make sure alignment requirements for specific buffer usages reported
+         // in Physical Device Properties are included in alignment reported by memory requirements.
+        if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) != 0)
+        {
+           VMA_ASSERT(vkMemReq.alignment %
+              allocator->m_PhysicalDeviceProperties.limits.minTexelBufferOffsetAlignment == 0);
+        }
+        if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) != 0)
+        {
+           VMA_ASSERT(vkMemReq.alignment %
+              allocator->m_PhysicalDeviceProperties.limits.minUniformBufferOffsetAlignment == 0);
+        }
+        if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT) != 0)
+        {
+           VMA_ASSERT(vkMemReq.alignment %
+              allocator->m_PhysicalDeviceProperties.limits.minStorageBufferOffsetAlignment == 0);
+        }
+
+        // 3. Allocate memory using allocator.
+        res = allocator->AllocateMemory(
+            vkMemReq,
+            requiresDedicatedAllocation,
+            prefersDedicatedAllocation,
+            *pBuffer, // dedicatedBuffer
+            VK_NULL_HANDLE, // dedicatedImage
+            *pAllocationCreateInfo,
+            VMA_SUBALLOCATION_TYPE_BUFFER,
+            pAllocation);
+        if(res >= 0)
+        {
+            // 3. Bind buffer with memory.
+            res = (*allocator->GetVulkanFunctions().vkBindBufferMemory)(
+                allocator->m_hDevice,
+                *pBuffer,
+                (*pAllocation)->GetMemory(),
+                (*pAllocation)->GetOffset());
+            if(res >= 0)
+            {
+                // All steps succeeded.
+                if(pAllocationInfo != VMA_NULL)
+                {
+                    allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+                }
+                return VK_SUCCESS;
+            }
+            allocator->FreeMemory(*pAllocation);
+            *pAllocation = VK_NULL_HANDLE;
+            (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
+            *pBuffer = VK_NULL_HANDLE;
+            return res;
+        }
+        (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
+        *pBuffer = VK_NULL_HANDLE;
+        return res;
+    }
+    return res;
+}
+
+void vmaDestroyBuffer(
+    VmaAllocator allocator,
+    VkBuffer buffer,
+    VmaAllocation allocation)
+{
+    if(buffer != VK_NULL_HANDLE)
+    {
+        VMA_ASSERT(allocator);
+
+        VMA_DEBUG_LOG("vmaDestroyBuffer");
+
+        VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+        (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
+        
+        allocator->FreeMemory(allocation);
+    }
+}
+
+VkResult vmaCreateImage(
+    VmaAllocator allocator,
+    const VkImageCreateInfo* pImageCreateInfo,
+    const VmaAllocationCreateInfo* pAllocationCreateInfo,
+    VkImage* pImage,
+    VmaAllocation* pAllocation,
+    VmaAllocationInfo* pAllocationInfo)
+{
+    VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
+
+    VMA_DEBUG_LOG("vmaCreateImage");
+
+    VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+    *pImage = VK_NULL_HANDLE;
+    *pAllocation = VK_NULL_HANDLE;
+
+    // 1. Create VkImage.
+    VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
+        allocator->m_hDevice,
+        pImageCreateInfo,
+        allocator->GetAllocationCallbacks(),
+        pImage);
+    if(res >= 0)
+    {
+        VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
+            VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
+            VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
+        
+        // 2. Allocate memory using allocator.
+        res = AllocateMemoryForImage(allocator, *pImage, pAllocationCreateInfo, suballocType, pAllocation);
+        if(res >= 0)
+        {
+            // 3. Bind image with memory.
+            res = (*allocator->GetVulkanFunctions().vkBindImageMemory)(
+                allocator->m_hDevice,
+                *pImage,
+                (*pAllocation)->GetMemory(),
+                (*pAllocation)->GetOffset());
+            if(res >= 0)
+            {
+                // All steps succeeded.
+                if(pAllocationInfo != VMA_NULL)
+                {
+                    allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+                }
+                return VK_SUCCESS;
+            }
+            allocator->FreeMemory(*pAllocation);
+            *pAllocation = VK_NULL_HANDLE;
+            (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
+            *pImage = VK_NULL_HANDLE;
+            return res;
+        }
+        (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
+        *pImage = VK_NULL_HANDLE;
+        return res;
+    }
+    return res;
+}
+
+void vmaDestroyImage(
+    VmaAllocator allocator,
+    VkImage image,
+    VmaAllocation allocation)
+{
+    if(image != VK_NULL_HANDLE)
+    {
+        VMA_ASSERT(allocator);
+
+        VMA_DEBUG_LOG("vmaDestroyImage");
+
+        VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+        (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
+
+        allocator->FreeMemory(allocation);
+    }
+}
+
+#endif // #ifdef VMA_IMPLEMENTATION