Bläddra i källkod

Matrix4 refactor

Marko Pintera 12 år sedan
förälder
incheckning
22cc7c8120

+ 10 - 10
BansheeEngine/Source/BsCamera.cpp

@@ -320,8 +320,8 @@ namespace BansheeEngine
 			Vector3 topLeft(-0.5f, 0.5f, 0.0f);
 			Vector3 topLeft(-0.5f, 0.5f, 0.0f);
 			Vector3 bottomRight(0.5f, -0.5f, 0.0f);
 			Vector3 bottomRight(0.5f, -0.5f, 0.0f);
 
 
-			topLeft = invProj * topLeft;
-			bottomRight = invProj * bottomRight;
+			topLeft = invProj.transform(topLeft);
+			bottomRight = invProj.transform(bottomRight);
 
 
 			left = topLeft.x;
 			left = topLeft.x;
 			top = topLeft.y;
 			top = topLeft.y;
@@ -635,15 +635,15 @@ namespace BansheeEngine
 		float farTop = nearTop * radio;
 		float farTop = nearTop * radio;
 
 
 		// near
 		// near
-		mWorldSpaceCorners[0] = eyeToWorld.transformAffine(Vector3(nearRight, nearTop,    -mNearDist));
-		mWorldSpaceCorners[1] = eyeToWorld.transformAffine(Vector3(nearLeft,  nearTop,    -mNearDist));
-		mWorldSpaceCorners[2] = eyeToWorld.transformAffine(Vector3(nearLeft,  nearBottom, -mNearDist));
-		mWorldSpaceCorners[3] = eyeToWorld.transformAffine(Vector3(nearRight, nearBottom, -mNearDist));
+		mWorldSpaceCorners[0] = eyeToWorld.transform3x4(Vector3(nearRight, nearTop,    -mNearDist));
+		mWorldSpaceCorners[1] = eyeToWorld.transform3x4(Vector3(nearLeft,  nearTop,    -mNearDist));
+		mWorldSpaceCorners[2] = eyeToWorld.transform3x4(Vector3(nearLeft,  nearBottom, -mNearDist));
+		mWorldSpaceCorners[3] = eyeToWorld.transform3x4(Vector3(nearRight, nearBottom, -mNearDist));
 		// far
 		// far
-		mWorldSpaceCorners[4] = eyeToWorld.transformAffine(Vector3(farRight,  farTop,     -farDist));
-		mWorldSpaceCorners[5] = eyeToWorld.transformAffine(Vector3(farLeft,   farTop,     -farDist));
-		mWorldSpaceCorners[6] = eyeToWorld.transformAffine(Vector3(farLeft,   farBottom,  -farDist));
-		mWorldSpaceCorners[7] = eyeToWorld.transformAffine(Vector3(farRight,  farBottom,  -farDist));
+		mWorldSpaceCorners[4] = eyeToWorld.transform3x4(Vector3(farRight,  farTop,     -farDist));
+		mWorldSpaceCorners[5] = eyeToWorld.transform3x4(Vector3(farLeft,   farTop,     -farDist));
+		mWorldSpaceCorners[6] = eyeToWorld.transform3x4(Vector3(farLeft,   farBottom,  -farDist));
+		mWorldSpaceCorners[7] = eyeToWorld.transform3x4(Vector3(farRight,  farBottom,  -farDist));
 
 
 
 
 		mRecalcWorldSpaceCorners = false;
 		mRecalcWorldSpaceCorners = false;

+ 2 - 2
BansheeEngine/Source/BsGUIManager.cpp

@@ -1179,7 +1179,7 @@ namespace BansheeEngine
 
 
 		const Matrix4& worldTfrm = widget.SO()->getWorldTfrm();
 		const Matrix4& worldTfrm = widget.SO()->getWorldTfrm();
 
 
-		Vector4 vecLocalPos = worldTfrm.inverse() * Vector4((float)windowPos.x, (float)windowPos.y, 0.0f, 1.0f);
+		Vector4 vecLocalPos = worldTfrm.inverse().transform3x4(Vector4((float)windowPos.x, (float)windowPos.y, 0.0f, 1.0f));
 		Int2 curLocalPos(Math::RoundToInt(vecLocalPos.x), Math::RoundToInt(vecLocalPos.y));
 		Int2 curLocalPos(Math::RoundToInt(vecLocalPos.x), Math::RoundToInt(vecLocalPos.y));
 
 
 		return curLocalPos;
 		return curLocalPos;
@@ -1199,7 +1199,7 @@ namespace BansheeEngine
 
 
 			const Matrix4& worldTfrm = bridgeElement->_getParentWidget().SO()->getWorldTfrm();
 			const Matrix4& worldTfrm = bridgeElement->_getParentWidget().SO()->getWorldTfrm();
 
 
-			Vector4 vecLocalPos = worldTfrm.inverse() * Vector4((float)windowPos.x, (float)windowPos.y, 0.0f, 1.0f);
+			Vector4 vecLocalPos = worldTfrm.inverse().transform3x4(Vector4((float)windowPos.x, (float)windowPos.y, 0.0f, 1.0f));
 			Rect bridgeBounds = bridgeElement->getBounds();
 			Rect bridgeBounds = bridgeElement->getBounds();
 
 
 			// Find coordinates relative to the bridge element
 			// Find coordinates relative to the bridge element

+ 1 - 1
BansheeEngine/Source/BsGUIWidget.cpp

@@ -308,7 +308,7 @@ namespace BansheeEngine
 
 
 		const Matrix4& worldTfrm = SO()->getWorldTfrm();
 		const Matrix4& worldTfrm = SO()->getWorldTfrm();
 		Vector3 vecPos((float)position.x, (float)position.y, 0.0f);
 		Vector3 vecPos((float)position.x, (float)position.y, 0.0f);
-		vecPos = worldTfrm.inverse() * vecPos;
+		vecPos = worldTfrm.inverse().transform3x4(vecPos);
 
 
 		Int2 localPos(Math::RoundToInt(vecPos.x), Math::RoundToInt(vecPos.y));
 		Int2 localPos(Math::RoundToInt(vecPos.x), Math::RoundToInt(vecPos.y));
 		return mBounds.contains(localPos);
 		return mBounds.contains(localPos);

+ 1 - 1
CamelotClient/Source/BsDockManager.cpp

@@ -455,7 +455,7 @@ namespace BansheeEditor
 
 
 		const Matrix4& worldTfrm = widget->SO()->getWorldTfrm();
 		const Matrix4& worldTfrm = widget->SO()->getWorldTfrm();
 
 
-		Vector4 tfrmdPos = worldTfrm * Vector4((float)widgetRelPos.x, (float)widgetRelPos.y, 0.0f, 1.0f);
+		Vector4 tfrmdPos = worldTfrm.transform3x4(Vector4((float)widgetRelPos.x, (float)widgetRelPos.y, 0.0f, 1.0f));
 		Vector2 windowPosVec(tfrmdPos.x, tfrmdPos.y);
 		Vector2 windowPosVec(tfrmdPos.x, tfrmdPos.y);
 		Int2 windowPos(Math::RoundToInt(windowPosVec.x), Math::RoundToInt(windowPosVec.y));
 		Int2 windowPos(Math::RoundToInt(windowPosVec.x), Math::RoundToInt(windowPosVec.y));
 
 

+ 1 - 1
CamelotCore/Source/CmSceneObject.cpp

@@ -271,7 +271,7 @@ namespace CamelotFramework
 
 
 	void SceneObject::updateLocalTfrm() const
 	void SceneObject::updateLocalTfrm() const
 	{
 	{
-		mCachedLocalTfrm.makeTransform(mPosition, mScale, mRotation);
+		mCachedLocalTfrm.setTRS(mPosition, mRotation, mScale);
 
 
 		mIsCachedLocalTfrmUpToDate = true;
 		mIsCachedLocalTfrmUpToDate = true;
 	}
 	}

+ 9 - 9
CamelotUtility/Include/CmAABox.cpp

@@ -99,35 +99,35 @@ namespace CamelotFramework
 		// First corner 
 		// First corner 
 		// min min min
 		// min min min
 		currentCorner = oldMin;
 		currentCorner = oldMin;
-		merge( matrix * currentCorner );
+		merge(matrix.transform3x4(currentCorner));
 
 
 		// min,min,max
 		// min,min,max
 		currentCorner.z = oldMax.z;
 		currentCorner.z = oldMax.z;
-		merge( matrix * currentCorner );
+		merge(matrix.transform3x4(currentCorner));
 
 
 		// min max max
 		// min max max
 		currentCorner.y = oldMax.y;
 		currentCorner.y = oldMax.y;
-		merge( matrix * currentCorner );
+		merge(matrix.transform3x4(currentCorner));
 
 
 		// min max min
 		// min max min
 		currentCorner.z = oldMin.z;
 		currentCorner.z = oldMin.z;
-		merge( matrix * currentCorner );
+		merge(matrix.transform3x4(currentCorner));
 
 
 		// max max min
 		// max max min
 		currentCorner.x = oldMax.x;
 		currentCorner.x = oldMax.x;
-		merge( matrix * currentCorner );
+		merge(matrix.transform3x4(currentCorner));
 
 
 		// max max max
 		// max max max
 		currentCorner.z = oldMax.z;
 		currentCorner.z = oldMax.z;
-		merge( matrix * currentCorner );
+		merge(matrix.transform3x4(currentCorner));
 
 
 		// max min max
 		// max min max
 		currentCorner.y = oldMin.y;
 		currentCorner.y = oldMin.y;
-		merge( matrix * currentCorner );
+		merge(matrix.transform3x4(currentCorner));
 
 
 		// max min min
 		// max min min
 		currentCorner.z = oldMin.z;
 		currentCorner.z = oldMin.z;
-		merge( matrix * currentCorner ); 
+		merge(matrix.transform3x4(currentCorner)); 
 	}
 	}
 
 
 	void AABox::transformAffine(const Matrix4& m)
 	void AABox::transformAffine(const Matrix4& m)
@@ -137,7 +137,7 @@ namespace CamelotFramework
 		Vector3 centre = getCenter();
 		Vector3 centre = getCenter();
 		Vector3 halfSize = getHalfSize();
 		Vector3 halfSize = getHalfSize();
 
 
-		Vector3 newCentre = m.transformAffine(centre);
+		Vector3 newCentre = m.transform3x4(centre);
 		Vector3 newHalfSize(
 		Vector3 newHalfSize(
 			Math::Abs(m[0][0]) * halfSize.x + Math::Abs(m[0][1]) * halfSize.y + Math::Abs(m[0][2]) * halfSize.z, 
 			Math::Abs(m[0][0]) * halfSize.x + Math::Abs(m[0][1]) * halfSize.y + Math::Abs(m[0][2]) * halfSize.z, 
 			Math::Abs(m[1][0]) * halfSize.x + Math::Abs(m[1][1]) * halfSize.y + Math::Abs(m[1][2]) * halfSize.z,
 			Math::Abs(m[1][0]) * halfSize.x + Math::Abs(m[1][1]) * halfSize.y + Math::Abs(m[1][2]) * halfSize.z,

+ 12 - 12
CamelotUtility/Include/CmMatrix3.h

@@ -49,19 +49,19 @@ namespace CamelotFramework
 			memcpy(m, mat.m, 9*sizeof(float));
 			memcpy(m, mat.m, 9*sizeof(float));
 		}
 		}
 
 
-        Matrix3(float fEntry00, float fEntry01, float fEntry02,
-                float fEntry10, float fEntry11, float fEntry12,
-                float fEntry20, float fEntry21, float fEntry22)
+        Matrix3(float m00, float m01, float m02,
+                float m10, float m11, float m12,
+                float m20, float m21, float m22)
 		{
 		{
-			m[0][0] = fEntry00;
-			m[0][1] = fEntry01;
-			m[0][2] = fEntry02;
-			m[1][0] = fEntry10;
-			m[1][1] = fEntry11;
-			m[1][2] = fEntry12;
-			m[2][0] = fEntry20;
-			m[2][1] = fEntry21;
-			m[2][2] = fEntry22;
+			m[0][0] = m00;
+			m[0][1] = m01;
+			m[0][2] = m02;
+			m[1][0] = m10;
+			m[1][1] = m11;
+			m[1][2] = m12;
+			m[2][0] = m20;
+			m[2][1] = m21;
+			m[2][2] = m22;
 		}
 		}
 
 
 		/**
 		/**

+ 216 - 471
CamelotUtility/Include/CmMatrix4.h

@@ -25,10 +25,8 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 THE SOFTWARE.
 THE SOFTWARE.
 -----------------------------------------------------------------------------
 -----------------------------------------------------------------------------
 */
 */
-#ifndef __Matrix4__
-#define __Matrix4__
+#pragma once
 
 
-// Precompiler options
 #include "CmPrerequisitesUtil.h"
 #include "CmPrerequisitesUtil.h"
 
 
 #include "CmVector3.h"
 #include "CmVector3.h"
@@ -38,66 +36,24 @@ THE SOFTWARE.
 
 
 namespace CamelotFramework
 namespace CamelotFramework
 {
 {
-	/** \addtogroup Core
-	*  @{
-	*/
-	/** \addtogroup Math
-	*  @{
-	*/
-	/** Class encapsulating a standard 4x4 homogeneous matrix.
-        @remarks
-            We use column vectors when applying matrix multiplications,
-            This means a vector is represented as a single column, 4-row
-            matrix. This has the effect that the transformations implemented
-            by the matrices happens right-to-left e.g. if vector V is to be
-            transformed by M1 then M2 then M3, the calculation would be
-            M3 * M2 * M1 * V. The order that matrices are concatenated is
-            vital since matrix multiplication is not commutative, i.e. you
-            can get a different result if you concatenate in the wrong order.
-        @par
-            The use of column vectors and right-to-left ordering is the
-            standard in most mathematical texts, and is the same as used in
-            OpenGL. It is, however, the opposite of Direct3D, which has
-            inexplicably chosen to differ from the accepted standard and uses
-            row vectors and left-to-right matrix multiplication.
-        @par
-            We deal with the differences between D3D and OpenGL etc.
-            internally when operating through different render systems. 
-            Users only need to conform to standard maths conventions, i.e.
-            right-to-left matrix multiplication, (Engine transposes matrices it
-            passes to D3D to compensate).
-        @par
-            The generic form M * V which shows the layout of the matrix 
-            entries is shown below:
-            <pre>
-                [ m[0][0]  m[0][1]  m[0][2]  m[0][3] ]   {x}
-                | m[1][0]  m[1][1]  m[1][2]  m[1][3] | * {y}
-                | m[2][0]  m[2][1]  m[2][2]  m[2][3] |   {z}
-                [ m[3][0]  m[3][1]  m[3][2]  m[3][3] ]   {1}
-            </pre>
-    */
     class CM_UTILITY_EXPORT Matrix4
     class CM_UTILITY_EXPORT Matrix4
     {
     {
-    protected:
-        /// The matrix entries, indexed by [row][col].
-        union {
+    private:
+        union 
+		{
             float m[4][4];
             float m[4][4];
             float _m[16];
             float _m[16];
         };
         };
+
     public:
     public:
-        /** Default constructor.
-            @note
-                It does <b>NOT</b> initialize the matrix for efficiency.
-        */
-        inline Matrix4()
-        {
-        }
+        Matrix4()
+        { }
 
 
-        inline Matrix4(
+        Matrix4(
             float m00, float m01, float m02, float m03,
             float m00, float m01, float m02, float m03,
             float m10, float m11, float m12, float m13,
             float m10, float m11, float m12, float m13,
             float m20, float m21, float m22, float m23,
             float m20, float m21, float m22, float m23,
-            float m30, float m31, float m32, float m33 )
+            float m30, float m31, float m32, float m33)
         {
         {
             m[0][0] = m00;
             m[0][0] = m00;
             m[0][1] = m01;
             m[0][1] = m01;
@@ -117,30 +73,31 @@ namespace CamelotFramework
             m[3][3] = m33;
             m[3][3] = m33;
         }
         }
 
 
-        /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling 3x3 matrix.
-         */
+		Matrix4(const Matrix4& mat)
+		{
+			memcpy(_m, mat._m, 16*sizeof(float));
+		}
 
 
-        inline Matrix4(const Matrix3& m3x3)
+        /**
+         * @brief	Creates a 4x4 transformation matrix with a zero translation part from a rotation/scaling 3x3 matrix.
+         */
+        Matrix4(const Matrix3& mat3)
         {
         {
-          operator=(IDENTITY);
-          operator=(m3x3);
+			m[0][0] = mat3.m[0][0]; m[0][1] = mat3.m[0][1]; m[0][2] = mat3.m[0][2]; m[0][3] = 0.0f;
+			m[1][0] = mat3.m[1][0]; m[1][1] = mat3.m[1][1]; m[1][2] = mat3.m[1][2]; m[1][3] = 0.0f;
+			m[2][0] = mat3.m[2][0]; m[2][1] = mat3.m[2][1]; m[2][2] = mat3.m[2][2]; m[2][3] = 0.0f;
+			m[3][0] = 0.0f; m[3][1] = 0.0f; m[3][2] = 0.0f; m[3][3] = 1.0f;
         }
         }
 
 
-        /** Creates a standard 4x4 transformation matrix with a zero translation part from a rotation/scaling Quaternion.
+        /**
+         * @brief	Creates a 4x4 transformation matrix with translation, rotation and scale.
          */
          */
-        
-        inline Matrix4(const Quaternion& rot)
+        Matrix4(const Vector3& translation, const Quaternion& rot, const Vector3& scale)
         {
         {
-          Matrix3 m3x3;
-          rot.toRotationMatrix(m3x3);
-          operator=(IDENTITY);
-          operator=(m3x3);
+			setTRS(translation, rot, scale);
         }
         }
         
         
-
-		/** Exchange the contents of this matrix with another. 
-		*/
-		inline void swap(Matrix4& other)
+		void swap(Matrix4& other)
 		{
 		{
 			std::swap(m[0][0], other.m[0][0]);
 			std::swap(m[0][0], other.m[0][0]);
 			std::swap(m[0][1], other.m[0][1]);
 			std::swap(m[0][1], other.m[0][1]);
@@ -160,189 +117,126 @@ namespace CamelotFramework
 			std::swap(m[3][3], other.m[3][3]);
 			std::swap(m[3][3], other.m[3][3]);
 		}
 		}
 
 
-		inline float* operator [] ( size_t iRow )
+		float* operator[] (size_t row)
         {
         {
-            assert( iRow < 4 );
-            return m[iRow];
-        }
+            assert(row < 4);
 
 
-        inline const float *operator [] ( size_t iRow ) const
-        {
-            assert( iRow < 4 );
-            return m[iRow];
+            return m[row];
         }
         }
 
 
-        inline Matrix4 concatenate(const Matrix4 &m2) const
+        const float *operator[] (size_t row) const
         {
         {
-            Matrix4 r;
-            r.m[0][0] = m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0] + m[0][3] * m2.m[3][0];
-            r.m[0][1] = m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1] + m[0][3] * m2.m[3][1];
-            r.m[0][2] = m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2] + m[0][3] * m2.m[3][2];
-            r.m[0][3] = m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3] * m2.m[3][3];
-
-            r.m[1][0] = m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0] + m[1][3] * m2.m[3][0];
-            r.m[1][1] = m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1] + m[1][3] * m2.m[3][1];
-            r.m[1][2] = m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2] + m[1][3] * m2.m[3][2];
-            r.m[1][3] = m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3] * m2.m[3][3];
-
-            r.m[2][0] = m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0] + m[2][3] * m2.m[3][0];
-            r.m[2][1] = m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1] + m[2][3] * m2.m[3][1];
-            r.m[2][2] = m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2] + m[2][3] * m2.m[3][2];
-            r.m[2][3] = m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3] * m2.m[3][3];
-
-            r.m[3][0] = m[3][0] * m2.m[0][0] + m[3][1] * m2.m[1][0] + m[3][2] * m2.m[2][0] + m[3][3] * m2.m[3][0];
-            r.m[3][1] = m[3][0] * m2.m[0][1] + m[3][1] * m2.m[1][1] + m[3][2] * m2.m[2][1] + m[3][3] * m2.m[3][1];
-            r.m[3][2] = m[3][0] * m2.m[0][2] + m[3][1] * m2.m[1][2] + m[3][2] * m2.m[2][2] + m[3][3] * m2.m[3][2];
-            r.m[3][3] = m[3][0] * m2.m[0][3] + m[3][1] * m2.m[1][3] + m[3][2] * m2.m[2][3] + m[3][3] * m2.m[3][3];
+            assert(row < 4);
 
 
-            return r;
+            return m[row];
         }
         }
 
 
-        /** Matrix concatenation using '*'.
-        */
-        inline Matrix4 operator * ( const Matrix4 &m2 ) const
+        Matrix4 operator* (const Matrix4 &rhs) const
         {
         {
-            return concatenate( m2 );
-        }
+			Matrix4 r;
 
 
-        /** Vector transformation using '*'.
-            @remarks
-                Transforms the given 3-D vector by the matrix, projecting the 
-                result back into <i>w</i> = 1.
-            @note
-                This means that the initial <i>w</i> is considered to be 1.0,
-                and then all the tree elements of the resulting 3-D vector are
-                divided by the resulting <i>w</i>.
-        */
-        inline Vector3 operator * ( const Vector3 &v ) const
-        {
-            Vector3 r;
+			r.m[0][0] = m[0][0] * rhs.m[0][0] + m[0][1] * rhs.m[1][0] + m[0][2] * rhs.m[2][0] + m[0][3] * rhs.m[3][0];
+			r.m[0][1] = m[0][0] * rhs.m[0][1] + m[0][1] * rhs.m[1][1] + m[0][2] * rhs.m[2][1] + m[0][3] * rhs.m[3][1];
+			r.m[0][2] = m[0][0] * rhs.m[0][2] + m[0][1] * rhs.m[1][2] + m[0][2] * rhs.m[2][2] + m[0][3] * rhs.m[3][2];
+			r.m[0][3] = m[0][0] * rhs.m[0][3] + m[0][1] * rhs.m[1][3] + m[0][2] * rhs.m[2][3] + m[0][3] * rhs.m[3][3];
 
 
-            float fInvW = 1.0f / ( m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] );
+			r.m[1][0] = m[1][0] * rhs.m[0][0] + m[1][1] * rhs.m[1][0] + m[1][2] * rhs.m[2][0] + m[1][3] * rhs.m[3][0];
+			r.m[1][1] = m[1][0] * rhs.m[0][1] + m[1][1] * rhs.m[1][1] + m[1][2] * rhs.m[2][1] + m[1][3] * rhs.m[3][1];
+			r.m[1][2] = m[1][0] * rhs.m[0][2] + m[1][1] * rhs.m[1][2] + m[1][2] * rhs.m[2][2] + m[1][3] * rhs.m[3][2];
+			r.m[1][3] = m[1][0] * rhs.m[0][3] + m[1][1] * rhs.m[1][3] + m[1][2] * rhs.m[2][3] + m[1][3] * rhs.m[3][3];
 
 
-            r.x = ( m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] ) * fInvW;
-            r.y = ( m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] ) * fInvW;
-            r.z = ( m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] ) * fInvW;
+			r.m[2][0] = m[2][0] * rhs.m[0][0] + m[2][1] * rhs.m[1][0] + m[2][2] * rhs.m[2][0] + m[2][3] * rhs.m[3][0];
+			r.m[2][1] = m[2][0] * rhs.m[0][1] + m[2][1] * rhs.m[1][1] + m[2][2] * rhs.m[2][1] + m[2][3] * rhs.m[3][1];
+			r.m[2][2] = m[2][0] * rhs.m[0][2] + m[2][1] * rhs.m[1][2] + m[2][2] * rhs.m[2][2] + m[2][3] * rhs.m[3][2];
+			r.m[2][3] = m[2][0] * rhs.m[0][3] + m[2][1] * rhs.m[1][3] + m[2][2] * rhs.m[2][3] + m[2][3] * rhs.m[3][3];
 
 
-            return r;
-        }
-        inline Vector4 operator * (const Vector4& v) const
-        {
-            return Vector4(
-                m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, 
-                m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
-                m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
-                m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w
-                );
-        }
-        inline Plane operator * (const Plane& p) const
-        {
-            Plane ret;
-			Matrix4 invTrans = inverse().transpose();
-			Vector4 v4( p.normal.x, p.normal.y, p.normal.z, p.d );
-			v4 = invTrans * v4;
-			ret.normal.x = v4.x; 
-			ret.normal.y = v4.y; 
-			ret.normal.z = v4.z;
-			ret.d = v4.w / ret.normal.normalize();
-
-            return ret;
-        }
+			r.m[3][0] = m[3][0] * rhs.m[0][0] + m[3][1] * rhs.m[1][0] + m[3][2] * rhs.m[2][0] + m[3][3] * rhs.m[3][0];
+			r.m[3][1] = m[3][0] * rhs.m[0][1] + m[3][1] * rhs.m[1][1] + m[3][2] * rhs.m[2][1] + m[3][3] * rhs.m[3][1];
+			r.m[3][2] = m[3][0] * rhs.m[0][2] + m[3][1] * rhs.m[1][2] + m[3][2] * rhs.m[2][2] + m[3][3] * rhs.m[3][2];
+			r.m[3][3] = m[3][0] * rhs.m[0][3] + m[3][1] * rhs.m[1][3] + m[3][2] * rhs.m[2][3] + m[3][3] * rhs.m[3][3];
 
 
+			return r;
+        }
 
 
-        /** Matrix addition.
-        */
-        inline Matrix4 operator + ( const Matrix4 &m2 ) const
+        Matrix4 operator+ (const Matrix4 &rhs) const
         {
         {
             Matrix4 r;
             Matrix4 r;
 
 
-            r.m[0][0] = m[0][0] + m2.m[0][0];
-            r.m[0][1] = m[0][1] + m2.m[0][1];
-            r.m[0][2] = m[0][2] + m2.m[0][2];
-            r.m[0][3] = m[0][3] + m2.m[0][3];
+            r.m[0][0] = m[0][0] + rhs.m[0][0];
+            r.m[0][1] = m[0][1] + rhs.m[0][1];
+            r.m[0][2] = m[0][2] + rhs.m[0][2];
+            r.m[0][3] = m[0][3] + rhs.m[0][3];
 
 
-            r.m[1][0] = m[1][0] + m2.m[1][0];
-            r.m[1][1] = m[1][1] + m2.m[1][1];
-            r.m[1][2] = m[1][2] + m2.m[1][2];
-            r.m[1][3] = m[1][3] + m2.m[1][3];
+            r.m[1][0] = m[1][0] + rhs.m[1][0];
+            r.m[1][1] = m[1][1] + rhs.m[1][1];
+            r.m[1][2] = m[1][2] + rhs.m[1][2];
+            r.m[1][3] = m[1][3] + rhs.m[1][3];
 
 
-            r.m[2][0] = m[2][0] + m2.m[2][0];
-            r.m[2][1] = m[2][1] + m2.m[2][1];
-            r.m[2][2] = m[2][2] + m2.m[2][2];
-            r.m[2][3] = m[2][3] + m2.m[2][3];
+            r.m[2][0] = m[2][0] + rhs.m[2][0];
+            r.m[2][1] = m[2][1] + rhs.m[2][1];
+            r.m[2][2] = m[2][2] + rhs.m[2][2];
+            r.m[2][3] = m[2][3] + rhs.m[2][3];
 
 
-            r.m[3][0] = m[3][0] + m2.m[3][0];
-            r.m[3][1] = m[3][1] + m2.m[3][1];
-            r.m[3][2] = m[3][2] + m2.m[3][2];
-            r.m[3][3] = m[3][3] + m2.m[3][3];
+            r.m[3][0] = m[3][0] + rhs.m[3][0];
+            r.m[3][1] = m[3][1] + rhs.m[3][1];
+            r.m[3][2] = m[3][2] + rhs.m[3][2];
+            r.m[3][3] = m[3][3] + rhs.m[3][3];
 
 
             return r;
             return r;
         }
         }
 
 
-        /** Matrix subtraction.
-        */
-        inline Matrix4 operator - ( const Matrix4 &m2 ) const
+        Matrix4 operator- (const Matrix4 &rhs) const
         {
         {
             Matrix4 r;
             Matrix4 r;
-            r.m[0][0] = m[0][0] - m2.m[0][0];
-            r.m[0][1] = m[0][1] - m2.m[0][1];
-            r.m[0][2] = m[0][2] - m2.m[0][2];
-            r.m[0][3] = m[0][3] - m2.m[0][3];
-
-            r.m[1][0] = m[1][0] - m2.m[1][0];
-            r.m[1][1] = m[1][1] - m2.m[1][1];
-            r.m[1][2] = m[1][2] - m2.m[1][2];
-            r.m[1][3] = m[1][3] - m2.m[1][3];
-
-            r.m[2][0] = m[2][0] - m2.m[2][0];
-            r.m[2][1] = m[2][1] - m2.m[2][1];
-            r.m[2][2] = m[2][2] - m2.m[2][2];
-            r.m[2][3] = m[2][3] - m2.m[2][3];
-
-            r.m[3][0] = m[3][0] - m2.m[3][0];
-            r.m[3][1] = m[3][1] - m2.m[3][1];
-            r.m[3][2] = m[3][2] - m2.m[3][2];
-            r.m[3][3] = m[3][3] - m2.m[3][3];
+            r.m[0][0] = m[0][0] - rhs.m[0][0];
+            r.m[0][1] = m[0][1] - rhs.m[0][1];
+            r.m[0][2] = m[0][2] - rhs.m[0][2];
+            r.m[0][3] = m[0][3] - rhs.m[0][3];
+
+            r.m[1][0] = m[1][0] - rhs.m[1][0];
+            r.m[1][1] = m[1][1] - rhs.m[1][1];
+            r.m[1][2] = m[1][2] - rhs.m[1][2];
+            r.m[1][3] = m[1][3] - rhs.m[1][3];
+
+            r.m[2][0] = m[2][0] - rhs.m[2][0];
+            r.m[2][1] = m[2][1] - rhs.m[2][1];
+            r.m[2][2] = m[2][2] - rhs.m[2][2];
+            r.m[2][3] = m[2][3] - rhs.m[2][3];
+
+            r.m[3][0] = m[3][0] - rhs.m[3][0];
+            r.m[3][1] = m[3][1] - rhs.m[3][1];
+            r.m[3][2] = m[3][2] - rhs.m[3][2];
+            r.m[3][3] = m[3][3] - rhs.m[3][3];
 
 
             return r;
             return r;
         }
         }
 
 
-        /** Tests 2 matrices for equality.
-        */
-        inline bool operator == ( const Matrix4& m2 ) const
+        inline bool operator== (const Matrix4& rhs ) const
         {
         {
             if( 
             if( 
-                m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] ||
-                m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] ||
-                m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] ||
-                m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] )
+                m[0][0] != rhs.m[0][0] || m[0][1] != rhs.m[0][1] || m[0][2] != rhs.m[0][2] || m[0][3] != rhs.m[0][3] ||
+                m[1][0] != rhs.m[1][0] || m[1][1] != rhs.m[1][1] || m[1][2] != rhs.m[1][2] || m[1][3] != rhs.m[1][3] ||
+                m[2][0] != rhs.m[2][0] || m[2][1] != rhs.m[2][1] || m[2][2] != rhs.m[2][2] || m[2][3] != rhs.m[2][3] ||
+                m[3][0] != rhs.m[3][0] || m[3][1] != rhs.m[3][1] || m[3][2] != rhs.m[3][2] || m[3][3] != rhs.m[3][3] )
                 return false;
                 return false;
             return true;
             return true;
         }
         }
 
 
-        /** Tests 2 matrices for inequality.
-        */
-        inline bool operator != ( const Matrix4& m2 ) const
+        inline bool operator!= (const Matrix4& rhs) const
         {
         {
-            if( 
-                m[0][0] != m2.m[0][0] || m[0][1] != m2.m[0][1] || m[0][2] != m2.m[0][2] || m[0][3] != m2.m[0][3] ||
-                m[1][0] != m2.m[1][0] || m[1][1] != m2.m[1][1] || m[1][2] != m2.m[1][2] || m[1][3] != m2.m[1][3] ||
-                m[2][0] != m2.m[2][0] || m[2][1] != m2.m[2][1] || m[2][2] != m2.m[2][2] || m[2][3] != m2.m[2][3] ||
-                m[3][0] != m2.m[3][0] || m[3][1] != m2.m[3][1] || m[3][2] != m2.m[3][2] || m[3][3] != m2.m[3][3] )
-                return true;
-            return false;
+            return !operator==(rhs);
         }
         }
 
 
-        /** Assignment from 3x3 matrix.
-        */
-        inline void operator = ( const Matrix3& mat3 )
-        {
-            m[0][0] = mat3.m[0][0]; m[0][1] = mat3.m[0][1]; m[0][2] = mat3.m[0][2];
-            m[1][0] = mat3.m[1][0]; m[1][1] = mat3.m[1][1]; m[1][2] = mat3.m[1][2];
-            m[2][0] = mat3.m[2][0]; m[2][1] = mat3.m[2][1]; m[2][2] = mat3.m[2][2];
-        }
+		Matrix4 operator*(float rhs) const
+		{
+			return Matrix4(
+				rhs*m[0][0], rhs*m[0][1], rhs*m[0][2], rhs*m[0][3],
+				rhs*m[1][0], rhs*m[1][1], rhs*m[1][2], rhs*m[1][3],
+				rhs*m[2][0], rhs*m[2][1], rhs*m[2][2], rhs*m[2][3],
+				rhs*m[3][0], rhs*m[3][1], rhs*m[3][2], rhs*m[3][3]);
+		}
 
 
-        inline Matrix4 transpose(void) const
+        Matrix4 transpose() const
         {
         {
             return Matrix4(m[0][0], m[1][0], m[2][0], m[3][0],
             return Matrix4(m[0][0], m[1][0], m[2][0], m[3][0],
                            m[0][1], m[1][1], m[2][1], m[3][1],
                            m[0][1], m[1][1], m[2][1], m[3][1],
@@ -350,118 +244,10 @@ namespace CamelotFramework
                            m[0][3], m[1][3], m[2][3], m[3][3]);
                            m[0][3], m[1][3], m[2][3], m[3][3]);
         }
         }
 
 
-        /*
-        -----------------------------------------------------------------------
-        Translation Transformation
-        -----------------------------------------------------------------------
-        */
-        /** Sets the translation transformation part of the matrix.
-        */
-        inline void setTrans( const Vector3& v )
-        {
-            m[0][3] = v.x;
-            m[1][3] = v.y;
-            m[2][3] = v.z;
-        }
-
-        /** Extracts the translation transformation part of the matrix.
+        /**
+         * @brief	Extracts the rotation/scaling part of the Matrix as a 3x3 matrix.
          */
          */
-        inline Vector3 getTrans() const
-        {
-          return Vector3(m[0][3], m[1][3], m[2][3]);
-        }
-        
-
-        /** Builds a translation matrix
-        */
-        inline void makeTrans( const Vector3& v )
-        {
-            m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = v.x;
-            m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = v.y;
-            m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = v.z;
-            m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0;
-        }
-
-        inline void makeTrans( float tx, float ty, float tz )
-        {
-            m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[0][3] = tx;
-            m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[1][3] = ty;
-            m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; m[2][3] = tz;
-            m[3][0] = 0.0; m[3][1] = 0.0; m[3][2] = 0.0; m[3][3] = 1.0;
-        }
-
-        /** Gets a translation matrix.
-        */
-        inline static Matrix4 getTrans( const Vector3& v )
-        {
-            Matrix4 r;
-
-            r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = v.x;
-            r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = v.y;
-            r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = v.z;
-            r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
-
-            return r;
-        }
-
-        /** Gets a translation matrix - variation for not using a vector.
-        */
-        inline static Matrix4 getTrans( float t_x, float t_y, float t_z )
-        {
-            Matrix4 r;
-
-            r.m[0][0] = 1.0; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = t_x;
-            r.m[1][0] = 0.0; r.m[1][1] = 1.0; r.m[1][2] = 0.0; r.m[1][3] = t_y;
-            r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = 1.0; r.m[2][3] = t_z;
-            r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
-
-            return r;
-        }
-
-        /*
-        -----------------------------------------------------------------------
-        Scale Transformation
-        -----------------------------------------------------------------------
-        */
-        /** Sets the scale part of the matrix.
-        */
-        inline void setScale( const Vector3& v )
-        {
-            m[0][0] = v.x;
-            m[1][1] = v.y;
-            m[2][2] = v.z;
-        }
-
-        /** Gets a scale matrix.
-        */
-        inline static Matrix4 getScale( const Vector3& v )
-        {
-            Matrix4 r;
-            r.m[0][0] = v.x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0;
-            r.m[1][0] = 0.0; r.m[1][1] = v.y; r.m[1][2] = 0.0; r.m[1][3] = 0.0;
-            r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = v.z; r.m[2][3] = 0.0;
-            r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
-
-            return r;
-        }
-
-        /** Gets a scale matrix - variation for not using a vector.
-        */
-        inline static Matrix4 getScale( float s_x, float s_y, float s_z )
-        {
-            Matrix4 r;
-            r.m[0][0] = s_x; r.m[0][1] = 0.0; r.m[0][2] = 0.0; r.m[0][3] = 0.0;
-            r.m[1][0] = 0.0; r.m[1][1] = s_y; r.m[1][2] = 0.0; r.m[1][3] = 0.0;
-            r.m[2][0] = 0.0; r.m[2][1] = 0.0; r.m[2][2] = s_z; r.m[2][3] = 0.0;
-            r.m[3][0] = 0.0; r.m[3][1] = 0.0; r.m[3][2] = 0.0; r.m[3][3] = 1.0;
-
-            return r;
-        }
-
-        /** Extracts the rotation / scaling part of the Matrix as a 3x3 matrix. 
-        @param m3x3 Destination Matrix3
-        */
-        inline void extract3x3Matrix(Matrix3& m3x3) const
+        void extract3x3Matrix(Matrix3& m3x3) const
         {
         {
             m3x3.m[0][0] = m[0][0];
             m3x3.m[0][0] = m[0][0];
             m3x3.m[0][1] = m[0][1];
             m3x3.m[0][1] = m[0][1];
@@ -472,190 +258,149 @@ namespace CamelotFramework
             m3x3.m[2][0] = m[2][0];
             m3x3.m[2][0] = m[2][0];
             m3x3.m[2][1] = m[2][1];
             m3x3.m[2][1] = m[2][1];
             m3x3.m[2][2] = m[2][2];
             m3x3.m[2][2] = m[2][2];
-
-        }
-
-		/** Determines if this matrix involves a scaling. */
-		inline bool hasScale() const
-		{
-			// check magnitude of column vectors (==local axes)
-			float t = m[0][0] * m[0][0] + m[1][0] * m[1][0] + m[2][0] * m[2][0];
-			if (!Math::RealEqual(t, 1.0, (float)1e-04))
-				return true;
-			t = m[0][1] * m[0][1] + m[1][1] * m[1][1] + m[2][1] * m[2][1];
-			if (!Math::RealEqual(t, 1.0, (float)1e-04))
-				return true;
-			t = m[0][2] * m[0][2] + m[1][2] * m[1][2] + m[2][2] * m[2][2];
-			if (!Math::RealEqual(t, 1.0, (float)1e-04))
-				return true;
-
-			return false;
-		}
-
-		/** Determines if this matrix involves a negative scaling. */
-		inline bool hasNegativeScale() const
-		{
-			return determinant() < 0;
-		}
-
-		/** Extracts the rotation / scaling part as a quaternion from the Matrix.
-         */
-        inline Quaternion extractQuaternion() const
-        {
-          Matrix3 m3x3;
-          extract3x3Matrix(m3x3);
-          return Quaternion(m3x3);
         }
         }
 
 
-        static const Matrix4 ZERO;
-        static const Matrix4 IDENTITY;
-        /** Useful little matrix which takes 2D clipspace {-1, 1} to {0,1}
-            and inverts the Y. */
-        static const Matrix4 CLIPSPACE2DTOIMAGESPACE;
-
-        inline Matrix4 operator*(float scalar) const
-        {
-            return Matrix4(
-                scalar*m[0][0], scalar*m[0][1], scalar*m[0][2], scalar*m[0][3],
-                scalar*m[1][0], scalar*m[1][1], scalar*m[1][2], scalar*m[1][3],
-                scalar*m[2][0], scalar*m[2][1], scalar*m[2][2], scalar*m[2][3],
-                scalar*m[3][0], scalar*m[3][1], scalar*m[3][2], scalar*m[3][3]);
-        }
-
-        /** Function for writing to a stream.
-        */
-        inline CM_UTILITY_EXPORT friend std::ostream& operator <<
-            ( std::ostream& o, const Matrix4& mat )
-        {
-            o << "Matrix4(";
-			for (size_t i = 0; i < 4; ++i)
-            {
-                o << " row" << (unsigned)i << "{";
-                for(size_t j = 0; j < 4; ++j)
-                {
-                    o << mat[i][j] << " ";
-                }
-                o << "}";
-            }
-            o << ")";
-            return o;
-        }
-		
 		Matrix4 adjoint() const;
 		Matrix4 adjoint() const;
 		float determinant() const;
 		float determinant() const;
 		Matrix4 inverse() const;
 		Matrix4 inverse() const;
+        
+        /**
+         * @brief	Creates a matrix from translation, rotation and scale. 
+         * 			
+		 * @note	The transformation are applied in scale->rotation->translation order.
+         */
+        void setTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale);
 
 
-        /** Building a Matrix4 from orientation / scale / position.
-        @remarks
-            Transform is performed in the order scale, rotate, translation, i.e. translation is independent
-            of orientation axes, scale does not affect size of translation, rotation and scaling are always
-            centered on the origin.
-        */
-        void makeTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation);
-
-        /** Building an inverse Matrix4 from orientation / scale / position.
-        @remarks
-            As makeTransform except it build the inverse given the same data as makeTransform, so
-            performing -translation, -rotate, 1/scale in that order.
-        */
-        void makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation);
-
-        /** Decompose a Matrix4 to orientation / scale / position.
-        */
-        void decomposition(Vector3& position, Vector3& scale, Quaternion& orientation) const;
-
-        /** Check whether or not the matrix is affine matrix.
-            @remarks
-                An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1),
-                e.g. no projective coefficients.
-        */
-        inline bool isAffine(void) const
+        /**
+         * @brief	Creates a matrix from inverse translation, rotation and scale. 
+         * 			
+		 * @note	This is cheaper than "setTRS" and then performing "inverse".
+         */
+        void setInverseTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale);
+
+        /**
+         * @brief	Decompose a Matrix4 to translation, rotation and scale.
+         *
+         * @note	Matrix must consist only of translation, rotation and uniform scale transformations,
+         * 			otherwise accurate results are not guaranteed. Applying non-uniform scale guarantees
+         * 			results will not be accurate.
+         */
+        void decomposition(Vector3& position, Quaternion& rotation, Vector3& scale) const;
+
+        /**
+		 * @brief	Check whether or not the matrix is affine matrix.
+		 *
+		 * @note	An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1),
+		 *			i.e. no projective coefficients.
+         */
+        bool isAffine() const
         {
         {
             return m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0 && m[3][3] == 1;
             return m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0 && m[3][3] == 1;
         }
         }
 
 
-        /** Returns the inverse of the affine matrix.
-            @note
-                The matrix must be an affine matrix. @see Matrix4::isAffine.
-        */
+        /**
+         * @brief	Returns the inverse of the affine matrix.
+         *
+         * @note	Matrix must be affine.
+         */
         Matrix4 inverseAffine(void) const;
         Matrix4 inverseAffine(void) const;
 
 
-        /** Concatenate two affine matrices.
-            @note
-                The matrices must be affine matrix. @see Matrix4::isAffine.
-        */
-        inline Matrix4 concatenateAffine(const Matrix4 &m2) const
+        /**
+         * @brief	Concatenate two affine matrices.
+         *
+         * @note	Both matrices must be affine.
+         */
+        Matrix4 concatenateAffine(const Matrix4 &other) const
         {
         {
-            assert(isAffine() && m2.isAffine());
+            assert(isAffine() && other.isAffine());
 
 
             return Matrix4(
             return Matrix4(
-                m[0][0] * m2.m[0][0] + m[0][1] * m2.m[1][0] + m[0][2] * m2.m[2][0],
-                m[0][0] * m2.m[0][1] + m[0][1] * m2.m[1][1] + m[0][2] * m2.m[2][1],
-                m[0][0] * m2.m[0][2] + m[0][1] * m2.m[1][2] + m[0][2] * m2.m[2][2],
-                m[0][0] * m2.m[0][3] + m[0][1] * m2.m[1][3] + m[0][2] * m2.m[2][3] + m[0][3],
+                m[0][0] * other.m[0][0] + m[0][1] * other.m[1][0] + m[0][2] * other.m[2][0],
+                m[0][0] * other.m[0][1] + m[0][1] * other.m[1][1] + m[0][2] * other.m[2][1],
+                m[0][0] * other.m[0][2] + m[0][1] * other.m[1][2] + m[0][2] * other.m[2][2],
+                m[0][0] * other.m[0][3] + m[0][1] * other.m[1][3] + m[0][2] * other.m[2][3] + m[0][3],
 
 
-                m[1][0] * m2.m[0][0] + m[1][1] * m2.m[1][0] + m[1][2] * m2.m[2][0],
-                m[1][0] * m2.m[0][1] + m[1][1] * m2.m[1][1] + m[1][2] * m2.m[2][1],
-                m[1][0] * m2.m[0][2] + m[1][1] * m2.m[1][2] + m[1][2] * m2.m[2][2],
-                m[1][0] * m2.m[0][3] + m[1][1] * m2.m[1][3] + m[1][2] * m2.m[2][3] + m[1][3],
+                m[1][0] * other.m[0][0] + m[1][1] * other.m[1][0] + m[1][2] * other.m[2][0],
+                m[1][0] * other.m[0][1] + m[1][1] * other.m[1][1] + m[1][2] * other.m[2][1],
+                m[1][0] * other.m[0][2] + m[1][1] * other.m[1][2] + m[1][2] * other.m[2][2],
+                m[1][0] * other.m[0][3] + m[1][1] * other.m[1][3] + m[1][2] * other.m[2][3] + m[1][3],
 
 
-                m[2][0] * m2.m[0][0] + m[2][1] * m2.m[1][0] + m[2][2] * m2.m[2][0],
-                m[2][0] * m2.m[0][1] + m[2][1] * m2.m[1][1] + m[2][2] * m2.m[2][1],
-                m[2][0] * m2.m[0][2] + m[2][1] * m2.m[1][2] + m[2][2] * m2.m[2][2],
-                m[2][0] * m2.m[0][3] + m[2][1] * m2.m[1][3] + m[2][2] * m2.m[2][3] + m[2][3],
+                m[2][0] * other.m[0][0] + m[2][1] * other.m[1][0] + m[2][2] * other.m[2][0],
+                m[2][0] * other.m[0][1] + m[2][1] * other.m[1][1] + m[2][2] * other.m[2][1],
+                m[2][0] * other.m[0][2] + m[2][1] * other.m[1][2] + m[2][2] * other.m[2][2],
+                m[2][0] * other.m[0][3] + m[2][1] * other.m[1][3] + m[2][2] * other.m[2][3] + m[2][3],
 
 
                 0, 0, 0, 1);
                 0, 0, 0, 1);
         }
         }
 
 
-        /** 3-D Vector transformation specially for an affine matrix.
-            @remarks
-                Transforms the given 3-D vector by the matrix, projecting the 
-                result back into <i>w</i> = 1.
-            @note
-                The matrix must be an affine matrix. @see Matrix4::isAffine.
-        */
-        inline Vector3 transformAffine(const Vector3& v) const
+        /**
+         * @brief	Transform a 3D vector by this matrix.
+         * 			
+         * @note	Matrix must be affine, if it is not use "transform" method.
+         */
+        Vector3 transform3x4(const Vector3& v) const
         {
         {
-            assert(isAffine());
-
             return Vector3(
             return Vector3(
                     m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3], 
                     m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3], 
                     m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3],
                     m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3],
                     m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]);
                     m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3]);
         }
         }
 
 
-        /** 4-D Vector transformation specially for an affine matrix.
-            @note
-                The matrix must be an affine matrix. @see Matrix4::isAffine.
-        */
-        inline Vector4 transformAffine(const Vector4& v) const
+        /**
+         * @brief	Transform a 4D vector by this matrix.
+         * 			
+         * @note	Matrix must be affine, if it is not use "transform" method.
+         */
+        Vector4 transform3x4(const Vector4& v) const
         {
         {
-            assert(isAffine());
-
             return Vector4(
             return Vector4(
                 m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, 
                 m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, 
                 m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
                 m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
                 m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
                 m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
                 v.w);
                 v.w);
         }
         }
-    };
 
 
-    /* Removed from Vector4 and made a non-member here because otherwise
-       CmMatrix4.h and CmVector4.h have to try to include and inline each 
-       other, which frankly doesn't work ;)
-   */
-    inline Vector4 operator * (const Vector4& v, const Matrix4& mat)
-    {
-        return Vector4(
-            v.x*mat[0][0] + v.y*mat[1][0] + v.z*mat[2][0] + v.w*mat[3][0],
-            v.x*mat[0][1] + v.y*mat[1][1] + v.z*mat[2][1] + v.w*mat[3][1],
-            v.x*mat[0][2] + v.y*mat[1][2] + v.z*mat[2][2] + v.w*mat[3][2],
-            v.x*mat[0][3] + v.y*mat[1][3] + v.z*mat[2][3] + v.w*mat[3][3]
-            );
-    }
-	/** @} */
-	/** @} */
+        /**
+         * @brief	Transform a 3D vector by this matrix.  
+         *
+         * @note	w component of the vector is assumed to be 1. After transformation all components
+         * 			are projected back so that w remains 1.
+         * 			
+		 *			If your matrix doesn't contain projection components use "transform3x4" method as it is faster.
+         */
+        Vector3 transform(const Vector3 &v) const
+        {
+            Vector3 r;
+
+            float fInvW = 1.0f / (m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3]);
+
+            r.x = ( m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] ) * fInvW;
+            r.y = ( m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] ) * fInvW;
+            r.z = ( m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] ) * fInvW;
+
+            return r;
+        }
+
+        /**
+         * @brief	Transform a 3D vector by this matrix.  
+         *
+         * @note	After transformation all components are projected back so that w remains 1.
+         * 			
+		 *			If your matrix doesn't contain projection components use "transform3x4" method as it is faster.
+         */
+        Vector4 transform(const Vector4& v) const
+        {
+            return Vector4(
+                m[0][0] * v.x + m[0][1] * v.y + m[0][2] * v.z + m[0][3] * v.w, 
+                m[1][0] * v.x + m[1][1] * v.y + m[1][2] * v.z + m[1][3] * v.w,
+                m[2][0] * v.x + m[2][1] * v.y + m[2][2] * v.z + m[2][3] * v.w,
+                m[3][0] * v.x + m[3][1] * v.y + m[3][2] * v.z + m[3][3] * v.w
+                );
+        }
+
+		static const Matrix4 ZERO;
+		static const Matrix4 IDENTITY;
+    };
 
 
 	CM_ALLOW_MEMCPY_SERIALIZATION(Matrix4);
 	CM_ALLOW_MEMCPY_SERIALIZATION(Matrix4);
-}
-#endif
+}

+ 1 - 1
CamelotUtility/Source/CmFRect.cpp

@@ -88,7 +88,7 @@ namespace CamelotFramework
 		verts[3] = Vector4(x + width, y + height, 0.0f, 1.0f);
 		verts[3] = Vector4(x + width, y + height, 0.0f, 1.0f);
 
 
 		for(UINT32 i = 0; i < 4; i++)
 		for(UINT32 i = 0; i < 4; i++)
-			verts[i] = matrix * verts[i];
+			verts[i] = matrix.transform(verts[i]);
 
 
 		float minX = std::numeric_limits<float>::max();
 		float minX = std::numeric_limits<float>::max();
 		float maxX = std::numeric_limits<float>::min();
 		float maxX = std::numeric_limits<float>::min();

+ 32 - 50
CamelotUtility/Source/CmMatrix4.cpp

@@ -32,35 +32,26 @@ THE SOFTWARE.
 
 
 namespace CamelotFramework
 namespace CamelotFramework
 {
 {
-
     const Matrix4 Matrix4::ZERO(
     const Matrix4 Matrix4::ZERO(
-        0, 0, 0, 0,
-        0, 0, 0, 0,
-        0, 0, 0, 0,
-        0, 0, 0, 0 );
+        0.0f, 0.0f, 0.0f, 0.0f,
+        0.0f, 0.0f, 0.0f, 0.0f,
+        0.0f, 0.0f, 0.0f, 0.0f,
+        0.0f, 0.0f, 0.0f, 0.0f);
 
 
     const Matrix4 Matrix4::IDENTITY(
     const Matrix4 Matrix4::IDENTITY(
-        1, 0, 0, 0,
-        0, 1, 0, 0,
-        0, 0, 1, 0,
-        0, 0, 0, 1 );
-
-    const Matrix4 Matrix4::CLIPSPACE2DTOIMAGESPACE(
-        0.5,    0,  0, 0.5, 
-          0, -0.5,  0, 0.5, 
-          0,    0,  1,   0,
-          0,    0,  0,   1);
-
-    //-----------------------------------------------------------------------
-    inline static float
-        MINOR(const Matrix4& m, const size_t r0, const size_t r1, const size_t r2, 
+		1.0f, 0.0f, 0.0f, 0.0f,
+		0.0f, 1.0f, 0.0f, 0.0f,
+		0.0f, 0.0f, 1.0f, 0.0f,
+		0.0f, 0.0f, 0.0f, 1.0f);
+
+    static float MINOR(const Matrix4& m, const size_t r0, const size_t r1, const size_t r2, 
 								const size_t c0, const size_t c1, const size_t c2)
 								const size_t c0, const size_t c1, const size_t c2)
     {
     {
         return m[r0][c0] * (m[r1][c1] * m[r2][c2] - m[r2][c1] * m[r1][c2]) -
         return m[r0][c0] * (m[r1][c1] * m[r2][c2] - m[r2][c1] * m[r1][c2]) -
             m[r0][c1] * (m[r1][c0] * m[r2][c2] - m[r2][c0] * m[r1][c2]) +
             m[r0][c1] * (m[r1][c0] * m[r2][c2] - m[r2][c0] * m[r1][c2]) +
             m[r0][c2] * (m[r1][c0] * m[r2][c1] - m[r2][c0] * m[r1][c1]);
             m[r0][c2] * (m[r1][c0] * m[r2][c1] - m[r2][c0] * m[r1][c1]);
     }
     }
-    //-----------------------------------------------------------------------
+
     Matrix4 Matrix4::adjoint() const
     Matrix4 Matrix4::adjoint() const
     {
     {
         return Matrix4( MINOR(*this, 1, 2, 3, 1, 2, 3),
         return Matrix4( MINOR(*this, 1, 2, 3, 1, 2, 3),
@@ -83,7 +74,7 @@ namespace CamelotFramework
             -MINOR(*this, 0, 1, 3, 0, 1, 2),
             -MINOR(*this, 0, 1, 3, 0, 1, 2),
             MINOR(*this, 0, 1, 2, 0, 1, 2));
             MINOR(*this, 0, 1, 2, 0, 1, 2));
     }
     }
-    //-----------------------------------------------------------------------
+
     float Matrix4::determinant() const
     float Matrix4::determinant() const
     {
     {
         return m[0][0] * MINOR(*this, 1, 2, 3, 1, 2, 3) -
         return m[0][0] * MINOR(*this, 1, 2, 3, 1, 2, 3) -
@@ -91,7 +82,7 @@ namespace CamelotFramework
             m[0][2] * MINOR(*this, 1, 2, 3, 0, 1, 3) -
             m[0][2] * MINOR(*this, 1, 2, 3, 0, 1, 3) -
             m[0][3] * MINOR(*this, 1, 2, 3, 0, 1, 2);
             m[0][3] * MINOR(*this, 1, 2, 3, 0, 1, 2);
     }
     }
-    //-----------------------------------------------------------------------
+
     Matrix4 Matrix4::inverse() const
     Matrix4 Matrix4::inverse() const
     {
     {
         float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3];
         float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2], m03 = m[0][3];
@@ -153,8 +144,8 @@ namespace CamelotFramework
             d20, d21, d22, d23,
             d20, d21, d22, d23,
             d30, d31, d32, d33);
             d30, d31, d32, d33);
     }
     }
-    //-----------------------------------------------------------------------
-    Matrix4 Matrix4::inverseAffine(void) const
+
+    Matrix4 Matrix4::inverseAffine() const
     {
     {
         assert(isAffine());
         assert(isAffine());
 
 
@@ -197,37 +188,31 @@ namespace CamelotFramework
             r20, r21, r22, r23,
             r20, r21, r22, r23,
               0,   0,   0,   1);
               0,   0,   0,   1);
     }
     }
-    //-----------------------------------------------------------------------
-    void Matrix4::makeTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation)
-    {
-        // Ordering:
-        //    1. Scale
-        //    2. Rotate
-        //    3. Translate
 
 
+    void Matrix4::setTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale)
+    {
         Matrix3 rot3x3;
         Matrix3 rot3x3;
-        orientation.toRotationMatrix(rot3x3);
+        rotation.toRotationMatrix(rot3x3);
 
 
-        // Set up final matrix with scale, rotation and translation
-        m[0][0] = scale.x * rot3x3[0][0]; m[0][1] = scale.y * rot3x3[0][1]; m[0][2] = scale.z * rot3x3[0][2]; m[0][3] = position.x;
-        m[1][0] = scale.x * rot3x3[1][0]; m[1][1] = scale.y * rot3x3[1][1]; m[1][2] = scale.z * rot3x3[1][2]; m[1][3] = position.y;
-        m[2][0] = scale.x * rot3x3[2][0]; m[2][1] = scale.y * rot3x3[2][1]; m[2][2] = scale.z * rot3x3[2][2]; m[2][3] = position.z;
+        m[0][0] = scale.x * rot3x3[0][0]; m[0][1] = scale.y * rot3x3[0][1]; m[0][2] = scale.z * rot3x3[0][2]; m[0][3] = translation.x;
+        m[1][0] = scale.x * rot3x3[1][0]; m[1][1] = scale.y * rot3x3[1][1]; m[1][2] = scale.z * rot3x3[1][2]; m[1][3] = translation.y;
+        m[2][0] = scale.x * rot3x3[2][0]; m[2][1] = scale.y * rot3x3[2][1]; m[2][2] = scale.z * rot3x3[2][2]; m[2][3] = translation.z;
 
 
         // No projection term
         // No projection term
         m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
         m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
     }
     }
-    //-----------------------------------------------------------------------
-    void Matrix4::makeInverseTransform(const Vector3& position, const Vector3& scale, const Quaternion& orientation)
+
+    void Matrix4::setInverseTRS(const Vector3& translation, const Quaternion& rotation, const Vector3& scale)
     {
     {
         // Invert the parameters
         // Invert the parameters
-        Vector3 invTranslate = -position;
+        Vector3 invTranslate = -translation;
         Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z);
         Vector3 invScale(1 / scale.x, 1 / scale.y, 1 / scale.z);
-        Quaternion invRot = orientation.inverse();
+        Quaternion invRot = rotation.inverse();
 
 
         // Because we're inverting, order is translation, rotation, scale
         // Because we're inverting, order is translation, rotation, scale
         // So make translation relative to scale & rotation
         // So make translation relative to scale & rotation
-        invTranslate = invRot.rotate(invTranslate); // rotate
-        invTranslate *= invScale; // scale
+        invTranslate = invRot.rotate(invTranslate);
+        invTranslate *= invScale;
 
 
         // Next, make a 3x3 rotation matrix
         // Next, make a 3x3 rotation matrix
         Matrix3 rot3x3;
         Matrix3 rot3x3;
@@ -241,20 +226,17 @@ namespace CamelotFramework
         // No projection term
         // No projection term
         m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
         m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
     }
     }
-    //-----------------------------------------------------------------------
-	void Matrix4::decomposition(Vector3& position, Vector3& scale, Quaternion& orientation) const
-	{
-		assert(isAffine());
 
 
+	void Matrix4::decomposition(Vector3& position, Quaternion& rotation, Vector3& scale) const
+	{
 		Matrix3 m3x3;
 		Matrix3 m3x3;
 		extract3x3Matrix(m3x3);
 		extract3x3Matrix(m3x3);
 
 
 		Matrix3 matQ;
 		Matrix3 matQ;
 		Vector3 vecU;
 		Vector3 vecU;
-		m3x3.QDUDecomposition( matQ, scale, vecU ); 
+		m3x3.QDUDecomposition(matQ, scale, vecU); 
 
 
-		orientation = Quaternion( matQ );
-		position = Vector3( m[0][3], m[1][3], m[2][3] );
+		rotation = Quaternion(matQ);
+		position = Vector3(m[0][3], m[1][3], m[2][3]);
 	}
 	}
-
 }
 }

+ 8 - 3
CamelotUtility/Source/CmQuaternion.cpp

@@ -56,7 +56,7 @@ namespace CamelotFramework
         float trace = mat[0][0]+mat[1][1]+mat[2][2];
         float trace = mat[0][0]+mat[1][1]+mat[2][2];
         float root;
         float root;
 
 
-        if ( trace > 0.0 )
+        if (trace > 0.0f)
         {
         {
             // |w| > 1/2, may as well choose w > 1/2
             // |w| > 1/2, may as well choose w > 1/2
             root = Math::Sqrt(trace + 1.0f);  // 2w
             root = Math::Sqrt(trace + 1.0f);  // 2w
@@ -71,17 +71,22 @@ namespace CamelotFramework
             // |w| <= 1/2
             // |w| <= 1/2
             static size_t nextLookup[3] = { 1, 2, 0 };
             static size_t nextLookup[3] = { 1, 2, 0 };
             size_t i = 0;
             size_t i = 0;
-            if ( mat[1][1] > mat[0][0] )
+
+            if (mat[1][1] > mat[0][0])
                 i = 1;
                 i = 1;
-            if ( mat[2][2] > mat[i][i] )
+
+            if (mat[2][2] > mat[i][i])
                 i = 2;
                 i = 2;
+
             size_t j = nextLookup[i];
             size_t j = nextLookup[i];
             size_t k = nextLookup[j];
             size_t k = nextLookup[j];
 
 
             root = Math::Sqrt(mat[i][i]-mat[j][j]-mat[k][k] + 1.0f);
             root = Math::Sqrt(mat[i][i]-mat[j][j]-mat[k][k] + 1.0f);
+
             float* cmpntLookup[3] = { &x, &y, &z };
             float* cmpntLookup[3] = { &x, &y, &z };
             *cmpntLookup[i] = 0.5f*root;
             *cmpntLookup[i] = 0.5f*root;
             root = 0.5f/root;
             root = 0.5f/root;
+
             w = (mat[k][j]-mat[j][k])*root;
             w = (mat[k][j]-mat[j][k])*root;
             *cmpntLookup[j] = (mat[j][i]+mat[i][j])*root;
             *cmpntLookup[j] = (mat[j][i]+mat[i][j])*root;
             *cmpntLookup[k] = (mat[k][i]+mat[i][k])*root;
             *cmpntLookup[k] = (mat[k][i]+mat[i][k])*root;

+ 1 - 1
CamelotUtility/Source/CmRect.cpp

@@ -88,7 +88,7 @@ namespace CamelotFramework
 		verts[3] = Vector4((float)x + width, (float)y + height, 0.0f, 1.0f);
 		verts[3] = Vector4((float)x + width, (float)y + height, 0.0f, 1.0f);
 
 
 		for(UINT32 i = 0; i < 4; i++)
 		for(UINT32 i = 0; i < 4; i++)
-			verts[i] = matrix * verts[i];
+			verts[i] = matrix.transform(verts[i]);
 
 
 		float minX = std::numeric_limits<float>::max();
 		float minX = std::numeric_limits<float>::max();
 		float maxX = std::numeric_limits<float>::min();
 		float maxX = std::numeric_limits<float>::min();