|
|
@@ -0,0 +1,349 @@
|
|
|
+/*
|
|
|
+-----------------------------------------------------------------------------
|
|
|
+This source file is part of OGRE
|
|
|
+ (Object-oriented Graphics Rendering Engine)
|
|
|
+For the latest info, see http://www.ogre3d.org/
|
|
|
+
|
|
|
+Copyright (c) 2000-2011 Torus Knot Software Ltd
|
|
|
+
|
|
|
+Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
+of this software and associated documentation files (the "Software"), to deal
|
|
|
+in the Software without restriction, including without limitation the rights
|
|
|
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
+copies of the Software, and to permit persons to whom the Software is
|
|
|
+furnished to do so, subject to the following conditions:
|
|
|
+
|
|
|
+The above copyright notice and this permission notice shall be included in
|
|
|
+all copies or substantial portions of the Software.
|
|
|
+
|
|
|
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
+THE SOFTWARE.
|
|
|
+-----------------------------------------------------------------------------
|
|
|
+*/
|
|
|
+#ifndef OGREIMAGERESAMPLER_H
|
|
|
+#define OGREIMAGERESAMPLER_H
|
|
|
+
|
|
|
+#include <algorithm>
|
|
|
+
|
|
|
+// this file is inlined into OgreImage.cpp!
|
|
|
+// do not include anywhere else.
|
|
|
+namespace Ogre {
|
|
|
+ /** \addtogroup Core
|
|
|
+ * @{
|
|
|
+ */
|
|
|
+ /** \addtogroup Image
|
|
|
+ * @{
|
|
|
+ */
|
|
|
+
|
|
|
+// variable name hints:
|
|
|
+// sx_48 = 16/48-bit fixed-point x-position in source
|
|
|
+// stepx = difference between adjacent sx_48 values
|
|
|
+// sx1 = lower-bound integer x-position in source
|
|
|
+// sx2 = upper-bound integer x-position in source
|
|
|
+// sxf = fractional weight beween sx1 and sx2
|
|
|
+// x,y,z = location of output pixel in destination
|
|
|
+
|
|
|
+// nearest-neighbor resampler, does not convert formats.
|
|
|
+// templated on bytes-per-pixel to allow compiler optimizations, such
|
|
|
+// as simplifying memcpy() and replacing multiplies with bitshifts
|
|
|
+template<unsigned int elemsize> struct NearestResampler {
|
|
|
+ static void scale(const PixelBox& src, const PixelBox& dst) {
|
|
|
+ // assert(src.format == dst.format);
|
|
|
+
|
|
|
+ // srcdata stays at beginning, pdst is a moving pointer
|
|
|
+ uchar* srcdata = (uchar*)src.data;
|
|
|
+ uchar* pdst = (uchar*)dst.data;
|
|
|
+
|
|
|
+ // sx_48,sy_48,sz_48 represent current position in source
|
|
|
+ // using 16/48-bit fixed precision, incremented by steps
|
|
|
+ uint64 stepx = ((uint64)src.getWidth() << 48) / dst.getWidth();
|
|
|
+ uint64 stepy = ((uint64)src.getHeight() << 48) / dst.getHeight();
|
|
|
+ uint64 stepz = ((uint64)src.getDepth() << 48) / dst.getDepth();
|
|
|
+
|
|
|
+ // note: ((stepz>>1) - 1) is an extra half-step increment to adjust
|
|
|
+ // for the center of the destination pixel, not the top-left corner
|
|
|
+ uint64 sz_48 = (stepz >> 1) - 1;
|
|
|
+ for (size_t z = dst.front; z < dst.back; z++, sz_48 += stepz) {
|
|
|
+ size_t srczoff = (size_t)(sz_48 >> 48) * src.slicePitch;
|
|
|
+
|
|
|
+ uint64 sy_48 = (stepy >> 1) - 1;
|
|
|
+ for (size_t y = dst.top; y < dst.bottom; y++, sy_48 += stepy) {
|
|
|
+ size_t srcyoff = (size_t)(sy_48 >> 48) * src.rowPitch;
|
|
|
+
|
|
|
+ uint64 sx_48 = (stepx >> 1) - 1;
|
|
|
+ for (size_t x = dst.left; x < dst.right; x++, sx_48 += stepx) {
|
|
|
+ uchar* psrc = srcdata +
|
|
|
+ elemsize*((size_t)(sx_48 >> 48) + srcyoff + srczoff);
|
|
|
+ memcpy(pdst, psrc, elemsize);
|
|
|
+ pdst += elemsize;
|
|
|
+ }
|
|
|
+ pdst += elemsize*dst.getRowSkip();
|
|
|
+ }
|
|
|
+ pdst += elemsize*dst.getSliceSkip();
|
|
|
+ }
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+
|
|
|
+// default floating-point linear resampler, does format conversion
|
|
|
+struct LinearResampler {
|
|
|
+ static void scale(const PixelBox& src, const PixelBox& dst) {
|
|
|
+ size_t srcelemsize = PixelUtil::getNumElemBytes(src.format);
|
|
|
+ size_t dstelemsize = PixelUtil::getNumElemBytes(dst.format);
|
|
|
+
|
|
|
+ // srcdata stays at beginning, pdst is a moving pointer
|
|
|
+ uchar* srcdata = (uchar*)src.data;
|
|
|
+ uchar* pdst = (uchar*)dst.data;
|
|
|
+
|
|
|
+ // sx_48,sy_48,sz_48 represent current position in source
|
|
|
+ // using 16/48-bit fixed precision, incremented by steps
|
|
|
+ uint64 stepx = ((uint64)src.getWidth() << 48) / dst.getWidth();
|
|
|
+ uint64 stepy = ((uint64)src.getHeight() << 48) / dst.getHeight();
|
|
|
+ uint64 stepz = ((uint64)src.getDepth() << 48) / dst.getDepth();
|
|
|
+
|
|
|
+ // temp is 16/16 bit fixed precision, used to adjust a source
|
|
|
+ // coordinate (x, y, or z) backwards by half a pixel so that the
|
|
|
+ // integer bits represent the first sample (eg, sx1) and the
|
|
|
+ // fractional bits are the blend weight of the second sample
|
|
|
+ unsigned int temp;
|
|
|
+
|
|
|
+ // note: ((stepz>>1) - 1) is an extra half-step increment to adjust
|
|
|
+ // for the center of the destination pixel, not the top-left corner
|
|
|
+ uint64 sz_48 = (stepz >> 1) - 1;
|
|
|
+ for (size_t z = dst.front; z < dst.back; z++, sz_48+=stepz) {
|
|
|
+ temp = static_cast<unsigned int>(sz_48 >> 32);
|
|
|
+ temp = (temp > 0x8000)? temp - 0x8000 : 0;
|
|
|
+ size_t sz1 = temp >> 16; // src z, sample #1
|
|
|
+ size_t sz2 = std::min(sz1+1,src.getDepth()-1);// src z, sample #2
|
|
|
+ float szf = (temp & 0xFFFF) / 65536.f; // weight of sample #2
|
|
|
+
|
|
|
+ uint64 sy_48 = (stepy >> 1) - 1;
|
|
|
+ for (size_t y = dst.top; y < dst.bottom; y++, sy_48+=stepy) {
|
|
|
+ temp = static_cast<unsigned int>(sy_48 >> 32);
|
|
|
+ temp = (temp > 0x8000)? temp - 0x8000 : 0;
|
|
|
+ size_t sy1 = temp >> 16; // src y #1
|
|
|
+ size_t sy2 = std::min(sy1+1,src.getHeight()-1);// src y #2
|
|
|
+ float syf = (temp & 0xFFFF) / 65536.f; // weight of #2
|
|
|
+
|
|
|
+ uint64 sx_48 = (stepx >> 1) - 1;
|
|
|
+ for (size_t x = dst.left; x < dst.right; x++, sx_48+=stepx) {
|
|
|
+ temp = static_cast<unsigned int>(sx_48 >> 32);
|
|
|
+ temp = (temp > 0x8000)? temp - 0x8000 : 0;
|
|
|
+ size_t sx1 = temp >> 16; // src x #1
|
|
|
+ size_t sx2 = std::min(sx1+1,src.getWidth()-1);// src x #2
|
|
|
+ float sxf = (temp & 0xFFFF) / 65536.f; // weight of #2
|
|
|
+
|
|
|
+ ColourValue x1y1z1, x2y1z1, x1y2z1, x2y2z1;
|
|
|
+ ColourValue x1y1z2, x2y1z2, x1y2z2, x2y2z2;
|
|
|
+
|
|
|
+#define UNPACK(dst,x,y,z) PixelUtil::unpackColour(&dst, src.format, \
|
|
|
+ srcdata + srcelemsize*((x)+(y)*src.rowPitch+(z)*src.slicePitch))
|
|
|
+
|
|
|
+ UNPACK(x1y1z1,sx1,sy1,sz1); UNPACK(x2y1z1,sx2,sy1,sz1);
|
|
|
+ UNPACK(x1y2z1,sx1,sy2,sz1); UNPACK(x2y2z1,sx2,sy2,sz1);
|
|
|
+ UNPACK(x1y1z2,sx1,sy1,sz2); UNPACK(x2y1z2,sx2,sy1,sz2);
|
|
|
+ UNPACK(x1y2z2,sx1,sy2,sz2); UNPACK(x2y2z2,sx2,sy2,sz2);
|
|
|
+#undef UNPACK
|
|
|
+
|
|
|
+ ColourValue accum =
|
|
|
+ x1y1z1 * ((1.0f - sxf)*(1.0f - syf)*(1.0f - szf)) +
|
|
|
+ x2y1z1 * ( sxf *(1.0f - syf)*(1.0f - szf)) +
|
|
|
+ x1y2z1 * ((1.0f - sxf)* syf *(1.0f - szf)) +
|
|
|
+ x2y2z1 * ( sxf * syf *(1.0f - szf)) +
|
|
|
+ x1y1z2 * ((1.0f - sxf)*(1.0f - syf)* szf ) +
|
|
|
+ x2y1z2 * ( sxf *(1.0f - syf)* szf ) +
|
|
|
+ x1y2z2 * ((1.0f - sxf)* syf * szf ) +
|
|
|
+ x2y2z2 * ( sxf * syf * szf );
|
|
|
+
|
|
|
+ PixelUtil::packColour(accum, dst.format, pdst);
|
|
|
+
|
|
|
+ pdst += dstelemsize;
|
|
|
+ }
|
|
|
+ pdst += dstelemsize*dst.getRowSkip();
|
|
|
+ }
|
|
|
+ pdst += dstelemsize*dst.getSliceSkip();
|
|
|
+ }
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+
|
|
|
+// float32 linear resampler, converts FLOAT32_RGB/FLOAT32_RGBA only.
|
|
|
+// avoids overhead of pixel unpack/repack function calls
|
|
|
+struct LinearResampler_Float32 {
|
|
|
+ static void scale(const PixelBox& src, const PixelBox& dst) {
|
|
|
+ size_t srcchannels = PixelUtil::getNumElemBytes(src.format) / sizeof(float);
|
|
|
+ size_t dstchannels = PixelUtil::getNumElemBytes(dst.format) / sizeof(float);
|
|
|
+ // assert(srcchannels == 3 || srcchannels == 4);
|
|
|
+ // assert(dstchannels == 3 || dstchannels == 4);
|
|
|
+
|
|
|
+ // srcdata stays at beginning, pdst is a moving pointer
|
|
|
+ float* srcdata = (float*)src.data;
|
|
|
+ float* pdst = (float*)dst.data;
|
|
|
+
|
|
|
+ // sx_48,sy_48,sz_48 represent current position in source
|
|
|
+ // using 16/48-bit fixed precision, incremented by steps
|
|
|
+ uint64 stepx = ((uint64)src.getWidth() << 48) / dst.getWidth();
|
|
|
+ uint64 stepy = ((uint64)src.getHeight() << 48) / dst.getHeight();
|
|
|
+ uint64 stepz = ((uint64)src.getDepth() << 48) / dst.getDepth();
|
|
|
+
|
|
|
+ // temp is 16/16 bit fixed precision, used to adjust a source
|
|
|
+ // coordinate (x, y, or z) backwards by half a pixel so that the
|
|
|
+ // integer bits represent the first sample (eg, sx1) and the
|
|
|
+ // fractional bits are the blend weight of the second sample
|
|
|
+ unsigned int temp;
|
|
|
+
|
|
|
+ // note: ((stepz>>1) - 1) is an extra half-step increment to adjust
|
|
|
+ // for the center of the destination pixel, not the top-left corner
|
|
|
+ uint64 sz_48 = (stepz >> 1) - 1;
|
|
|
+ for (size_t z = dst.front; z < dst.back; z++, sz_48+=stepz) {
|
|
|
+ temp = static_cast<unsigned int>(sz_48 >> 32);
|
|
|
+ temp = (temp > 0x8000)? temp - 0x8000 : 0;
|
|
|
+ size_t sz1 = temp >> 16; // src z, sample #1
|
|
|
+ size_t sz2 = std::min(sz1+1,src.getDepth()-1);// src z, sample #2
|
|
|
+ float szf = (temp & 0xFFFF) / 65536.f; // weight of sample #2
|
|
|
+
|
|
|
+ uint64 sy_48 = (stepy >> 1) - 1;
|
|
|
+ for (size_t y = dst.top; y < dst.bottom; y++, sy_48+=stepy) {
|
|
|
+ temp = static_cast<unsigned int>(sy_48 >> 32);
|
|
|
+ temp = (temp > 0x8000)? temp - 0x8000 : 0;
|
|
|
+ size_t sy1 = temp >> 16; // src y #1
|
|
|
+ size_t sy2 = std::min(sy1+1,src.getHeight()-1);// src y #2
|
|
|
+ float syf = (temp & 0xFFFF) / 65536.f; // weight of #2
|
|
|
+
|
|
|
+ uint64 sx_48 = (stepx >> 1) - 1;
|
|
|
+ for (size_t x = dst.left; x < dst.right; x++, sx_48+=stepx) {
|
|
|
+ temp = static_cast<unsigned int>(sx_48 >> 32);
|
|
|
+ temp = (temp > 0x8000)? temp - 0x8000 : 0;
|
|
|
+ size_t sx1 = temp >> 16; // src x #1
|
|
|
+ size_t sx2 = std::min(sx1+1,src.getWidth()-1);// src x #2
|
|
|
+ float sxf = (temp & 0xFFFF) / 65536.f; // weight of #2
|
|
|
+
|
|
|
+ // process R,G,B,A simultaneously for cache coherence?
|
|
|
+ float accum[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
|
|
|
+
|
|
|
+#define ACCUM3(x,y,z,factor) \
|
|
|
+ { float f = factor; \
|
|
|
+ size_t off = (x+y*src.rowPitch+z*src.slicePitch)*srcchannels; \
|
|
|
+ accum[0]+=srcdata[off+0]*f; accum[1]+=srcdata[off+1]*f; \
|
|
|
+ accum[2]+=srcdata[off+2]*f; }
|
|
|
+
|
|
|
+#define ACCUM4(x,y,z,factor) \
|
|
|
+ { float f = factor; \
|
|
|
+ size_t off = (x+y*src.rowPitch+z*src.slicePitch)*srcchannels; \
|
|
|
+ accum[0]+=srcdata[off+0]*f; accum[1]+=srcdata[off+1]*f; \
|
|
|
+ accum[2]+=srcdata[off+2]*f; accum[3]+=srcdata[off+3]*f; }
|
|
|
+
|
|
|
+ if (srcchannels == 3 || dstchannels == 3) {
|
|
|
+ // RGB, no alpha
|
|
|
+ ACCUM3(sx1,sy1,sz1,(1.0f-sxf)*(1.0f-syf)*(1.0f-szf));
|
|
|
+ ACCUM3(sx2,sy1,sz1, sxf *(1.0f-syf)*(1.0f-szf));
|
|
|
+ ACCUM3(sx1,sy2,sz1,(1.0f-sxf)* syf *(1.0f-szf));
|
|
|
+ ACCUM3(sx2,sy2,sz1, sxf * syf *(1.0f-szf));
|
|
|
+ ACCUM3(sx1,sy1,sz2,(1.0f-sxf)*(1.0f-syf)* szf );
|
|
|
+ ACCUM3(sx2,sy1,sz2, sxf *(1.0f-syf)* szf );
|
|
|
+ ACCUM3(sx1,sy2,sz2,(1.0f-sxf)* syf * szf );
|
|
|
+ ACCUM3(sx2,sy2,sz2, sxf * syf * szf );
|
|
|
+ accum[3] = 1.0f;
|
|
|
+ } else {
|
|
|
+ // RGBA
|
|
|
+ ACCUM4(sx1,sy1,sz1,(1.0f-sxf)*(1.0f-syf)*(1.0f-szf));
|
|
|
+ ACCUM4(sx2,sy1,sz1, sxf *(1.0f-syf)*(1.0f-szf));
|
|
|
+ ACCUM4(sx1,sy2,sz1,(1.0f-sxf)* syf *(1.0f-szf));
|
|
|
+ ACCUM4(sx2,sy2,sz1, sxf * syf *(1.0f-szf));
|
|
|
+ ACCUM4(sx1,sy1,sz2,(1.0f-sxf)*(1.0f-syf)* szf );
|
|
|
+ ACCUM4(sx2,sy1,sz2, sxf *(1.0f-syf)* szf );
|
|
|
+ ACCUM4(sx1,sy2,sz2,(1.0f-sxf)* syf * szf );
|
|
|
+ ACCUM4(sx2,sy2,sz2, sxf * syf * szf );
|
|
|
+ }
|
|
|
+
|
|
|
+ memcpy(pdst, accum, sizeof(float)*dstchannels);
|
|
|
+
|
|
|
+#undef ACCUM3
|
|
|
+#undef ACCUM4
|
|
|
+
|
|
|
+ pdst += dstchannels;
|
|
|
+ }
|
|
|
+ pdst += dstchannels*dst.getRowSkip();
|
|
|
+ }
|
|
|
+ pdst += dstchannels*dst.getSliceSkip();
|
|
|
+ }
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+// byte linear resampler, does not do any format conversions.
|
|
|
+// only handles pixel formats that use 1 byte per color channel.
|
|
|
+// 2D only; punts 3D pixelboxes to default LinearResampler (slow).
|
|
|
+// templated on bytes-per-pixel to allow compiler optimizations, such
|
|
|
+// as unrolling loops and replacing multiplies with bitshifts
|
|
|
+template<unsigned int channels> struct LinearResampler_Byte {
|
|
|
+ static void scale(const PixelBox& src, const PixelBox& dst) {
|
|
|
+ // assert(src.format == dst.format);
|
|
|
+
|
|
|
+ // only optimized for 2D
|
|
|
+ if (src.getDepth() > 1 || dst.getDepth() > 1) {
|
|
|
+ LinearResampler::scale(src, dst);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ // srcdata stays at beginning of slice, pdst is a moving pointer
|
|
|
+ uchar* srcdata = (uchar*)src.data;
|
|
|
+ uchar* pdst = (uchar*)dst.data;
|
|
|
+
|
|
|
+ // sx_48,sy_48 represent current position in source
|
|
|
+ // using 16/48-bit fixed precision, incremented by steps
|
|
|
+ uint64 stepx = ((uint64)src.getWidth() << 48) / dst.getWidth();
|
|
|
+ uint64 stepy = ((uint64)src.getHeight() << 48) / dst.getHeight();
|
|
|
+
|
|
|
+ // bottom 28 bits of temp are 16/12 bit fixed precision, used to
|
|
|
+ // adjust a source coordinate backwards by half a pixel so that the
|
|
|
+ // integer bits represent the first sample (eg, sx1) and the
|
|
|
+ // fractional bits are the blend weight of the second sample
|
|
|
+ unsigned int temp;
|
|
|
+
|
|
|
+ uint64 sy_48 = (stepy >> 1) - 1;
|
|
|
+ for (size_t y = dst.top; y < dst.bottom; y++, sy_48+=stepy) {
|
|
|
+ temp = static_cast<unsigned int>(sy_48 >> 36);
|
|
|
+ temp = (temp > 0x800)? temp - 0x800: 0;
|
|
|
+ unsigned int syf = temp & 0xFFF;
|
|
|
+ size_t sy1 = temp >> 12;
|
|
|
+ size_t sy2 = std::min(sy1+1, src.bottom-src.top-1);
|
|
|
+ size_t syoff1 = sy1 * src.rowPitch;
|
|
|
+ size_t syoff2 = sy2 * src.rowPitch;
|
|
|
+
|
|
|
+ uint64 sx_48 = (stepx >> 1) - 1;
|
|
|
+ for (size_t x = dst.left; x < dst.right; x++, sx_48+=stepx) {
|
|
|
+ temp = static_cast<unsigned int>(sx_48 >> 36);
|
|
|
+ temp = (temp > 0x800)? temp - 0x800 : 0;
|
|
|
+ unsigned int sxf = temp & 0xFFF;
|
|
|
+ size_t sx1 = temp >> 12;
|
|
|
+ size_t sx2 = std::min(sx1+1, src.right-src.left-1);
|
|
|
+
|
|
|
+ unsigned int sxfsyf = sxf*syf;
|
|
|
+ for (unsigned int k = 0; k < channels; k++) {
|
|
|
+ unsigned int accum =
|
|
|
+ srcdata[(sx1 + syoff1)*channels+k]*(0x1000000-(sxf<<12)-(syf<<12)+sxfsyf) +
|
|
|
+ srcdata[(sx2 + syoff1)*channels+k]*((sxf<<12)-sxfsyf) +
|
|
|
+ srcdata[(sx1 + syoff2)*channels+k]*((syf<<12)-sxfsyf) +
|
|
|
+ srcdata[(sx2 + syoff2)*channels+k]*sxfsyf;
|
|
|
+ // accum is computed using 8/24-bit fixed-point math
|
|
|
+ // (maximum is 0xFF000000; rounding will not cause overflow)
|
|
|
+ *pdst++ = static_cast<uchar>((accum + 0x800000) >> 24);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ pdst += channels*dst.getRowSkip();
|
|
|
+ }
|
|
|
+ }
|
|
|
+};
|
|
|
+/** @} */
|
|
|
+/** @} */
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+#endif
|