|
|
@@ -22,6 +22,10 @@ Technique
|
|
|
{
|
|
|
Compute =
|
|
|
{
|
|
|
+ // Arbitrary limit, increase if needed
|
|
|
+ #define MAX_SPOT_LIGHTS 512
|
|
|
+ #define MAX_RADIAL_LIGHTS 512
|
|
|
+
|
|
|
SamplerState gGBufferASamp : register(s0);
|
|
|
SamplerState gGBufferBSamp : register(s1);
|
|
|
SamplerState gDepthBufferSamp : register(s2);
|
|
|
@@ -65,14 +69,23 @@ Technique
|
|
|
StructuredBuffer<LightData> gPointLights : register(t4);
|
|
|
StructuredBuffer<LightData> gSpotLights : register(t5);
|
|
|
|
|
|
- RWTexture2D<float4> gOutput : register(u0);
|
|
|
+ RWTexture2D<float4> gOutput : register(u0);
|
|
|
|
|
|
cbuffer Params : register(b0)
|
|
|
{
|
|
|
// x - directional, y - point, z - spot
|
|
|
uint3 gNumLightsPerType;
|
|
|
}
|
|
|
-
|
|
|
+
|
|
|
+ groupshared uint sTileMinZ;
|
|
|
+ groupshared uint sTileMaxZ;
|
|
|
+
|
|
|
+ groupshared uint sNumRadialLights;
|
|
|
+ groupshared uint sNumSpotLights;
|
|
|
+
|
|
|
+ groupshared uint sRadialLightIndices[MAX_RADIAL_LIGHTS];
|
|
|
+ groupshared uint sSpotLightIndices[MAX_SPOT_LIGHTS];
|
|
|
+
|
|
|
[numthreads(TILE_SIZE, TILE_SIZE, 1)]
|
|
|
void main(
|
|
|
uint3 groupId : SV_GroupID,
|
|
|
@@ -81,32 +94,223 @@ Technique
|
|
|
uint threadIndex : SV_GroupIndex)
|
|
|
{
|
|
|
uint2 pixelPos = dispatchThreadId.xy + gViewportRectangle.xy;
|
|
|
- SurfaceData surfaceData = getGBufferData(pixelPos);
|
|
|
+
|
|
|
+ float deviceZ = gDepthBufferTex.Load(int3(pixelPos, 0)).r;
|
|
|
+ float depth = convertFromDeviceZ(deviceZ);
|
|
|
+
|
|
|
+ // Set initial values
|
|
|
+ if(threadIndex == 0)
|
|
|
+ {
|
|
|
+ sTileMinZ = 0x7F7FFFFF;
|
|
|
+ sTileMaxZ = 0;
|
|
|
+ sNumRadialLights = 0;
|
|
|
+ sNumSpotLights = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ GroupMemoryBarrierWithGroupSync();
|
|
|
+
|
|
|
+ // Determine minimum and maximum depth values
|
|
|
+ InterlockedMin(sTileMinZ, asuint(-depth));
|
|
|
+ InterlockedMax(sTileMaxZ, asuint(-depth));
|
|
|
|
|
|
+ GroupMemoryBarrierWithGroupSync();
|
|
|
+
|
|
|
+ float minTileZ = asfloat(sTileMinZ);
|
|
|
+ float maxTileZ = asfloat(sTileMaxZ);
|
|
|
+
|
|
|
+ // Create a frustum for the current tile
|
|
|
+ // First determine a scale of the tile compared to the viewport
|
|
|
+ float2 tileScale = gViewportRectangle.zw / float2(TILE_SIZE, TILE_SIZE);
|
|
|
+
|
|
|
+ // Now we need to use that scale to scale down the frustum.
|
|
|
+ // Assume a projection matrix:
|
|
|
+ // A, 0, C, 0
|
|
|
+ // 0, B, D, 0
|
|
|
+ // 0, 0, Q, QN
|
|
|
+ // 0, 0, -1, 0
|
|
|
+ //
|
|
|
+ // Where A is = 2*n / (r - l)
|
|
|
+ // and C = (r + l) / (r - l)
|
|
|
+ //
|
|
|
+ // Q & QN are used for Z value which we don't need to scale. B & D are equivalent for the
|
|
|
+ // Y value, we'll only consider the X values (A & C) from now on.
|
|
|
+ //
|
|
|
+ // Both and A and C are inversely proportional to the size of the frustum (r - l). Larger scale mean that
|
|
|
+ // tiles are that much smaller than the viewport. This means as our scale increases, (r - l) decreases,
|
|
|
+ // which means A & C as a whole increase. Therefore:
|
|
|
+ // A' = A * tileScale.x
|
|
|
+ // C' = C * tileScale.x
|
|
|
+
|
|
|
+ // Aside from scaling, we also need to offset the frustum to the center of the tile.
|
|
|
+ // For this we calculate the bias value which we add to the C & D factors (which control
|
|
|
+ // the offset in the projection matrix).
|
|
|
+ float2 tileBias = tileScale - 1 - groupId.xy * 2;
|
|
|
+
|
|
|
+ // This will yield a bias ranging from [-(tileScale - 1), tileScale - 1], with only odd
|
|
|
+ // numbers (except for tile scale of 1). e.g.
|
|
|
+ // tileScale = 1
|
|
|
+ // - bias[0] = 0
|
|
|
+
|
|
|
+ // tileScale = 2
|
|
|
+ // - bias[0] = 1
|
|
|
+ // - bias[1] = -1
|
|
|
+
|
|
|
+ // tileScale = 4
|
|
|
+ // - bias[0] = 3
|
|
|
+ // - bias[1] = 1
|
|
|
+ // - bias[2] = -1
|
|
|
+ // - bias[3] = -3
|
|
|
+
|
|
|
+ // etc.
|
|
|
+
|
|
|
+ // We use only odd numbers as that ensures we get only the frustums centered on tiles,
|
|
|
+ // and not those overlapping two tiles (centered on their boundary).
|
|
|
+
|
|
|
+ float At = gMatProj[0][0] * tileScale.x;
|
|
|
+ float Ctt = gMatProj[0][2] * tileScale.x - tileBias.x;
|
|
|
+
|
|
|
+ float Bt = gMatProj[1][1] * tileScale.y;
|
|
|
+ float Dtt = gMatProj[1][2] * tileScale.y + tileBias.y;
|
|
|
+
|
|
|
+ // Extract left/right/top/bottom frustum planes from scaled projection matrix
|
|
|
+ // Note: Do this on the CPU? Since they're shared among all entries in a tile. Plus they don't change across frames.
|
|
|
+ float4 frustumPlanes[6];
|
|
|
+ frustumPlanes[0] = float4(At, 0.0f, gMatProj[3][2] + Ctt, 0.0f);
|
|
|
+ frustumPlanes[1] = float4(-At, 0.0f, gMatProj[3][2] - Ctt, 0.0f);
|
|
|
+ frustumPlanes[2] = float4(0.0f, -Bt, gMatProj[3][2] - Dtt, 0.0f);
|
|
|
+ frustumPlanes[3] = float4(0.0f, Bt, gMatProj[3][2] + Dtt, 0.0f);
|
|
|
+
|
|
|
+ // Normalize
|
|
|
+ [unroll]
|
|
|
+ for (uint i = 0; i < 4; ++i)
|
|
|
+ frustumPlanes[i] *= rcp(length(frustumPlanes[i].xyz));
|
|
|
+
|
|
|
+ // Generate near/far frustum planes
|
|
|
+ // Note: d gets negated in plane equation, this is why its in opposite direction than it intuitively should be
|
|
|
+ frustumPlanes[4] = float4(0.0f, 0.0f, -1.0f, -minTileZ);
|
|
|
+ frustumPlanes[5] = float4(0.0f, 0.0f, 1.0f, maxTileZ);
|
|
|
+
|
|
|
+ // Generate world position
|
|
|
+ float2 screenUv = ((float2)(gViewportRectangle.xy + pixelPos) + 0.5f) / (float2)gViewportRectangle.zw;
|
|
|
+ float2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
|
|
|
+
|
|
|
+ // x, y are now in clip space, z, w are in view space
|
|
|
+ // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
|
|
|
+ // z, w eliminated (since they are already in view space)
|
|
|
+ // Note: Multiply by depth should be avoided if using ortographic projection
|
|
|
+ float4 mixedSpacePos = float4(clipSpacePos.xy * -depth, depth, 1);
|
|
|
+ float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
|
|
|
+ float3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
|
|
|
+
|
|
|
+ // Find lights overlapping the tile
|
|
|
+ for (uint i = threadIndex; i < gNumLightsPerType.y && i < MAX_RADIAL_LIGHTS; i += TILE_SIZE)
|
|
|
+ {
|
|
|
+ float4 lightPosition = mul(gMatView, float4(gPointLights[i].position, 1.0f));
|
|
|
+ float lightRadius = gPointLights[i].radius;
|
|
|
+
|
|
|
+ // Note: The cull method can have false positives. In case of large light bounds and small tiles, it
|
|
|
+ // can end up being quite a lot. Consider adding an extra heuristic to check a separating plane.
|
|
|
+ bool lightInTile = true;
|
|
|
+
|
|
|
+ // First check side planes as this will cull majority of the lights
|
|
|
+ [unroll]
|
|
|
+ for (uint j = 0; j < 4; ++j)
|
|
|
+ {
|
|
|
+ float dist = dot(frustumPlanes[j], lightPosition);
|
|
|
+ lightInTile = lightInTile && (dist >= -lightRadius);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Make sure to do an actual branch, since it's quite likely an entire warp will have the same value
|
|
|
+ [branch]
|
|
|
+ if (lightInTile)
|
|
|
+ {
|
|
|
+ bool inDepthRange = true;
|
|
|
+
|
|
|
+ // Check near/far planes
|
|
|
+ [unroll]
|
|
|
+ for (uint j = 4; j < 6; ++j)
|
|
|
+ {
|
|
|
+ float dist = dot(frustumPlanes[j], lightPosition);
|
|
|
+ inDepthRange = inDepthRange && (dist >= -lightRadius);
|
|
|
+ }
|
|
|
+
|
|
|
+ // In tile, add to branch
|
|
|
+ [branch]
|
|
|
+ if (inDepthRange)
|
|
|
+ {
|
|
|
+ uint idx;
|
|
|
+ InterlockedAdd(sNumRadialLights, 1U, idx);
|
|
|
+ sRadialLightIndices[idx] = i;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (uint i = threadIndex; i < gNumLightsPerType.z && i < MAX_SPOT_LIGHTS; i += TILE_SIZE)
|
|
|
+ {
|
|
|
+ float4 lightPosition = mul(gMatView, float4(gSpotLights[i].position, 1.0f));
|
|
|
+ float lightRadius = gSpotLights[i].radius;
|
|
|
+
|
|
|
+ // Note: The cull method can have false positives. In case of large light bounds and small tiles, it
|
|
|
+ // can end up being quite a lot. Consider adding an extra heuristic to check a separating plane.
|
|
|
+ bool lightInTile = true;
|
|
|
+
|
|
|
+ // First check side planes as this will cull majority of the lights
|
|
|
+ [unroll]
|
|
|
+ for (uint j = 0; j < 4; ++j)
|
|
|
+ {
|
|
|
+ float dist = dot(frustumPlanes[j], lightPosition);
|
|
|
+ lightInTile = lightInTile && (dist >= -lightRadius);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Make sure to do an actual branch, since it's quite likely an entire warp will have the same value
|
|
|
+ [branch]
|
|
|
+ if (lightInTile)
|
|
|
+ {
|
|
|
+ bool inDepthRange = true;
|
|
|
+
|
|
|
+ // Check near/far planes
|
|
|
+ [unroll]
|
|
|
+ for (uint j = 4; j < 6; ++j)
|
|
|
+ {
|
|
|
+ float dist = dot(frustumPlanes[j], lightPosition);
|
|
|
+ inDepthRange = inDepthRange && (dist >= -lightRadius);
|
|
|
+ }
|
|
|
+
|
|
|
+ // In tile, add to branch
|
|
|
+ [branch]
|
|
|
+ if (inDepthRange)
|
|
|
+ {
|
|
|
+ uint idx;
|
|
|
+ InterlockedAdd(sNumSpotLights, 1U, idx);
|
|
|
+ sSpotLightIndices[idx] = i;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ GroupMemoryBarrierWithGroupSync();
|
|
|
+
|
|
|
+ // Note: This unnecessarily samples depth again
|
|
|
+ SurfaceData surfaceData = getGBufferData(pixelPos);
|
|
|
+
|
|
|
float3 lightAccumulator = 0;
|
|
|
float alpha = 0.0f;
|
|
|
if(surfaceData.worldNormal.w > 0.0f)
|
|
|
{
|
|
|
- float2 screenUv = ((float2)(gViewportRectangle.xy + pixelPos) + 0.5f) / (float2)gViewportRectangle.zw;
|
|
|
- float2 clipSpacePos = (screenUv - gClipToUVScaleOffset.zw) / gClipToUVScaleOffset.xy;
|
|
|
-
|
|
|
- // x, y are now in clip space, z, w are in view space
|
|
|
- // We multiply them by a special inverse view-projection matrix, that had the projection entries that effect
|
|
|
- // z, w eliminated (since they are already in view space)
|
|
|
- // Note: Multiply by depth should be avoided if using ortographic projection
|
|
|
- float4 mixedSpacePos = float4(clipSpacePos.xy * -surfaceData.depth, surfaceData.depth, 1);
|
|
|
- float4 worldPosition4D = mul(gMatScreenToWorld, mixedSpacePos);
|
|
|
- float3 worldPosition = worldPosition4D.xyz / worldPosition4D.w;
|
|
|
-
|
|
|
- for(uint i = 0; i < gNumLightsPerType.x; i++)
|
|
|
+ for(uint i = 0; i < gNumLightsPerType.x; ++i)
|
|
|
lightAccumulator += getDirLightContibution(surfaceData, gDirLights[i]);
|
|
|
|
|
|
- for(uint i = 0; i < gNumLightsPerType.y; i++)
|
|
|
- lightAccumulator += getPointLightContribution(worldPosition, surfaceData, gPointLights[i]);
|
|
|
-
|
|
|
- for(uint i = 0; i < gNumLightsPerType.z; i++)
|
|
|
- lightAccumulator += getSpotLightContribution(worldPosition, surfaceData, gSpotLights[i]);
|
|
|
-
|
|
|
+ for (uint i = 0; i < sNumRadialLights; ++i)
|
|
|
+ {
|
|
|
+ uint lightIdx = sRadialLightIndices[i];
|
|
|
+ lightAccumulator += getPointLightContribution(worldPosition, surfaceData, gPointLights[lightIdx]);
|
|
|
+ }
|
|
|
+
|
|
|
+ for(uint i = 0; i < sNumSpotLights; ++i)
|
|
|
+ {
|
|
|
+ uint lightIdx = sSpotLightIndices[i];
|
|
|
+ lightAccumulator += getSpotLightContribution(worldPosition, surfaceData, gSpotLights[lightIdx]);
|
|
|
+ }
|
|
|
+
|
|
|
alpha = 1.0f;
|
|
|
}
|
|
|
|