using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Text;
namespace BansheeEngine
{
///
/// Camera component that determines how is world geometry projected onto a 2D surface. You may position and orient it
/// in space, set options like aspect ratio and field or view and it outputs view and projection matrices required for
/// rendering.
///
public class Camera : Component
{
private NativeCamera native;
[SerializeField]
internal SerializableData serializableData = new SerializableData();
///
/// Returns the non-component version of Camera that is wrapped by this component.
///
internal NativeCamera Native
{
get { return native; }
}
///
/// Ratio between viewport width and height (width / height).
///
public float AspectRatio
{
get { return native.aspectRatio; }
set { native.aspectRatio = value; serializableData.aspectRatio = value; }
}
///
/// Distance from the frustum origin to the near clipping plane. Anything closer than the near clipping plane will
/// not be rendered. Decreasing this value decreases depth buffer precision.
///
public float NearClipPlane
{
get { return native.nearClipPlane; }
set { native.nearClipPlane = value; serializableData.nearClipPlane = value; }
}
///
/// Distance from the frustum origin to the far clipping plane. Anything farther than the far clipping plane will
/// not be rendered. Increasing this value decreases depth buffer precision.
///
public float FarClipPlane
{
get { return native.farClipPlane; }
set { native.farClipPlane = value; serializableData.farClipPlane = value; }
}
///
/// Horizontal field of view. This determines how wide the camera viewing angle is along the horizontal axis.
/// Vertical FOV is calculated from the horizontal FOV and the aspect ratio.
///
public Degree FieldOfView
{
get { return native.fieldOfView; }
set { native.fieldOfView = value; serializableData.fieldOfView = value; }
}
///
/// Returns the area of the render target that the camera renders to, in normalized coordinates.
///
public Rect2 ViewportRect
{
get { return native.viewportRect; }
set { native.viewportRect = value; serializableData.viewportRect = value; }
}
///
/// Projection type that controls how is 3D geometry projected onto a 2D plane.
///
public ProjectionType ProjectionType
{
get { return native.projectionType; }
set { native.projectionType = value; serializableData.projectionType = value; }
}
///
/// Ortographic height that controls the size of the displayed objects. This value is only relevant when projection
/// type is set to orthographic. Setting this value will automatically recalculate ortographic width depending on
/// the aspect ratio.
///
public float OrthoHeight
{
get { return native.orthoHeight; }
set { native.orthoHeight = value; serializableData.orthoHeight = value; }
}
///
/// Returns the ortographic width that controls the size of the displayed object. To change this value modify
/// or .
///
public float OrthoWidth
{
get { return native.orthoWidth; }
}
///
/// Color that will be used for clearing the camera's viewport before rendering. Only relevant if color clear is
/// enabled.
///
public Color ClearColor
{
get { return native.clearColor; }
set { native.clearColor = value; serializableData.clearColor = value; }
}
///
/// Value that will be used for clearing the camera's depth buffer before rendering. Only relevant if depth clear
/// is enabled.
///
public float ClearDepth
{
get { return native.clearDepth; }
set { native.clearDepth = value; serializableData.clearDepth = value; }
}
///
/// Value that will be used for clearing the camera's stencil buffer before rendering. Only relevant if stencil
/// clear is enabled.
///
public UInt16 ClearStencil
{
get { return native.clearStencil; }
set { native.clearStencil = value; serializableData.clearStencil = value; }
}
///
/// Flags that control which portions of the camera viewport, if any, are cleared before rendering.
///
public ClearFlags ClearFlags
{
get { return native.clearFlags; }
set { native.clearFlags = value; serializableData.clearFlags = value; }
}
///
/// Determines in which orders are the cameras rendered. This only applies to cameras rendering to the same render
/// target. Higher value means the camera will be processed sooner.
///
public int Priority
{
get { return native.priority; }
set { native.priority = value; serializableData.priority = value; }
}
///
/// Sets layer bitfield that is used when determining which object should the camera render. Renderable objects
/// have their own layer flags that can be set depending on which camera you want to render them in.
///
public UInt64 Layers
{
get { return native.layers; }
set { native.layers = value; serializableData.layers = value; }
}
///
/// Returns the standard projection matrix that determines how are 3D points projected to two dimensions. The layout
/// of this matrix depends on currently used render system.
///
public Matrix4 ProjMatrix
{
get { return native.projMatrix; }
}
///
/// Returns the inverse of the standard projection matrix that determines how are 3D points projected to two
/// dimensions. The layout of this matrix depends on currently used render system.
///
public Matrix4 ProjMatrixInverse
{
get { return native.projMatrixInv; }
}
///
/// Returns the view matrix that controls camera position and orientation.
///
public Matrix4 ViewMatrix
{
get { return native.viewMatrix; }
}
///
/// Returns the inverse of the view matrix that controls camera position and orientation.
///
public Matrix4 ViewMatrixInverse
{
get { return native.viewMatrixInv; }
}
///
/// Returns the width of the camera's viewport, in pixels. Only valid if render target is currently set.
///
public int WidthPixels
{
get { return native.widthPixels; }
}
///
/// Returns the height of the camera's viewport, in pixels. Only valid if render target is currently set.
///
public int HeightPixels
{
get { return native.heightPixels; }
}
///
/// Returns the render target that the camera will output all rendered pixels to.
///
public RenderTarget Target
{
get { return native.target; }
set { native.target = value; }
}
///
/// Converts a point in world space to screen coordinates.
///
/// 3D point in world space.
/// 2D point on the render target attached to the camera, in pixels.
public Vector2I WorldToScreen(Vector3 value) { return native.WorldToScreen(value); }
///
/// Converts a point in world space to clip space coordinates.
///
/// 3D point in world space.
/// 2D point in normalized coordinates ([0, 1] range), relative to the camera's viewport.
public Vector2 WorldToClip(Vector3 value) { return native.WorldToClip(value); }
///
/// Converts a point in world space to view space coordinates.
///
/// 3D point in world space.
/// 3D point relative to the camera's coordinate system.
public Vector3 WorldToView(Vector3 value) { return native.WorldToView(value); }
///
/// Converts a point in screen space to a point in world space.
///
/// 2D point on the render target attached to the camera, in pixels.
/// Depth at which place the world point at. The depth is applied to the vector going from
/// camera origin to the point on the near plane.
/// 3D point in world space.
public Vector3 ScreenToWorld(Vector2I value, float depth = 0.5f) { return native.ScreenToWorld(value, depth); }
///
/// Converts a point in screen space to a point in view space.
///
/// 2D point on the render target attached to the camera, in pixels.
/// Depth at which place the view point at. The depth is applied to the vector going from
/// camera origin to the point on the near plane.
/// 3D point in view space.
public Vector3 ScreenToView(Vector2I value, float depth = 0.5f) { return native.ScreenToView(value, depth); }
///
/// Converts a point in screen space to a point in normalized clip space.
///
/// 2D point on the render target attached to the camera, in pixels.
/// 2D point in normalized cliped space ([0, 1] range), relative to the camera's viewport.
public Vector2 ScreenToClip(Vector2I value) { return native.ScreenToClip(value); }
///
/// Converts a point relative to camera's coordinate system (view space) into a point in world space.
///
/// 3D point in view space.
/// 3D point in world space.
public Vector3 ViewToWorld(Vector3 value) { return native.ViewToWorld(value); }
///
/// Converts a point relative to camera's coordinate system (view space) to screen coordinates.
///
/// 3D point in view space.
/// 2D point on the render target attached to the camera, in pixels.
public Vector2I ViewToScreen(Vector3 value) { return native.ViewToScreen(value); }
///
/// Converts a point relative to camera's coordinate system (view space) to normalized clip space.
///
/// 3D point in view space.
/// 2D point in normalized cliped space ([0, 1] range), relative to the camera's viewport.
public Vector2 ViewToClip(Vector3 value) { return native.ViewToClip(value); }
///
/// Converts a point relative to camera's viewport in normalized clip space ([0, 1] range) into a point in
/// world space.
///
/// 2D point in normalized clip space.
/// Depth at which place the world point at. The depth is applied to the vector going from
/// camera origin to the point on the near plane.
/// 3D point in world space.
public Vector3 ClipToWorld(Vector2 value, float depth = 0.5f) { return native.ClipToWorld(value, depth); }
///
/// Converts a point relative to camera's viewport in normalized clip space ([0, 1] range) into a point in
/// view space.
///
/// 2D point in normalized clip space.
/// Depth at which place the world point at. The depth is applied to the vector going from
/// camera origin to the point on the near plane.
/// 3D point in view space.
public Vector3 ClipToView(Vector2 value, float depth = 0.5f) { return native.ClipToView(value, depth); }
///
/// Converts a point relative to camera's viewport in normalized clip space ([0, 1] range) to screen space.
///
/// 2D point in normalized clip space.
/// 2D point on the render target attached to the camera, in pixels.
public Vector2I ClipToScreen(Vector2 value) { return native.ClipToScreen(value); }
///
/// Converts a point in screen space in a ray in world space.
///
/// 2D point on the render target attached to the camera, in pixels.
/// A ray in world space with it's origin the selected point at the near frustum plane, pointing in the
/// direction going from camera's origin towards a point on the near frustum plane.
public Ray ScreenToWorldRay(Vector2I value) { return native.ScreenToWorldRay(value); }
///
/// Projects a point in view space to a point in clip space. Similar to but preserves
/// the depth component.
///
/// 3D point in view space.
/// 3D point in normalized cliped space ([0, 1] range), relative to the camera's viewport. Z value
/// range depends on active render API.
public Vector3 ProjectPoint(Vector3 value) { return native.ProjectPoint(value); }
///
/// Un-rpojects a point in clip space to a point in view space.
///
/// 3D point in normalized cliped space ([0, 1] range), relative to the camera's viewport.
/// Z value range depends on active render API.
/// 3D point in view space.
public Vector3 UnprojectPoint(Vector3 value) { return native.UnprojectPoint(value); }
private void OnReset()
{
if (native != null)
native.OnDestroy();
native = new NativeCamera(SceneObject);
// Restore saved values after reset
native.aspectRatio = serializableData.aspectRatio;
native.nearClipPlane = serializableData.nearClipPlane;
native.farClipPlane = serializableData.farClipPlane;
native.fieldOfView = serializableData.fieldOfView;
native.viewportRect = serializableData.viewportRect;
native.projectionType = serializableData.projectionType;
native.orthoHeight = serializableData.orthoHeight;
native.clearColor = serializableData.clearColor;
native.clearDepth = serializableData.clearDepth;
native.clearStencil = serializableData.clearStencil;
native.clearFlags = serializableData.clearFlags;
native.priority = serializableData.priority;
native.layers = serializableData.layers;
// TODO - Make RenderTexture a resource so I can save/restore it?
}
private void Update()
{
native.UpdateView(SceneObject);
}
private void OnDestroy()
{
native.OnDestroy();
}
///
/// Holds all data the camera component needs to persist through serialization.
///
[SerializeObject]
internal class SerializableData
{
public float aspectRatio = 1.333f;
public float nearClipPlane = 1.0f;
public float farClipPlane = 1000.0f;
public Degree fieldOfView = new Degree(60);
public Rect2 viewportRect = new Rect2(0, 0, 1, 1);
public ProjectionType projectionType = ProjectionType.Perspective;
public float orthoHeight;
public Color clearColor = new Color(143.0f / 255.0f, 111.0f / 255.0f, 0);
public float clearDepth = 1.0f;
public UInt16 clearStencil;
public ClearFlags clearFlags = ClearFlags.Color | ClearFlags.Depth | ClearFlags.Stencil;
public int priority;
public UInt64 layers = 0xFFFFFFFFFFFFFFFF;
}
}
}