/* ----------------------------------------------------------------------------- This source file is part of OGRE (Object-oriented Graphics Rendering Engine) For the latest info, see http://www.ogre3d.org/ Copyright (c) 2000-2011 Torus Knot Software Ltd Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------------- */ #include "CmMatrix3.h" #include "CmMath.h" // Adapted from Matrix math by Wild Magic http://www.geometrictools.com/ namespace CamelotEngine { const float Matrix3::EPSILON = 1e-06f; const Matrix3 Matrix3::ZERO(0,0,0,0,0,0,0,0,0); const Matrix3 Matrix3::IDENTITY(1,0,0,0,1,0,0,0,1); const float Matrix3::ms_fSvdEpsilon = 1e-04f; const unsigned int Matrix3::ms_iSvdMaxIterations = 32; //----------------------------------------------------------------------- Vector3 Matrix3::GetColumn (size_t iCol) const { assert( 0 <= iCol && iCol < 3 ); return Vector3(m[0][iCol],m[1][iCol], m[2][iCol]); } //----------------------------------------------------------------------- void Matrix3::SetColumn(size_t iCol, const Vector3& vec) { assert( 0 <= iCol && iCol < 3 ); m[0][iCol] = vec.x; m[1][iCol] = vec.y; m[2][iCol] = vec.z; } //----------------------------------------------------------------------- void Matrix3::FromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis) { SetColumn(0,xAxis); SetColumn(1,yAxis); SetColumn(2,zAxis); } //----------------------------------------------------------------------- bool Matrix3::operator== (const Matrix3& rkMatrix) const { for (size_t iRow = 0; iRow < 3; iRow++) { for (size_t iCol = 0; iCol < 3; iCol++) { if ( m[iRow][iCol] != rkMatrix.m[iRow][iCol] ) return false; } } return true; } //----------------------------------------------------------------------- Matrix3 Matrix3::operator+ (const Matrix3& rkMatrix) const { Matrix3 kSum; for (size_t iRow = 0; iRow < 3; iRow++) { for (size_t iCol = 0; iCol < 3; iCol++) { kSum.m[iRow][iCol] = m[iRow][iCol] + rkMatrix.m[iRow][iCol]; } } return kSum; } //----------------------------------------------------------------------- Matrix3 Matrix3::operator- (const Matrix3& rkMatrix) const { Matrix3 kDiff; for (size_t iRow = 0; iRow < 3; iRow++) { for (size_t iCol = 0; iCol < 3; iCol++) { kDiff.m[iRow][iCol] = m[iRow][iCol] - rkMatrix.m[iRow][iCol]; } } return kDiff; } //----------------------------------------------------------------------- Matrix3 Matrix3::operator* (const Matrix3& rkMatrix) const { Matrix3 kProd; for (size_t iRow = 0; iRow < 3; iRow++) { for (size_t iCol = 0; iCol < 3; iCol++) { kProd.m[iRow][iCol] = m[iRow][0]*rkMatrix.m[0][iCol] + m[iRow][1]*rkMatrix.m[1][iCol] + m[iRow][2]*rkMatrix.m[2][iCol]; } } return kProd; } //----------------------------------------------------------------------- Vector3 Matrix3::operator* (const Vector3& rkPoint) const { Vector3 kProd; for (size_t iRow = 0; iRow < 3; iRow++) { kProd[iRow] = m[iRow][0]*rkPoint[0] + m[iRow][1]*rkPoint[1] + m[iRow][2]*rkPoint[2]; } return kProd; } //----------------------------------------------------------------------- Vector3 operator* (const Vector3& rkPoint, const Matrix3& rkMatrix) { Vector3 kProd; for (size_t iRow = 0; iRow < 3; iRow++) { kProd[iRow] = rkPoint[0]*rkMatrix.m[0][iRow] + rkPoint[1]*rkMatrix.m[1][iRow] + rkPoint[2]*rkMatrix.m[2][iRow]; } return kProd; } //----------------------------------------------------------------------- Matrix3 Matrix3::operator- () const { Matrix3 kNeg; for (size_t iRow = 0; iRow < 3; iRow++) { for (size_t iCol = 0; iCol < 3; iCol++) kNeg[iRow][iCol] = -m[iRow][iCol]; } return kNeg; } //----------------------------------------------------------------------- Matrix3 Matrix3::operator* (float fScalar) const { Matrix3 kProd; for (size_t iRow = 0; iRow < 3; iRow++) { for (size_t iCol = 0; iCol < 3; iCol++) kProd[iRow][iCol] = fScalar*m[iRow][iCol]; } return kProd; } //----------------------------------------------------------------------- Matrix3 operator* (float fScalar, const Matrix3& rkMatrix) { Matrix3 kProd; for (size_t iRow = 0; iRow < 3; iRow++) { for (size_t iCol = 0; iCol < 3; iCol++) kProd[iRow][iCol] = fScalar*rkMatrix.m[iRow][iCol]; } return kProd; } //----------------------------------------------------------------------- Matrix3 Matrix3::Transpose () const { Matrix3 kTranspose; for (size_t iRow = 0; iRow < 3; iRow++) { for (size_t iCol = 0; iCol < 3; iCol++) kTranspose[iRow][iCol] = m[iCol][iRow]; } return kTranspose; } //----------------------------------------------------------------------- bool Matrix3::Inverse (Matrix3& rkInverse, float fTolerance) const { // Invert a 3x3 using cofactors. This is about 8 times faster than // the Numerical Recipes code which uses Gaussian elimination. rkInverse[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1]; rkInverse[0][1] = m[0][2]*m[2][1] - m[0][1]*m[2][2]; rkInverse[0][2] = m[0][1]*m[1][2] - m[0][2]*m[1][1]; rkInverse[1][0] = m[1][2]*m[2][0] - m[1][0]*m[2][2]; rkInverse[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0]; rkInverse[1][2] = m[0][2]*m[1][0] - m[0][0]*m[1][2]; rkInverse[2][0] = m[1][0]*m[2][1] - m[1][1]*m[2][0]; rkInverse[2][1] = m[0][1]*m[2][0] - m[0][0]*m[2][1]; rkInverse[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]; float fDet = m[0][0]*rkInverse[0][0] + m[0][1]*rkInverse[1][0]+ m[0][2]*rkInverse[2][0]; if ( Math::Abs(fDet) <= fTolerance ) return false; float fInvDet = 1.0f/fDet; for (size_t iRow = 0; iRow < 3; iRow++) { for (size_t iCol = 0; iCol < 3; iCol++) rkInverse[iRow][iCol] *= fInvDet; } return true; } //----------------------------------------------------------------------- Matrix3 Matrix3::Inverse (float fTolerance) const { Matrix3 kInverse = Matrix3::ZERO; Inverse(kInverse,fTolerance); return kInverse; } //----------------------------------------------------------------------- float Matrix3::Determinant () const { float fCofactor00 = m[1][1]*m[2][2] - m[1][2]*m[2][1]; float fCofactor10 = m[1][2]*m[2][0] - m[1][0]*m[2][2]; float fCofactor20 = m[1][0]*m[2][1] - m[1][1]*m[2][0]; float fDet = m[0][0]*fCofactor00 + m[0][1]*fCofactor10 + m[0][2]*fCofactor20; return fDet; } //----------------------------------------------------------------------- void Matrix3::Bidiagonalize (Matrix3& kA, Matrix3& kL, Matrix3& kR) { float afV[3], afW[3]; float fLength, fSign, fT1, fInvT1, fT2; bool bIdentity; // map first column to (*,0,0) fLength = Math::Sqrt(kA[0][0]*kA[0][0] + kA[1][0]*kA[1][0] + kA[2][0]*kA[2][0]); if ( fLength > 0.0 ) { fSign = (kA[0][0] > 0.0f ? 1.0f : -1.0f); fT1 = kA[0][0] + fSign*fLength; fInvT1 = 1.0f/fT1; afV[1] = kA[1][0]*fInvT1; afV[2] = kA[2][0]*fInvT1; fT2 = -2.0f/(1.0f+afV[1]*afV[1]+afV[2]*afV[2]); afW[0] = fT2*(kA[0][0]+kA[1][0]*afV[1]+kA[2][0]*afV[2]); afW[1] = fT2*(kA[0][1]+kA[1][1]*afV[1]+kA[2][1]*afV[2]); afW[2] = fT2*(kA[0][2]+kA[1][2]*afV[1]+kA[2][2]*afV[2]); kA[0][0] += afW[0]; kA[0][1] += afW[1]; kA[0][2] += afW[2]; kA[1][1] += afV[1]*afW[1]; kA[1][2] += afV[1]*afW[2]; kA[2][1] += afV[2]*afW[1]; kA[2][2] += afV[2]*afW[2]; kL[0][0] = 1.0f+fT2; kL[0][1] = kL[1][0] = fT2*afV[1]; kL[0][2] = kL[2][0] = fT2*afV[2]; kL[1][1] = 1.0f+fT2*afV[1]*afV[1]; kL[1][2] = kL[2][1] = fT2*afV[1]*afV[2]; kL[2][2] = 1.0f+fT2*afV[2]*afV[2]; bIdentity = false; } else { kL = Matrix3::IDENTITY; bIdentity = true; } // map first row to (*,*,0) fLength = Math::Sqrt(kA[0][1]*kA[0][1]+kA[0][2]*kA[0][2]); if ( fLength > 0.0 ) { fSign = (kA[0][1] > 0.0f ? 1.0f : -1.0f); fT1 = kA[0][1] + fSign*fLength; afV[2] = kA[0][2]/fT1; fT2 = -2.0f/(1.0f+afV[2]*afV[2]); afW[0] = fT2*(kA[0][1]+kA[0][2]*afV[2]); afW[1] = fT2*(kA[1][1]+kA[1][2]*afV[2]); afW[2] = fT2*(kA[2][1]+kA[2][2]*afV[2]); kA[0][1] += afW[0]; kA[1][1] += afW[1]; kA[1][2] += afW[1]*afV[2]; kA[2][1] += afW[2]; kA[2][2] += afW[2]*afV[2]; kR[0][0] = 1.0; kR[0][1] = kR[1][0] = 0.0; kR[0][2] = kR[2][0] = 0.0; kR[1][1] = 1.0f+fT2; kR[1][2] = kR[2][1] = fT2*afV[2]; kR[2][2] = 1.0f+fT2*afV[2]*afV[2]; } else { kR = Matrix3::IDENTITY; } // map second column to (*,*,0) fLength = Math::Sqrt(kA[1][1]*kA[1][1]+kA[2][1]*kA[2][1]); if ( fLength > 0.0 ) { fSign = (kA[1][1] > 0.0f ? 1.0f : -1.0f); fT1 = kA[1][1] + fSign*fLength; afV[2] = kA[2][1]/fT1; fT2 = -2.0f/(1.0f+afV[2]*afV[2]); afW[1] = fT2*(kA[1][1]+kA[2][1]*afV[2]); afW[2] = fT2*(kA[1][2]+kA[2][2]*afV[2]); kA[1][1] += afW[1]; kA[1][2] += afW[2]; kA[2][2] += afV[2]*afW[2]; float fA = 1.0f+fT2; float fB = fT2*afV[2]; float fC = 1.0f+fB*afV[2]; if ( bIdentity ) { kL[0][0] = 1.0; kL[0][1] = kL[1][0] = 0.0; kL[0][2] = kL[2][0] = 0.0; kL[1][1] = fA; kL[1][2] = kL[2][1] = fB; kL[2][2] = fC; } else { for (int iRow = 0; iRow < 3; iRow++) { float fTmp0 = kL[iRow][1]; float fTmp1 = kL[iRow][2]; kL[iRow][1] = fA*fTmp0+fB*fTmp1; kL[iRow][2] = fB*fTmp0+fC*fTmp1; } } } } //----------------------------------------------------------------------- void Matrix3::GolubKahanStep (Matrix3& kA, Matrix3& kL, Matrix3& kR) { float fT11 = kA[0][1]*kA[0][1]+kA[1][1]*kA[1][1]; float fT22 = kA[1][2]*kA[1][2]+kA[2][2]*kA[2][2]; float fT12 = kA[1][1]*kA[1][2]; float fTrace = fT11+fT22; float fDiff = fT11-fT22; float fDiscr = Math::Sqrt(fDiff*fDiff+4.0f*fT12*fT12); float fRoot1 = 0.5f*(fTrace+fDiscr); float fRoot2 = 0.5f*(fTrace-fDiscr); // adjust right float fY = kA[0][0] - (Math::Abs(fRoot1-fT22) <= Math::Abs(fRoot2-fT22) ? fRoot1 : fRoot2); float fZ = kA[0][1]; float fInvLength = Math::InvSqrt(fY*fY+fZ*fZ); float fSin = fZ*fInvLength; float fCos = -fY*fInvLength; float fTmp0 = kA[0][0]; float fTmp1 = kA[0][1]; kA[0][0] = fCos*fTmp0-fSin*fTmp1; kA[0][1] = fSin*fTmp0+fCos*fTmp1; kA[1][0] = -fSin*kA[1][1]; kA[1][1] *= fCos; size_t iRow; for (iRow = 0; iRow < 3; iRow++) { fTmp0 = kR[0][iRow]; fTmp1 = kR[1][iRow]; kR[0][iRow] = fCos*fTmp0-fSin*fTmp1; kR[1][iRow] = fSin*fTmp0+fCos*fTmp1; } // adjust left fY = kA[0][0]; fZ = kA[1][0]; fInvLength = Math::InvSqrt(fY*fY+fZ*fZ); fSin = fZ*fInvLength; fCos = -fY*fInvLength; kA[0][0] = fCos*kA[0][0]-fSin*kA[1][0]; fTmp0 = kA[0][1]; fTmp1 = kA[1][1]; kA[0][1] = fCos*fTmp0-fSin*fTmp1; kA[1][1] = fSin*fTmp0+fCos*fTmp1; kA[0][2] = -fSin*kA[1][2]; kA[1][2] *= fCos; size_t iCol; for (iCol = 0; iCol < 3; iCol++) { fTmp0 = kL[iCol][0]; fTmp1 = kL[iCol][1]; kL[iCol][0] = fCos*fTmp0-fSin*fTmp1; kL[iCol][1] = fSin*fTmp0+fCos*fTmp1; } // adjust right fY = kA[0][1]; fZ = kA[0][2]; fInvLength = Math::InvSqrt(fY*fY+fZ*fZ); fSin = fZ*fInvLength; fCos = -fY*fInvLength; kA[0][1] = fCos*kA[0][1]-fSin*kA[0][2]; fTmp0 = kA[1][1]; fTmp1 = kA[1][2]; kA[1][1] = fCos*fTmp0-fSin*fTmp1; kA[1][2] = fSin*fTmp0+fCos*fTmp1; kA[2][1] = -fSin*kA[2][2]; kA[2][2] *= fCos; for (iRow = 0; iRow < 3; iRow++) { fTmp0 = kR[1][iRow]; fTmp1 = kR[2][iRow]; kR[1][iRow] = fCos*fTmp0-fSin*fTmp1; kR[2][iRow] = fSin*fTmp0+fCos*fTmp1; } // adjust left fY = kA[1][1]; fZ = kA[2][1]; fInvLength = Math::InvSqrt(fY*fY+fZ*fZ); fSin = fZ*fInvLength; fCos = -fY*fInvLength; kA[1][1] = fCos*kA[1][1]-fSin*kA[2][1]; fTmp0 = kA[1][2]; fTmp1 = kA[2][2]; kA[1][2] = fCos*fTmp0-fSin*fTmp1; kA[2][2] = fSin*fTmp0+fCos*fTmp1; for (iCol = 0; iCol < 3; iCol++) { fTmp0 = kL[iCol][1]; fTmp1 = kL[iCol][2]; kL[iCol][1] = fCos*fTmp0-fSin*fTmp1; kL[iCol][2] = fSin*fTmp0+fCos*fTmp1; } } //----------------------------------------------------------------------- void Matrix3::SingularValueDecomposition (Matrix3& kL, Vector3& kS, Matrix3& kR) const { // temas: currently unused //const int iMax = 16; size_t iRow, iCol; Matrix3 kA = *this; Bidiagonalize(kA,kL,kR); for (unsigned int i = 0; i < ms_iSvdMaxIterations; i++) { float fTmp, fTmp0, fTmp1; float fSin0, fCos0, fTan0; float fSin1, fCos1, fTan1; bool bTest1 = (Math::Abs(kA[0][1]) <= ms_fSvdEpsilon*(Math::Abs(kA[0][0])+Math::Abs(kA[1][1]))); bool bTest2 = (Math::Abs(kA[1][2]) <= ms_fSvdEpsilon*(Math::Abs(kA[1][1])+Math::Abs(kA[2][2]))); if ( bTest1 ) { if ( bTest2 ) { kS[0] = kA[0][0]; kS[1] = kA[1][1]; kS[2] = kA[2][2]; break; } else { // 2x2 closed form factorization fTmp = (kA[1][1]*kA[1][1] - kA[2][2]*kA[2][2] + kA[1][2]*kA[1][2])/(kA[1][2]*kA[2][2]); fTan0 = 0.5f*(fTmp+Math::Sqrt(fTmp*fTmp + 4.0f)); fCos0 = Math::InvSqrt(1.0f+fTan0*fTan0); fSin0 = fTan0*fCos0; for (iCol = 0; iCol < 3; iCol++) { fTmp0 = kL[iCol][1]; fTmp1 = kL[iCol][2]; kL[iCol][1] = fCos0*fTmp0-fSin0*fTmp1; kL[iCol][2] = fSin0*fTmp0+fCos0*fTmp1; } fTan1 = (kA[1][2]-kA[2][2]*fTan0)/kA[1][1]; fCos1 = Math::InvSqrt(1.0f+fTan1*fTan1); fSin1 = -fTan1*fCos1; for (iRow = 0; iRow < 3; iRow++) { fTmp0 = kR[1][iRow]; fTmp1 = kR[2][iRow]; kR[1][iRow] = fCos1*fTmp0-fSin1*fTmp1; kR[2][iRow] = fSin1*fTmp0+fCos1*fTmp1; } kS[0] = kA[0][0]; kS[1] = fCos0*fCos1*kA[1][1] - fSin1*(fCos0*kA[1][2]-fSin0*kA[2][2]); kS[2] = fSin0*fSin1*kA[1][1] + fCos1*(fSin0*kA[1][2]+fCos0*kA[2][2]); break; } } else { if ( bTest2 ) { // 2x2 closed form factorization fTmp = (kA[0][0]*kA[0][0] + kA[1][1]*kA[1][1] - kA[0][1]*kA[0][1])/(kA[0][1]*kA[1][1]); fTan0 = 0.5f*(-fTmp+Math::Sqrt(fTmp*fTmp + 4.0f)); fCos0 = Math::InvSqrt(1.0f+fTan0*fTan0); fSin0 = fTan0*fCos0; for (iCol = 0; iCol < 3; iCol++) { fTmp0 = kL[iCol][0]; fTmp1 = kL[iCol][1]; kL[iCol][0] = fCos0*fTmp0-fSin0*fTmp1; kL[iCol][1] = fSin0*fTmp0+fCos0*fTmp1; } fTan1 = (kA[0][1]-kA[1][1]*fTan0)/kA[0][0]; fCos1 = Math::InvSqrt(1.0f+fTan1*fTan1); fSin1 = -fTan1*fCos1; for (iRow = 0; iRow < 3; iRow++) { fTmp0 = kR[0][iRow]; fTmp1 = kR[1][iRow]; kR[0][iRow] = fCos1*fTmp0-fSin1*fTmp1; kR[1][iRow] = fSin1*fTmp0+fCos1*fTmp1; } kS[0] = fCos0*fCos1*kA[0][0] - fSin1*(fCos0*kA[0][1]-fSin0*kA[1][1]); kS[1] = fSin0*fSin1*kA[0][0] + fCos1*(fSin0*kA[0][1]+fCos0*kA[1][1]); kS[2] = kA[2][2]; break; } else { GolubKahanStep(kA,kL,kR); } } } // positize diagonal for (iRow = 0; iRow < 3; iRow++) { if ( kS[iRow] < 0.0 ) { kS[iRow] = -kS[iRow]; for (iCol = 0; iCol < 3; iCol++) kR[iRow][iCol] = -kR[iRow][iCol]; } } } //----------------------------------------------------------------------- void Matrix3::SingularValueComposition (const Matrix3& kL, const Vector3& kS, const Matrix3& kR) { size_t iRow, iCol; Matrix3 kTmp; // product S*R for (iRow = 0; iRow < 3; iRow++) { for (iCol = 0; iCol < 3; iCol++) kTmp[iRow][iCol] = kS[iRow]*kR[iRow][iCol]; } // product L*S*R for (iRow = 0; iRow < 3; iRow++) { for (iCol = 0; iCol < 3; iCol++) { m[iRow][iCol] = 0.0; for (int iMid = 0; iMid < 3; iMid++) m[iRow][iCol] += kL[iRow][iMid]*kTmp[iMid][iCol]; } } } //----------------------------------------------------------------------- void Matrix3::Orthonormalize () { // Algorithm uses Gram-Schmidt orthogonalization. If 'this' matrix is // M = [m0|m1|m2], then orthonormal output matrix is Q = [q0|q1|q2], // // q0 = m0/|m0| // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0| // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1| // // where |V| indicates length of vector V and A*B indicates dot // product of vectors A and B. // compute q0 float fInvLength = Math::InvSqrt(m[0][0]*m[0][0] + m[1][0]*m[1][0] + m[2][0]*m[2][0]); m[0][0] *= fInvLength; m[1][0] *= fInvLength; m[2][0] *= fInvLength; // compute q1 float fDot0 = m[0][0]*m[0][1] + m[1][0]*m[1][1] + m[2][0]*m[2][1]; m[0][1] -= fDot0*m[0][0]; m[1][1] -= fDot0*m[1][0]; m[2][1] -= fDot0*m[2][0]; fInvLength = Math::InvSqrt(m[0][1]*m[0][1] + m[1][1]*m[1][1] + m[2][1]*m[2][1]); m[0][1] *= fInvLength; m[1][1] *= fInvLength; m[2][1] *= fInvLength; // compute q2 float fDot1 = m[0][1]*m[0][2] + m[1][1]*m[1][2] + m[2][1]*m[2][2]; fDot0 = m[0][0]*m[0][2] + m[1][0]*m[1][2] + m[2][0]*m[2][2]; m[0][2] -= fDot0*m[0][0] + fDot1*m[0][1]; m[1][2] -= fDot0*m[1][0] + fDot1*m[1][1]; m[2][2] -= fDot0*m[2][0] + fDot1*m[2][1]; fInvLength = Math::InvSqrt(m[0][2]*m[0][2] + m[1][2]*m[1][2] + m[2][2]*m[2][2]); m[0][2] *= fInvLength; m[1][2] *= fInvLength; m[2][2] *= fInvLength; } //----------------------------------------------------------------------- void Matrix3::QDUDecomposition (Matrix3& kQ, Vector3& kD, Vector3& kU) const { // Factor M = QR = QDU where Q is orthogonal, D is diagonal, // and U is upper triangular with ones on its diagonal. Algorithm uses // Gram-Schmidt orthogonalization (the QR algorithm). // // If M = [ m0 | m1 | m2 ] and Q = [ q0 | q1 | q2 ], then // // q0 = m0/|m0| // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0| // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1| // // where |V| indicates length of vector V and A*B indicates dot // product of vectors A and B. The matrix R has entries // // r00 = q0*m0 r01 = q0*m1 r02 = q0*m2 // r10 = 0 r11 = q1*m1 r12 = q1*m2 // r20 = 0 r21 = 0 r22 = q2*m2 // // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00, // u02 = r02/r00, and u12 = r12/r11. // Q = rotation // D = scaling // U = shear // D stores the three diagonal entries r00, r11, r22 // U stores the entries U[0] = u01, U[1] = u02, U[2] = u12 // build orthogonal matrix Q float fInvLength = Math::InvSqrt(m[0][0]*m[0][0] + m[1][0]*m[1][0] + m[2][0]*m[2][0]); kQ[0][0] = m[0][0]*fInvLength; kQ[1][0] = m[1][0]*fInvLength; kQ[2][0] = m[2][0]*fInvLength; float fDot = kQ[0][0]*m[0][1] + kQ[1][0]*m[1][1] + kQ[2][0]*m[2][1]; kQ[0][1] = m[0][1]-fDot*kQ[0][0]; kQ[1][1] = m[1][1]-fDot*kQ[1][0]; kQ[2][1] = m[2][1]-fDot*kQ[2][0]; fInvLength = Math::InvSqrt(kQ[0][1]*kQ[0][1] + kQ[1][1]*kQ[1][1] + kQ[2][1]*kQ[2][1]); kQ[0][1] *= fInvLength; kQ[1][1] *= fInvLength; kQ[2][1] *= fInvLength; fDot = kQ[0][0]*m[0][2] + kQ[1][0]*m[1][2] + kQ[2][0]*m[2][2]; kQ[0][2] = m[0][2]-fDot*kQ[0][0]; kQ[1][2] = m[1][2]-fDot*kQ[1][0]; kQ[2][2] = m[2][2]-fDot*kQ[2][0]; fDot = kQ[0][1]*m[0][2] + kQ[1][1]*m[1][2] + kQ[2][1]*m[2][2]; kQ[0][2] -= fDot*kQ[0][1]; kQ[1][2] -= fDot*kQ[1][1]; kQ[2][2] -= fDot*kQ[2][1]; fInvLength = Math::InvSqrt(kQ[0][2]*kQ[0][2] + kQ[1][2]*kQ[1][2] + kQ[2][2]*kQ[2][2]); kQ[0][2] *= fInvLength; kQ[1][2] *= fInvLength; kQ[2][2] *= fInvLength; // guarantee that orthogonal matrix has determinant 1 (no reflections) float fDet = kQ[0][0]*kQ[1][1]*kQ[2][2] + kQ[0][1]*kQ[1][2]*kQ[2][0] + kQ[0][2]*kQ[1][0]*kQ[2][1] - kQ[0][2]*kQ[1][1]*kQ[2][0] - kQ[0][1]*kQ[1][0]*kQ[2][2] - kQ[0][0]*kQ[1][2]*kQ[2][1]; if ( fDet < 0.0 ) { for (size_t iRow = 0; iRow < 3; iRow++) for (size_t iCol = 0; iCol < 3; iCol++) kQ[iRow][iCol] = -kQ[iRow][iCol]; } // build "right" matrix R Matrix3 kR; kR[0][0] = kQ[0][0]*m[0][0] + kQ[1][0]*m[1][0] + kQ[2][0]*m[2][0]; kR[0][1] = kQ[0][0]*m[0][1] + kQ[1][0]*m[1][1] + kQ[2][0]*m[2][1]; kR[1][1] = kQ[0][1]*m[0][1] + kQ[1][1]*m[1][1] + kQ[2][1]*m[2][1]; kR[0][2] = kQ[0][0]*m[0][2] + kQ[1][0]*m[1][2] + kQ[2][0]*m[2][2]; kR[1][2] = kQ[0][1]*m[0][2] + kQ[1][1]*m[1][2] + kQ[2][1]*m[2][2]; kR[2][2] = kQ[0][2]*m[0][2] + kQ[1][2]*m[1][2] + kQ[2][2]*m[2][2]; // the scaling component kD[0] = kR[0][0]; kD[1] = kR[1][1]; kD[2] = kR[2][2]; // the shear component float fInvD0 = 1.0f/kD[0]; kU[0] = kR[0][1]*fInvD0; kU[1] = kR[0][2]*fInvD0; kU[2] = kR[1][2]/kD[1]; } //----------------------------------------------------------------------- float Matrix3::MaxCubicRoot (float afCoeff[3]) { // Spectral norm is for A^T*A, so characteristic polynomial // P(x) = c[0]+c[1]*x+c[2]*x^2+x^3 has three positive real roots. // This yields the assertions c[0] < 0 and c[2]*c[2] >= 3*c[1]. // quick out for uniform scale (triple root) const float fOneThird = 1.0f/3.0f; const float fEpsilon = 1e-06f; float fDiscr = afCoeff[2]*afCoeff[2] - 3.0f*afCoeff[1]; if ( fDiscr <= fEpsilon ) return -fOneThird*afCoeff[2]; // Compute an upper bound on roots of P(x). This assumes that A^T*A // has been scaled by its largest entry. float fX = 1.0; float fPoly = afCoeff[0]+fX*(afCoeff[1]+fX*(afCoeff[2]+fX)); if ( fPoly < 0.0 ) { // uses a matrix norm to find an upper bound on maximum root fX = Math::Abs(afCoeff[0]); float fTmp = 1.0f+Math::Abs(afCoeff[1]); if ( fTmp > fX ) fX = fTmp; fTmp = 1.0f+Math::Abs(afCoeff[2]); if ( fTmp > fX ) fX = fTmp; } // Newton's method to find root float fTwoC2 = 2.0f*afCoeff[2]; for (int i = 0; i < 16; i++) { fPoly = afCoeff[0]+fX*(afCoeff[1]+fX*(afCoeff[2]+fX)); if ( Math::Abs(fPoly) <= fEpsilon ) return fX; float fDeriv = afCoeff[1]+fX*(fTwoC2+3.0f*fX); fX -= fPoly/fDeriv; } return fX; } //----------------------------------------------------------------------- float Matrix3::SpectralNorm () const { Matrix3 kP; size_t iRow, iCol; float fPmax = 0.0; for (iRow = 0; iRow < 3; iRow++) { for (iCol = 0; iCol < 3; iCol++) { kP[iRow][iCol] = 0.0; for (int iMid = 0; iMid < 3; iMid++) { kP[iRow][iCol] += m[iMid][iRow]*m[iMid][iCol]; } if ( kP[iRow][iCol] > fPmax ) fPmax = kP[iRow][iCol]; } } float fInvPmax = 1.0f/fPmax; for (iRow = 0; iRow < 3; iRow++) { for (iCol = 0; iCol < 3; iCol++) kP[iRow][iCol] *= fInvPmax; } float afCoeff[3]; afCoeff[0] = -(kP[0][0]*(kP[1][1]*kP[2][2]-kP[1][2]*kP[2][1]) + kP[0][1]*(kP[2][0]*kP[1][2]-kP[1][0]*kP[2][2]) + kP[0][2]*(kP[1][0]*kP[2][1]-kP[2][0]*kP[1][1])); afCoeff[1] = kP[0][0]*kP[1][1]-kP[0][1]*kP[1][0] + kP[0][0]*kP[2][2]-kP[0][2]*kP[2][0] + kP[1][1]*kP[2][2]-kP[1][2]*kP[2][1]; afCoeff[2] = -(kP[0][0]+kP[1][1]+kP[2][2]); float fRoot = MaxCubicRoot(afCoeff); float fNorm = Math::Sqrt(fPmax*fRoot); return fNorm; } //----------------------------------------------------------------------- void Matrix3::ToAxisAngle (Vector3& rkAxis, Radian& rfRadians) const { // Let (x,y,z) be the unit-length axis and let A be an angle of rotation. // The rotation matrix is R = I + sin(A)*P + (1-cos(A))*P^2 where // I is the identity and // // +- -+ // P = | 0 -z +y | // | +z 0 -x | // | -y +x 0 | // +- -+ // // If A > 0, R represents a counterclockwise rotation about the axis in // the sense of looking from the tip of the axis vector towards the // origin. Some algebra will show that // // cos(A) = (trace(R)-1)/2 and R - R^t = 2*sin(A)*P // // In the event that A = pi, R-R^t = 0 which prevents us from extracting // the axis through P. Instead note that R = I+2*P^2 when A = pi, so // P^2 = (R-I)/2. The diagonal entries of P^2 are x^2-1, y^2-1, and // z^2-1. We can solve these for axis (x,y,z). Because the angle is pi, // it does not matter which sign you choose on the square roots. float fTrace = m[0][0] + m[1][1] + m[2][2]; float fCos = 0.5f*(fTrace-1.0f); rfRadians = Math::ACos(fCos); // in [0,PI] if ( rfRadians > Radian(0.0) ) { if ( rfRadians < Radian(Math::PI) ) { rkAxis.x = m[2][1]-m[1][2]; rkAxis.y = m[0][2]-m[2][0]; rkAxis.z = m[1][0]-m[0][1]; rkAxis.normalise(); } else { // angle is PI float fHalfInverse; if ( m[0][0] >= m[1][1] ) { // r00 >= r11 if ( m[0][0] >= m[2][2] ) { // r00 is maximum diagonal term rkAxis.x = 0.5f*Math::Sqrt(m[0][0] - m[1][1] - m[2][2] + 1.0f); fHalfInverse = 0.5f/rkAxis.x; rkAxis.y = fHalfInverse*m[0][1]; rkAxis.z = fHalfInverse*m[0][2]; } else { // r22 is maximum diagonal term rkAxis.z = 0.5f*Math::Sqrt(m[2][2] - m[0][0] - m[1][1] + 1.0f); fHalfInverse = 0.5f/rkAxis.z; rkAxis.x = fHalfInverse*m[0][2]; rkAxis.y = fHalfInverse*m[1][2]; } } else { // r11 > r00 if ( m[1][1] >= m[2][2] ) { // r11 is maximum diagonal term rkAxis.y = 0.5f*Math::Sqrt(m[1][1] - m[0][0] - m[2][2] + 1.0f); fHalfInverse = 0.5f/rkAxis.y; rkAxis.x = fHalfInverse*m[0][1]; rkAxis.z = fHalfInverse*m[1][2]; } else { // r22 is maximum diagonal term rkAxis.z = 0.5f*Math::Sqrt(m[2][2] - m[0][0] - m[1][1] + 1.0f); fHalfInverse = 0.5f/rkAxis.z; rkAxis.x = fHalfInverse*m[0][2]; rkAxis.y = fHalfInverse*m[1][2]; } } } } else { // The angle is 0 and the matrix is the identity. Any axis will // work, so just use the x-axis. rkAxis.x = 1.0; rkAxis.y = 0.0; rkAxis.z = 0.0; } } //----------------------------------------------------------------------- void Matrix3::FromAxisAngle (const Vector3& rkAxis, const Radian& fRadians) { float fCos = Math::Cos(fRadians); float fSin = Math::Sin(fRadians); float fOneMinusCos = 1.0f-fCos; float fX2 = rkAxis.x*rkAxis.x; float fY2 = rkAxis.y*rkAxis.y; float fZ2 = rkAxis.z*rkAxis.z; float fXYM = rkAxis.x*rkAxis.y*fOneMinusCos; float fXZM = rkAxis.x*rkAxis.z*fOneMinusCos; float fYZM = rkAxis.y*rkAxis.z*fOneMinusCos; float fXSin = rkAxis.x*fSin; float fYSin = rkAxis.y*fSin; float fZSin = rkAxis.z*fSin; m[0][0] = fX2*fOneMinusCos+fCos; m[0][1] = fXYM-fZSin; m[0][2] = fXZM+fYSin; m[1][0] = fXYM+fZSin; m[1][1] = fY2*fOneMinusCos+fCos; m[1][2] = fYZM-fXSin; m[2][0] = fXZM-fYSin; m[2][1] = fYZM+fXSin; m[2][2] = fZ2*fOneMinusCos+fCos; } //----------------------------------------------------------------------- bool Matrix3::ToEulerAnglesXYZ (Radian& rfYAngle, Radian& rfPAngle, Radian& rfRAngle) const { // rot = cy*cz -cy*sz sy // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy rfPAngle = Radian(Math::ASin(m[0][2])); if ( rfPAngle < Radian(Math::HALF_PI) ) { if ( rfPAngle > Radian(-Math::HALF_PI) ) { rfYAngle = Math::ATan2(-m[1][2],m[2][2]); rfRAngle = Math::ATan2(-m[0][1],m[0][0]); return true; } else { // WARNING. Not a unique solution. Radian fRmY = Math::ATan2(m[1][0],m[1][1]); rfRAngle = Radian(0.0); // any angle works rfYAngle = rfRAngle - fRmY; return false; } } else { // WARNING. Not a unique solution. Radian fRpY = Math::ATan2(m[1][0],m[1][1]); rfRAngle = Radian(0.0); // any angle works rfYAngle = fRpY - rfRAngle; return false; } } //----------------------------------------------------------------------- bool Matrix3::ToEulerAnglesXZY (Radian& rfYAngle, Radian& rfPAngle, Radian& rfRAngle) const { // rot = cy*cz -sz cz*sy // sx*sy+cx*cy*sz cx*cz -cy*sx+cx*sy*sz // -cx*sy+cy*sx*sz cz*sx cx*cy+sx*sy*sz rfPAngle = Math::ASin(-m[0][1]); if ( rfPAngle < Radian(Math::HALF_PI) ) { if ( rfPAngle > Radian(-Math::HALF_PI) ) { rfYAngle = Math::ATan2(m[2][1],m[1][1]); rfRAngle = Math::ATan2(m[0][2],m[0][0]); return true; } else { // WARNING. Not a unique solution. Radian fRmY = Math::ATan2(-m[2][0],m[2][2]); rfRAngle = Radian(0.0); // any angle works rfYAngle = rfRAngle - fRmY; return false; } } else { // WARNING. Not a unique solution. Radian fRpY = Math::ATan2(-m[2][0],m[2][2]); rfRAngle = Radian(0.0); // any angle works rfYAngle = fRpY - rfRAngle; return false; } } //----------------------------------------------------------------------- bool Matrix3::ToEulerAnglesYXZ (Radian& rfYAngle, Radian& rfPAngle, Radian& rfRAngle) const { // rot = cy*cz+sx*sy*sz cz*sx*sy-cy*sz cx*sy // cx*sz cx*cz -sx // -cz*sy+cy*sx*sz cy*cz*sx+sy*sz cx*cy rfPAngle = Math::ASin(-m[1][2]); if ( rfPAngle < Radian(Math::HALF_PI) ) { if ( rfPAngle > Radian(-Math::HALF_PI) ) { rfYAngle = Math::ATan2(m[0][2],m[2][2]); rfRAngle = Math::ATan2(m[1][0],m[1][1]); return true; } else { // WARNING. Not a unique solution. Radian fRmY = Math::ATan2(-m[0][1],m[0][0]); rfRAngle = Radian(0.0); // any angle works rfYAngle = rfRAngle - fRmY; return false; } } else { // WARNING. Not a unique solution. Radian fRpY = Math::ATan2(-m[0][1],m[0][0]); rfRAngle = Radian(0.0); // any angle works rfYAngle = fRpY - rfRAngle; return false; } } //----------------------------------------------------------------------- bool Matrix3::ToEulerAnglesYZX (Radian& rfYAngle, Radian& rfPAngle, Radian& rfRAngle) const { // rot = cy*cz sx*sy-cx*cy*sz cx*sy+cy*sx*sz // sz cx*cz -cz*sx // -cz*sy cy*sx+cx*sy*sz cx*cy-sx*sy*sz rfPAngle = Math::ASin(m[1][0]); if ( rfPAngle < Radian(Math::HALF_PI) ) { if ( rfPAngle > Radian(-Math::HALF_PI) ) { rfYAngle = Math::ATan2(-m[2][0],m[0][0]); rfRAngle = Math::ATan2(-m[1][2],m[1][1]); return true; } else { // WARNING. Not a unique solution. Radian fRmY = Math::ATan2(m[2][1],m[2][2]); rfRAngle = Radian(0.0); // any angle works rfYAngle = rfRAngle - fRmY; return false; } } else { // WARNING. Not a unique solution. Radian fRpY = Math::ATan2(m[2][1],m[2][2]); rfRAngle = Radian(0.0); // any angle works rfYAngle = fRpY - rfRAngle; return false; } } //----------------------------------------------------------------------- bool Matrix3::ToEulerAnglesZXY (Radian& rfYAngle, Radian& rfPAngle, Radian& rfRAngle) const { // rot = cy*cz-sx*sy*sz -cx*sz cz*sy+cy*sx*sz // cz*sx*sy+cy*sz cx*cz -cy*cz*sx+sy*sz // -cx*sy sx cx*cy rfPAngle = Math::ASin(m[2][1]); if ( rfPAngle < Radian(Math::HALF_PI) ) { if ( rfPAngle > Radian(-Math::HALF_PI) ) { rfYAngle = Math::ATan2(-m[0][1],m[1][1]); rfRAngle = Math::ATan2(-m[2][0],m[2][2]); return true; } else { // WARNING. Not a unique solution. Radian fRmY = Math::ATan2(m[0][2],m[0][0]); rfRAngle = Radian(0.0); // any angle works rfYAngle = rfRAngle - fRmY; return false; } } else { // WARNING. Not a unique solution. Radian fRpY = Math::ATan2(m[0][2],m[0][0]); rfRAngle = Radian(0.0); // any angle works rfYAngle = fRpY - rfRAngle; return false; } } //----------------------------------------------------------------------- bool Matrix3::ToEulerAnglesZYX (Radian& rfYAngle, Radian& rfPAngle, Radian& rfRAngle) const { // rot = cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz // cy*sz cx*cz+sx*sy*sz -cz*sx+cx*sy*sz // -sy cy*sx cx*cy rfPAngle = Math::ASin(-m[2][0]); if ( rfPAngle < Radian(Math::HALF_PI) ) { if ( rfPAngle > Radian(-Math::HALF_PI) ) { rfYAngle = Math::ATan2(m[1][0],m[0][0]); rfRAngle = Math::ATan2(m[2][1],m[2][2]); return true; } else { // WARNING. Not a unique solution. Radian fRmY = Math::ATan2(-m[0][1],m[0][2]); rfRAngle = Radian(0.0); // any angle works rfYAngle = rfRAngle - fRmY; return false; } } else { // WARNING. Not a unique solution. Radian fRpY = Math::ATan2(-m[0][1],m[0][2]); rfRAngle = Radian(0.0); // any angle works rfYAngle = fRpY - rfRAngle; return false; } } //----------------------------------------------------------------------- void Matrix3::FromEulerAnglesXYZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle) { float fCos, fSin; fCos = Math::Cos(fYAngle); fSin = Math::Sin(fYAngle); Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos); fCos = Math::Cos(fPAngle); fSin = Math::Sin(fPAngle); Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos); fCos = Math::Cos(fRAngle); fSin = Math::Sin(fRAngle); Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0); *this = kXMat*(kYMat*kZMat); } //----------------------------------------------------------------------- void Matrix3::FromEulerAnglesXZY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle) { float fCos, fSin; fCos = Math::Cos(fYAngle); fSin = Math::Sin(fYAngle); Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos); fCos = Math::Cos(fPAngle); fSin = Math::Sin(fPAngle); Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0); fCos = Math::Cos(fRAngle); fSin = Math::Sin(fRAngle); Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos); *this = kXMat*(kZMat*kYMat); } //----------------------------------------------------------------------- void Matrix3::FromEulerAnglesYXZ (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle) { float fCos, fSin; fCos = Math::Cos(fYAngle); fSin = Math::Sin(fYAngle); Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos); fCos = Math::Cos(fPAngle); fSin = Math::Sin(fPAngle); Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos); fCos = Math::Cos(fRAngle); fSin = Math::Sin(fRAngle); Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0); *this = kYMat*(kXMat*kZMat); } //----------------------------------------------------------------------- void Matrix3::FromEulerAnglesYZX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle) { float fCos, fSin; fCos = Math::Cos(fYAngle); fSin = Math::Sin(fYAngle); Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos); fCos = Math::Cos(fPAngle); fSin = Math::Sin(fPAngle); Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0); fCos = Math::Cos(fRAngle); fSin = Math::Sin(fRAngle); Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos); *this = kYMat*(kZMat*kXMat); } //----------------------------------------------------------------------- void Matrix3::FromEulerAnglesZXY (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle) { float fCos, fSin; fCos = Math::Cos(fYAngle); fSin = Math::Sin(fYAngle); Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0); fCos = Math::Cos(fPAngle); fSin = Math::Sin(fPAngle); Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos); fCos = Math::Cos(fRAngle); fSin = Math::Sin(fRAngle); Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos); *this = kZMat*(kXMat*kYMat); } //----------------------------------------------------------------------- void Matrix3::FromEulerAnglesZYX (const Radian& fYAngle, const Radian& fPAngle, const Radian& fRAngle) { float fCos, fSin; fCos = Math::Cos(fYAngle); fSin = Math::Sin(fYAngle); Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0); fCos = Math::Cos(fPAngle); fSin = Math::Sin(fPAngle); Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos); fCos = Math::Cos(fRAngle); fSin = Math::Sin(fRAngle); Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos); *this = kZMat*(kYMat*kXMat); } //----------------------------------------------------------------------- void Matrix3::Tridiagonal (float afDiag[3], float afSubDiag[3]) { // Householder reduction T = Q^t M Q // Input: // mat, symmetric 3x3 matrix M // Output: // mat, orthogonal matrix Q // diag, diagonal entries of T // subd, subdiagonal entries of T (T is symmetric) float fA = m[0][0]; float fB = m[0][1]; float fC = m[0][2]; float fD = m[1][1]; float fE = m[1][2]; float fF = m[2][2]; afDiag[0] = fA; afSubDiag[2] = 0.0; if ( Math::Abs(fC) >= EPSILON ) { float fLength = Math::Sqrt(fB*fB+fC*fC); float fInvLength = 1.0f/fLength; fB *= fInvLength; fC *= fInvLength; float fQ = 2.0f*fB*fE+fC*(fF-fD); afDiag[1] = fD+fC*fQ; afDiag[2] = fF-fC*fQ; afSubDiag[0] = fLength; afSubDiag[1] = fE-fB*fQ; m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[1][0] = 0.0; m[1][1] = fB; m[1][2] = fC; m[2][0] = 0.0; m[2][1] = fC; m[2][2] = -fB; } else { afDiag[1] = fD; afDiag[2] = fF; afSubDiag[0] = fB; afSubDiag[1] = fE; m[0][0] = 1.0; m[0][1] = 0.0; m[0][2] = 0.0; m[1][0] = 0.0; m[1][1] = 1.0; m[1][2] = 0.0; m[2][0] = 0.0; m[2][1] = 0.0; m[2][2] = 1.0; } } //----------------------------------------------------------------------- bool Matrix3::QLAlgorithm (float afDiag[3], float afSubDiag[3]) { // QL iteration with implicit shifting to reduce matrix from tridiagonal // to diagonal for (int i0 = 0; i0 < 3; i0++) { const unsigned int iMaxIter = 32; unsigned int iIter; for (iIter = 0; iIter < iMaxIter; iIter++) { int i1; for (i1 = i0; i1 <= 1; i1++) { float fSum = Math::Abs(afDiag[i1]) + Math::Abs(afDiag[i1+1]); if ( Math::Abs(afSubDiag[i1]) + fSum == fSum ) break; } if ( i1 == i0 ) break; float fTmp0 = (afDiag[i0+1]-afDiag[i0])/(2.0f*afSubDiag[i0]); float fTmp1 = Math::Sqrt(fTmp0*fTmp0+1.0f); if ( fTmp0 < 0.0 ) fTmp0 = afDiag[i1]-afDiag[i0]+afSubDiag[i0]/(fTmp0-fTmp1); else fTmp0 = afDiag[i1]-afDiag[i0]+afSubDiag[i0]/(fTmp0+fTmp1); float fSin = 1.0; float fCos = 1.0; float fTmp2 = 0.0; for (int i2 = i1-1; i2 >= i0; i2--) { float fTmp3 = fSin*afSubDiag[i2]; float fTmp4 = fCos*afSubDiag[i2]; if ( Math::Abs(fTmp3) >= Math::Abs(fTmp0) ) { fCos = fTmp0/fTmp3; fTmp1 = Math::Sqrt(fCos*fCos+1.0f); afSubDiag[i2+1] = fTmp3*fTmp1; fSin = 1.0f/fTmp1; fCos *= fSin; } else { fSin = fTmp3/fTmp0; fTmp1 = Math::Sqrt(fSin*fSin+1.0f); afSubDiag[i2+1] = fTmp0*fTmp1; fCos = 1.0f/fTmp1; fSin *= fCos; } fTmp0 = afDiag[i2+1]-fTmp2; fTmp1 = (afDiag[i2]-fTmp0)*fSin+2.0f*fTmp4*fCos; fTmp2 = fSin*fTmp1; afDiag[i2+1] = fTmp0+fTmp2; fTmp0 = fCos*fTmp1-fTmp4; for (int iRow = 0; iRow < 3; iRow++) { fTmp3 = m[iRow][i2+1]; m[iRow][i2+1] = fSin*m[iRow][i2] + fCos*fTmp3; m[iRow][i2] = fCos*m[iRow][i2] - fSin*fTmp3; } } afDiag[i0] -= fTmp2; afSubDiag[i0] = fTmp0; afSubDiag[i1] = 0.0; } if ( iIter == iMaxIter ) { // should not get here under normal circumstances return false; } } return true; } //----------------------------------------------------------------------- void Matrix3::EigenSolveSymmetric (float afEigenvalue[3], Vector3 akEigenvector[3]) const { Matrix3 kMatrix = *this; float afSubDiag[3]; kMatrix.Tridiagonal(afEigenvalue,afSubDiag); kMatrix.QLAlgorithm(afEigenvalue,afSubDiag); for (size_t i = 0; i < 3; i++) { akEigenvector[i][0] = kMatrix[0][i]; akEigenvector[i][1] = kMatrix[1][i]; akEigenvector[i][2] = kMatrix[2][i]; } // make eigenvectors form a right--handed system Vector3 kCross = akEigenvector[1].crossProduct(akEigenvector[2]); float fDet = akEigenvector[0].dotProduct(kCross); if ( fDet < 0.0 ) { akEigenvector[2][0] = - akEigenvector[2][0]; akEigenvector[2][1] = - akEigenvector[2][1]; akEigenvector[2][2] = - akEigenvector[2][2]; } } //----------------------------------------------------------------------- void Matrix3::TensorProduct (const Vector3& rkU, const Vector3& rkV, Matrix3& rkProduct) { for (size_t iRow = 0; iRow < 3; iRow++) { for (size_t iCol = 0; iCol < 3; iCol++) rkProduct[iRow][iCol] = rkU[iRow]*rkV[iCol]; } } //----------------------------------------------------------------------- }