//********************************** Banshee Engine (www.banshee3d.com) **************************************************// //**************** Copyright (c) 2016 Marko Pintera (marko.pintera@gmail.com). All rights reserved. **********************// #include "BsRenderBeast.h" #include "BsCCamera.h" #include "BsCRenderable.h" #include "BsMaterial.h" #include "BsMesh.h" #include "BsPass.h" #include "BsSamplerState.h" #include "BsCoreApplication.h" #include "BsViewport.h" #include "BsRenderTarget.h" #include "BsRenderQueue.h" #include "BsCoreThread.h" #include "BsGpuParams.h" #include "BsProfilerCPU.h" #include "BsShader.h" #include "BsGpuParamBlockBuffer.h" #include "BsTime.h" #include "BsRenderableElement.h" #include "BsCoreObjectManager.h" #include "BsRenderBeastOptions.h" #include "BsSamplerOverrides.h" #include "BsLight.h" #include "BsRenderTexturePool.h" #include "BsRenderTargets.h" #include "BsRendererUtility.h" #include "BsAnimationManager.h" #include "BsSkeleton.h" #include "BsGpuBuffer.h" using namespace std::placeholders; namespace BansheeEngine { RenderBeast::RendererFrame::RendererFrame(float delta, const RendererAnimationData& animData) :delta(delta), animData(animData) { } RenderBeast::RenderBeast() : mDefaultMaterial(nullptr), mPointLightInMat(nullptr), mPointLightOutMat(nullptr), mDirLightMat(nullptr) , mObjectRenderer(nullptr), mOptions(bs_shared_ptr_new()), mOptionsDirty(true) { } const StringID& RenderBeast::getName() const { static StringID name = "RenderBeast"; return name; } void RenderBeast::initialize() { CoreRenderer::initialize(); CoreThread::instance().queueCommand(std::bind(&RenderBeast::initializeCore, this)); } void RenderBeast::destroy() { CoreRenderer::destroy(); gCoreAccessor().queueCommand(std::bind(&RenderBeast::destroyCore, this)); gCoreAccessor().submitToCoreThread(true); } void RenderBeast::initializeCore() { RendererUtility::startUp(); mCoreOptions = bs_shared_ptr_new(); mObjectRenderer = bs_new(); mDefaultMaterial = bs_new(); mPointLightInMat = bs_new(); mPointLightOutMat = bs_new(); mDirLightMat = bs_new(); RenderTexturePool::startUp(); PostProcessing::startUp(); } void RenderBeast::destroyCore() { if (mObjectRenderer != nullptr) bs_delete(mObjectRenderer); mRenderTargets.clear(); mCameras.clear(); mRenderables.clear(); PostProcessing::shutDown(); RenderTexturePool::shutDown(); bs_delete(mDefaultMaterial); bs_delete(mPointLightInMat); bs_delete(mPointLightOutMat); bs_delete(mDirLightMat); RendererUtility::shutDown(); assert(mSamplerOverrides.empty()); } void RenderBeast::notifyRenderableAdded(RenderableCore* renderable) { UINT32 renderableId = (UINT32)mRenderables.size(); renderable->setRendererId(renderableId); mRenderables.push_back(RendererObject()); mRenderableShaderData.push_back(RenderableShaderData()); mWorldBounds.push_back(renderable->getBounds()); RendererObject& rendererObject = mRenderables.back(); rendererObject.renderable = renderable; RenderableShaderData& shaderData = mRenderableShaderData.back(); shaderData.worldTransform = renderable->getTransform(); shaderData.invWorldTransform = shaderData.worldTransform.inverseAffine(); shaderData.worldNoScaleTransform = renderable->getTransformNoScale(); shaderData.invWorldNoScaleTransform = shaderData.worldNoScaleTransform.inverseAffine(); shaderData.worldDeterminantSign = shaderData.worldTransform.determinant3x3() >= 0.0f ? 1.0f : -1.0f; SPtr mesh = renderable->getMesh(); if (mesh != nullptr) { const MeshProperties& meshProps = mesh->getProperties(); SPtr vertexDecl = mesh->getVertexData()->vertexDeclaration; for (UINT32 i = 0; i < meshProps.getNumSubMeshes(); i++) { rendererObject.elements.push_back(BeastRenderableElement()); BeastRenderableElement& renElement = rendererObject.elements.back(); renElement.mesh = mesh; renElement.subMesh = meshProps.getSubMesh(i); renElement.renderableId = renderableId; renElement.animationId = renderable->getAnimationId(); renElement.material = renderable->getMaterial(i); if (renElement.material == nullptr) renElement.material = renderable->getMaterial(0); if (renElement.material != nullptr && renElement.material->getShader() == nullptr) renElement.material = nullptr; // Validate mesh <-> shader vertex bindings if (renElement.material != nullptr) { UINT32 numPasses = renElement.material->getNumPasses(); for (UINT32 j = 0; j < numPasses; j++) { SPtr pass = renElement.material->getPass(j); SPtr shaderDecl = pass->getVertexProgram()->getInputDeclaration(); if (!vertexDecl->isCompatible(shaderDecl)) { Vector missingElements = vertexDecl->getMissingElements(shaderDecl); StringStream wrnStream; wrnStream << "Provided mesh is missing required vertex attributes to render with the provided shader. Missing elements: " << std::endl; for (auto& entry : missingElements) wrnStream << "\t" << toString(entry.getSemantic()) << entry.getSemanticIdx() << std::endl; LOGWRN(wrnStream.str()); break; } } } // If no material use the default material if (renElement.material == nullptr) renElement.material = mDefaultMaterial->getMaterial(); auto iterFind = mSamplerOverrides.find(renElement.material); if (iterFind != mSamplerOverrides.end()) { renElement.samplerOverrides = iterFind->second; iterFind->second->refCount++; } else { MaterialSamplerOverrides* samplerOverrides = SamplerOverrideUtility::generateSamplerOverrides(renElement.material, mCoreOptions); mSamplerOverrides[renElement.material] = samplerOverrides; renElement.samplerOverrides = samplerOverrides; samplerOverrides->refCount++; } mObjectRenderer->initElement(renElement); } } } void RenderBeast::notifyRenderableRemoved(RenderableCore* renderable) { UINT32 renderableId = renderable->getRendererId(); RenderableCore* lastRenerable = mRenderables.back().renderable; UINT32 lastRenderableId = lastRenerable->getRendererId(); Vector& elements = mRenderables[renderableId].elements; for (auto& element : elements) { auto iterFind = mSamplerOverrides.find(element.material); assert(iterFind != mSamplerOverrides.end()); MaterialSamplerOverrides* samplerOverrides = iterFind->second; samplerOverrides->refCount--; if (samplerOverrides->refCount == 0) { SamplerOverrideUtility::destroySamplerOverrides(samplerOverrides); mSamplerOverrides.erase(iterFind); } element.samplerOverrides = nullptr; } if (renderableId != lastRenderableId) { // Swap current last element with the one we want to erase std::swap(mRenderables[renderableId], mRenderables[lastRenderableId]); std::swap(mWorldBounds[renderableId], mWorldBounds[lastRenderableId]); std::swap(mRenderableShaderData[renderableId], mRenderableShaderData[lastRenderableId]); lastRenerable->setRendererId(renderableId); for (auto& element : elements) element.renderableId = renderableId; } // Last element is the one we want to erase mRenderables.erase(mRenderables.end() - 1); mWorldBounds.erase(mWorldBounds.end() - 1); mRenderableShaderData.erase(mRenderableShaderData.end() - 1); } void RenderBeast::notifyRenderableUpdated(RenderableCore* renderable) { UINT32 renderableId = renderable->getRendererId(); RenderableShaderData& shaderData = mRenderableShaderData[renderableId]; shaderData.worldTransform = renderable->getTransform(); shaderData.invWorldTransform = shaderData.worldTransform.inverseAffine(); shaderData.worldNoScaleTransform = renderable->getTransformNoScale(); shaderData.invWorldNoScaleTransform = shaderData.worldNoScaleTransform.inverseAffine(); shaderData.worldDeterminantSign = shaderData.worldTransform.determinant3x3() >= 0.0f ? 1.0f : -1.0f; mWorldBounds[renderableId] = renderable->getBounds(); } void RenderBeast::notifyLightAdded(LightCore* light) { if (light->getType() == LightType::Directional) { UINT32 lightId = (UINT32)mDirectionalLights.size(); light->setRendererId(lightId); mDirectionalLights.push_back(RendererLight()); RendererLight& lightData = mDirectionalLights.back(); lightData.internal = light; } else { UINT32 lightId = (UINT32)mPointLights.size(); light->setRendererId(lightId); mPointLights.push_back(RendererLight()); mLightWorldBounds.push_back(light->getBounds()); RendererLight& lightData = mPointLights.back(); lightData.internal = light; } } void RenderBeast::notifyLightUpdated(LightCore* light) { UINT32 lightId = light->getRendererId(); if (light->getType() != LightType::Directional) mLightWorldBounds[lightId] = light->getBounds(); } void RenderBeast::notifyLightRemoved(LightCore* light) { UINT32 lightId = light->getRendererId(); if (light->getType() == LightType::Directional) { LightCore* lastLight = mDirectionalLights.back().internal; UINT32 lastLightId = lastLight->getRendererId(); if (lightId != lastLightId) { // Swap current last element with the one we want to erase std::swap(mDirectionalLights[lightId], mDirectionalLights[lastLightId]); lastLight->setRendererId(lightId); } // Last element is the one we want to erase mDirectionalLights.erase(mDirectionalLights.end() - 1); } else { LightCore* lastLight = mPointLights.back().internal; UINT32 lastLightId = lastLight->getRendererId(); if (lightId != lastLightId) { // Swap current last element with the one we want to erase std::swap(mPointLights[lightId], mPointLights[lastLightId]); std::swap(mLightWorldBounds[lightId], mLightWorldBounds[lastLightId]); lastLight->setRendererId(lightId); } // Last element is the one we want to erase mPointLights.erase(mPointLights.end() - 1); mLightWorldBounds.erase(mLightWorldBounds.end() - 1); } } void RenderBeast::notifyCameraAdded(const CameraCore* camera) { updateCameraData(camera); } void RenderBeast::notifyCameraUpdated(const CameraCore* camera, UINT32 updateFlag) { if((updateFlag & (UINT32)CameraDirtyFlag::Everything) != 0) { updateCameraData(camera); } else if((updateFlag & (UINT32)CameraDirtyFlag::PostProcess) != 0) { RendererCamera& rendererCam = mCameras[camera]; rendererCam.updatePP(); } } void RenderBeast::notifyCameraRemoved(const CameraCore* camera) { updateCameraData(camera, true); } void RenderBeast::updateCameraData(const CameraCore* camera, bool forceRemove) { SPtr renderTarget = camera->getViewport()->getTarget(); if(forceRemove) { mCameras.erase(camera); renderTarget = nullptr; } else { mCameras[camera] = RendererCamera(camera, mCoreOptions->stateReductionMode); } // Remove from render target list int rtChanged = 0; // 0 - No RT, 1 - RT found, 2 - RT changed for (auto iterTarget = mRenderTargets.begin(); iterTarget != mRenderTargets.end(); ++iterTarget) { RendererRenderTarget& target = *iterTarget; for (auto iterCam = target.cameras.begin(); iterCam != target.cameras.end(); ++iterCam) { if (camera == *iterCam) { if (renderTarget != target.target) { target.cameras.erase(iterCam); rtChanged = 2; } else rtChanged = 1; break; } } if (target.cameras.empty()) { mRenderTargets.erase(iterTarget); break; } } // Register in render target list if (renderTarget != nullptr && (rtChanged == 0 || rtChanged == 2)) { auto findIter = std::find_if(mRenderTargets.begin(), mRenderTargets.end(), [&](const RendererRenderTarget& x) { return x.target == renderTarget; }); if (findIter != mRenderTargets.end()) { findIter->cameras.push_back(camera); } else { mRenderTargets.push_back(RendererRenderTarget()); RendererRenderTarget& renderTargetData = mRenderTargets.back(); renderTargetData.target = renderTarget; renderTargetData.cameras.push_back(camera); } // Sort render targets based on priority auto cameraComparer = [&](const CameraCore* a, const CameraCore* b) { return a->getPriority() > b->getPriority(); }; auto renderTargetInfoComparer = [&](const RendererRenderTarget& a, const RendererRenderTarget& b) { return a.target->getProperties().getPriority() > b.target->getProperties().getPriority(); }; std::sort(begin(mRenderTargets), end(mRenderTargets), renderTargetInfoComparer); for (auto& camerasPerTarget : mRenderTargets) { Vector& cameras = camerasPerTarget.cameras; std::sort(begin(cameras), end(cameras), cameraComparer); } } } void RenderBeast::setOptions(const SPtr& options) { mOptions = std::static_pointer_cast(options); mOptionsDirty = true; } SPtr RenderBeast::getOptions() const { return mOptions; } void RenderBeast::syncOptions(const RenderBeastOptions& options) { bool filteringChanged = mCoreOptions->filtering != options.filtering; if (options.filtering == RenderBeastFiltering::Anisotropic) filteringChanged |= mCoreOptions->anisotropyMax != options.anisotropyMax; if (filteringChanged) refreshSamplerOverrides(true); *mCoreOptions = options; for (auto& entry : mCameras) { RendererCamera& rendererCam = entry.second; rendererCam.update(mCoreOptions->stateReductionMode); } } void RenderBeast::renderAll() { // Sync all dirty sim thread CoreObject data to core thread CoreObjectManager::instance().syncToCore(gCoreAccessor()); if (mOptionsDirty) { gCoreAccessor().queueCommand(std::bind(&RenderBeast::syncOptions, this, *mOptions)); mOptionsDirty = false; } gCoreAccessor().queueCommand(std::bind(&RenderBeast::renderAllCore, this, gTime().getTime(), gTime().getFrameDelta())); } void RenderBeast::renderAllCore(float time, float delta) { THROW_IF_NOT_CORE_THREAD; gProfilerCPU().beginSample("renderAllCore"); // Note: I'm iterating over all sampler states every frame. If this ends up being a performance // issue consider handling this internally in MaterialCore which can only do it when sampler states // are actually modified after sync refreshSamplerOverrides(); // Update global per-frame hardware buffers mObjectRenderer->setParamFrameParams(time); // Generate render queues per camera for (auto& entry : mCameras) entry.second.determineVisible(mRenderables, mWorldBounds); const RendererAnimationData& animData = AnimationManager::instance().getRendererData(); RendererFrame frameInfo(delta, animData); // Render everything, target by target for (auto& rtInfo : mRenderTargets) { SPtr target = rtInfo.target; Vector& cameras = rtInfo.cameras; RenderAPICore::instance().beginFrame(); UINT32 numCameras = (UINT32)cameras.size(); for (UINT32 i = 0; i < numCameras; i++) { bool isOverlayCamera = cameras[i]->getFlags().isSet(CameraFlag::Overlay); if (!isOverlayCamera) render(frameInfo, rtInfo, i); else renderOverlay(frameInfo, rtInfo, i); } RenderAPICore::instance().endFrame(); RenderAPICore::instance().swapBuffers(target); } gProfilerCPU().endSample("renderAllCore"); } void RenderBeast::render(const RendererFrame& frameInfo, RendererRenderTarget& rtInfo, UINT32 camIdx) { gProfilerCPU().beginSample("Render"); const CameraCore* camera = rtInfo.cameras[camIdx]; RendererCamera& rendererCam = mCameras[camera]; CameraShaderData cameraShaderData = rendererCam.getShaderData(); assert(!camera->getFlags().isSet(CameraFlag::Overlay)); mObjectRenderer->setPerCameraParams(cameraShaderData); rendererCam.beginRendering(true); SPtr renderTargets = rendererCam.getRenderTargets(); renderTargets->bindGBuffer(); //// Trigger pre-scene callbacks auto iterCameraCallbacks = mRenderCallbacks.find(camera); if (iterCameraCallbacks != mRenderCallbacks.end()) { for (auto& callbackPair : iterCameraCallbacks->second) { const RenderCallbackData& callbackData = callbackPair.second; if (callbackData.overlay) continue; if (callbackPair.first >= 0) break; callbackData.callback(); } } //// Render base pass const Vector& opaqueElements = rendererCam.getOpaqueQueue()->getSortedElements(); for (auto iter = opaqueElements.begin(); iter != opaqueElements.end(); ++iter) { BeastRenderableElement* renderElem = static_cast(iter->renderElem); renderElement(*renderElem, iter->passIdx, iter->applyPass, frameInfo, cameraShaderData.viewProj); } renderTargets->bindSceneColor(true); //// Render light pass { SPtr perCameraBuffer = mObjectRenderer->getPerCameraParams().getBuffer(); mDirLightMat->bind(renderTargets, perCameraBuffer); for (auto& light : mDirectionalLights) { if (!light.internal->getIsActive()) continue; mDirLightMat->setPerLightParams(light.internal); gRendererUtility().drawScreenQuad(); } // Draw point lights which our camera is within // TODO - Possibly use instanced drawing here as only two meshes are drawn with various properties mPointLightInMat->bind(renderTargets, perCameraBuffer); // TODO - Cull lights based on visibility, right now I just iterate over all of them. for (auto& light : mPointLights) { if (!light.internal->getIsActive()) continue; float distToLight = (light.internal->getBounds().getCenter() - camera->getPosition()).squaredLength(); float boundRadius = light.internal->getBounds().getRadius() * 1.05f + camera->getNearClipDistance() * 2.0f; bool cameraInLightGeometry = distToLight < boundRadius * boundRadius; if (!cameraInLightGeometry) continue; mPointLightInMat->setPerLightParams(light.internal); SPtr mesh = light.internal->getMesh(); gRendererUtility().draw(mesh, mesh->getProperties().getSubMesh(0)); } // Draw other point lights mPointLightOutMat->bind(renderTargets, perCameraBuffer); for (auto& light : mPointLights) { if (!light.internal->getIsActive()) continue; float distToLight = (light.internal->getBounds().getCenter() - camera->getPosition()).squaredLength(); float boundRadius = light.internal->getBounds().getRadius() * 1.05f + camera->getNearClipDistance() * 2.0f; bool cameraInLightGeometry = distToLight < boundRadius * boundRadius; if (cameraInLightGeometry) continue; mPointLightOutMat->setPerLightParams(light.internal); SPtr mesh = light.internal->getMesh(); gRendererUtility().draw(mesh, mesh->getProperties().getSubMesh(0)); } } renderTargets->bindSceneColor(false); // Render transparent objects (TODO - No lighting yet) const Vector& transparentElements = rendererCam.getTransparentQueue()->getSortedElements(); for (auto iter = transparentElements.begin(); iter != transparentElements.end(); ++iter) { BeastRenderableElement* renderElem = static_cast(iter->renderElem); renderElement(*renderElem, iter->passIdx, iter->applyPass, frameInfo, cameraShaderData.viewProj); } // Render non-overlay post-scene callbacks if (iterCameraCallbacks != mRenderCallbacks.end()) { for (auto& callbackPair : iterCameraCallbacks->second) { const RenderCallbackData& callbackData = callbackPair.second; if (callbackData.overlay || callbackPair.first < 0) continue; callbackData.callback(); } } // TODO - If GBuffer has multiple samples, I should resolve them before post-processing PostProcessing::instance().postProcess(renderTargets->getSceneColorRT(), camera, rendererCam.getPPInfo(), frameInfo.delta); // Render overlay post-scene callbacks if (iterCameraCallbacks != mRenderCallbacks.end()) { for (auto& callbackPair : iterCameraCallbacks->second) { const RenderCallbackData& callbackData = callbackPair.second; if (!callbackData.overlay) continue; callbackData.callback(); } } rendererCam.endRendering(); gProfilerCPU().endSample("Render"); } void RenderBeast::renderOverlay(const RendererFrame& frameInfo, RendererRenderTarget& rtData, UINT32 camIdx) { gProfilerCPU().beginSample("RenderOverlay"); const CameraCore* camera = rtData.cameras[camIdx]; assert(camera->getFlags().isSet(CameraFlag::Overlay)); SPtr viewport = camera->getViewport(); RendererCamera& rendererCam = mCameras[camera]; CameraShaderData cameraShaderData = rendererCam.getShaderData(); mObjectRenderer->setPerCameraParams(cameraShaderData); rendererCam.beginRendering(false); SPtr target = rtData.target; RenderAPICore::instance().setRenderTarget(target); RenderAPICore::instance().setViewport(viewport->getNormArea()); // If first camera in render target, prepare the render target if (camIdx == 0) { UINT32 clearBuffers = 0; if (viewport->getRequiresColorClear()) clearBuffers |= FBT_COLOR; if (viewport->getRequiresDepthClear()) clearBuffers |= FBT_DEPTH; if (viewport->getRequiresStencilClear()) clearBuffers |= FBT_STENCIL; if (clearBuffers != 0) { RenderAPICore::instance().clearViewport(clearBuffers, viewport->getClearColor(), viewport->getClearDepthValue(), viewport->getClearStencilValue()); } } // Render overlay post-scene callbacks auto iterCameraCallbacks = mRenderCallbacks.find(camera); if (iterCameraCallbacks != mRenderCallbacks.end()) { for (auto& callbackPair : iterCameraCallbacks->second) { const RenderCallbackData& callbackData = callbackPair.second; if (!callbackData.overlay) continue; callbackData.callback(); } } rendererCam.endRendering(); gProfilerCPU().endSample("RenderOverlay"); } void RenderBeast::renderElement(const BeastRenderableElement& element, UINT32 passIdx, bool bindPass, const RendererFrame& frameInfo, const Matrix4& viewProj) { SPtr material = element.material; UINT32 rendererId = element.renderableId; Matrix4 worldViewProjMatrix = viewProj * mRenderableShaderData[rendererId].worldTransform; SPtr boneMatrices = element.boneMatrixBuffer; if(element.animationId != (UINT64)-1) { // Note: If multiple elements are using the same animation (not possible atm), this buffer should be shared by // all such elements const RendererAnimationData& animData = frameInfo.animData; auto iterFind = animData.poseInfos.find(element.animationId); if(iterFind != animData.poseInfos.end()) { const RendererAnimationData::PoseInfo& poseInfo = iterFind->second; UINT8* dest = (UINT8*)boneMatrices->lock(0, poseInfo.numBones * 3 * sizeof(Vector4), GBL_WRITE_ONLY_DISCARD); for(UINT32 i = 0; i < poseInfo.numBones; i++) { const Matrix4& transform = animData.transforms[poseInfo.startIdx + i]; memcpy(dest, &transform, 12 * sizeof(float)); // Assuming row-major format dest += 12 * sizeof(float); } boneMatrices->unlock(); } } mObjectRenderer->setPerObjectParams(element, mRenderableShaderData[rendererId], worldViewProjMatrix, boneMatrices); if (bindPass) RendererUtility::instance().setPass(material, passIdx, false); SPtr passParams = material->getPassParameters(passIdx); if (element.samplerOverrides != nullptr) setPassParams(passParams, &element.samplerOverrides->passes[passIdx]); else setPassParams(passParams, nullptr); gRendererUtility().draw(element.mesh, element.subMesh); } void RenderBeast::refreshSamplerOverrides(bool force) { for (auto& entry : mSamplerOverrides) { SPtr material = entry.first; if (force) { SamplerOverrideUtility::destroySamplerOverrides(entry.second); entry.second = SamplerOverrideUtility::generateSamplerOverrides(material, mCoreOptions); } else { MaterialSamplerOverrides* materialOverrides = entry.second; UINT32 numPasses = material->getNumPasses(); assert(numPasses == materialOverrides->numPasses); for (UINT32 i = 0; i < numPasses; i++) { SPtr passParams = material->getPassParameters(i); PassSamplerOverrides& passOverrides = materialOverrides->passes[i]; for (UINT32 j = 0; j < PassParametersCore::NUM_PARAMS; j++) { StageSamplerOverrides& stageOverrides = passOverrides.stages[j]; SPtr params = passParams->getParamByIdx(j); if (params == nullptr) continue; const GpuParamDesc& paramDesc = params->getParamDesc(); for (auto iter = paramDesc.samplers.begin(); iter != paramDesc.samplers.end(); ++iter) { UINT32 slot = iter->second.slot; SPtr samplerState = params->getSamplerState(slot); assert(stageOverrides.numStates > slot); if (samplerState != stageOverrides.stateOverrides[slot]) { if (samplerState != nullptr) stageOverrides.stateOverrides[slot] = SamplerOverrideUtility::generateSamplerOverride(samplerState, mCoreOptions); else stageOverrides.stateOverrides[slot] = SamplerOverrideUtility::generateSamplerOverride(SamplerStateCore::getDefault(), mCoreOptions);; } } } } } } } void RenderBeast::setPassParams(const SPtr& passParams, const PassSamplerOverrides* samplerOverrides) { THROW_IF_NOT_CORE_THREAD; RenderAPICore& rapi = RenderAPICore::instance(); struct StageData { GpuProgramType type; SPtr params; }; const UINT32 numStages = 6; StageData stages[numStages] = { { GPT_VERTEX_PROGRAM, passParams->mVertParams }, { GPT_FRAGMENT_PROGRAM, passParams->mFragParams }, { GPT_GEOMETRY_PROGRAM, passParams->mGeomParams }, { GPT_HULL_PROGRAM, passParams->mHullParams }, { GPT_DOMAIN_PROGRAM, passParams->mDomainParams }, { GPT_COMPUTE_PROGRAM, passParams->mComputeParams } }; for (UINT32 i = 0; i < numStages; i++) { const StageData& stage = stages[i]; SPtr params = stage.params; if (params == nullptr) continue; const GpuParamDesc& paramDesc = params->getParamDesc(); for (auto iter = paramDesc.samplers.begin(); iter != paramDesc.samplers.end(); ++iter) { SPtr samplerState; if (samplerOverrides != nullptr) samplerState = samplerOverrides->stages[i].stateOverrides[iter->second.slot]; else samplerState = params->getSamplerState(iter->second.slot); if (samplerState == nullptr) rapi.setSamplerState(stage.type, iter->second.slot, SamplerStateCore::getDefault()); else rapi.setSamplerState(stage.type, iter->second.slot, samplerState); } for (auto iter = paramDesc.textures.begin(); iter != paramDesc.textures.end(); ++iter) { SPtr texture = params->getTexture(iter->second.slot); rapi.setTexture(stage.type, iter->second.slot, texture); } for (auto iter = paramDesc.loadStoreTextures.begin(); iter != paramDesc.loadStoreTextures.end(); ++iter) { SPtr texture = params->getLoadStoreTexture(iter->second.slot); const TextureSurface& surface = params->getLoadStoreSurface(iter->second.slot); if (texture == nullptr) rapi.setLoadStoreTexture(stage.type, iter->second.slot, false, nullptr, surface); else rapi.setLoadStoreTexture(stage.type, iter->second.slot, true, texture, surface); } for (auto iter = paramDesc.buffers.begin(); iter != paramDesc.buffers.end(); ++iter) { SPtr buffer = params->getBuffer(iter->second.slot); bool isLoadStore = iter->second.type != GPOT_BYTE_BUFFER && iter->second.type != GPOT_STRUCTURED_BUFFER; rapi.setBuffer(stage.type, iter->second.slot, buffer, isLoadStore); } for (auto iter = paramDesc.paramBlocks.begin(); iter != paramDesc.paramBlocks.end(); ++iter) { SPtr blockBuffer = params->getParamBlockBuffer(iter->second.slot); blockBuffer->flushToGPU(); rapi.setParamBuffer(stage.type, iter->second.slot, blockBuffer, paramDesc); } } } }