#pragma once #include "CmPrerequisitesUtil.h" #include "CmDegree.h" #include "CmRadian.h" namespace CamelotFramework { /** * @brief Utility class providing common scalar math operations. */ class CM_UTILITY_EXPORT Math { public: static Radian acos(float val); static Radian asin(float val); static Radian atan(float val) { return Radian(std::atan(val)); } static Radian atan2(float y, float x) { return Radian(std::atan2(y,x)); } static float cos(const Radian& val) { return (float)std::cos(val.valueRadians()); } static float cos(float val) { return (float)std::cos(val); } static float sin(const Radian& val) { return (float)std::sin(val.valueRadians()); } static float sin(float val) { return (float)std::sin(val); } static float tan(const Radian& val) { return (float)std::tan(val.valueRadians()); } static float tan(float val) { return (float)std::tan(val); } static float sqrt(float val) { return (float)std::sqrt(val); } static Radian sqrt(const Radian& val) { return Radian(std::sqrt(val.valueRadians())); } static Degree sqrt(const Degree& val) { return Degree(std::sqrt(val.valueDegrees())); } static float invSqrt(float val); static float sqr(float val) { return val*val; } static float pow(float base, float exponent) { return (float)std::pow(base, exponent); } static float exp(float val) { return (float)std::exp(val); } static float log(float val) { return (float)std::log(val); } static float log2(float val) { return (float)(std::log(val)/LOG2); } static float logN(float base, float val) { return (float)(std::log(val)/std::log(base)); } static float sign(float val); static Radian sign(const Radian& val) { return Radian(sign(val.valueRadians())); } static Degree sign(const Degree& val) { return Degree(sign(val.valueDegrees())); } static float abs(float val) { return float(std::fabs(val)); } static Degree abs(const Degree& val) { return Degree(std::fabs(val.valueDegrees())); } static Radian abs(const Radian& val) { return Radian(std::fabs(val.valueRadians())); } static float ceil(float val) { return (float)std::ceil(val); } static int ceilToInt(float val) { return (int)std::ceil(val); } static float round(float val) { return (float)std::floor(val + 0.5f); } static int roundToInt(float val) { return (int)std::floor(val + 0.5f); } static float floor(float val) { return (float)std::floor(val); } static int floorToInt(float val) { return (int)std::floor(val); } /** * @brief Clamp a value within an inclusive range. */ template static T clamp(T val, T minval, T maxval) { assert (minval <= maxval && "Invalid clamp range"); return std::max(std::min(val, maxval), minval); } /** * @brief Clamp a value within an inclusive range [0..1]. */ template static T clamp01(T val) { return std::max(std::min(val, (T)1), (T)0); } static bool isNaN(float f) { return f != f; } /** * @brief Compare 2 floats, using tolerance for inaccuracies. */ static bool approxEquals(float a, float b, float tolerance = std::numeric_limits::epsilon()); /** * @brief Calculates the tangent space vector for a given set of positions / texture coords. */ static Vector3 calculateTriTangent(const Vector3& position1, const Vector3& position2, const Vector3& position3, float u1, float v1, float u2, float v2, float u3, float v3); /************************************************************************/ /* TRIG APPROXIMATIONS */ /************************************************************************/ /** * @brief Sine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastSin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); } /** * @brief Sine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastSin0(float val); /** * @brief Sine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastSin0". */ static float fastSin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); } /** * @brief Sine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastSin0". */ static float fastSin1(float val); /** * @brief Cosine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastCos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); } /** * @brief Cosine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastCos0(float val); /** * @brief Cosine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastCos0". */ static float fastCos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); } /** * @brief Cosine function approximation. * * @param val Angle in range [0, pi/2]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastCos0". */ static float fastCos1(float val); /** * @brief Tangent function approximation. * * @param val Angle in range [0, pi/4]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastTan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); } /** * @brief Tangent function approximation. * * @param val Angle in range [0, pi/4]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastTan0(float val); /** * @brief Tangent function approximation. * * @param val Angle in range [0, pi/4]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastTan0". */ static float fastTan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); } /** * @brief Tangent function approximation. * * @param val Angle in range [0, pi/4]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastTan0". */ static float fastTan1(float val); /** * @brief Inverse sine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastASin0(const Radian& val) { return (float)fastASin0(val.valueRadians()); } /** * @brief Inverse sine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastASin0(float val); /** * @brief Inverse sine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastASin0". */ static float fastASin1(const Radian& val) { return (float)fastASin1(val.valueRadians()); } /** * @brief Inverse sine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastASin0". */ static float fastASin1(float val); /** * @brief Inverse cosine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastACos0(const Radian& val) { return (float)fastACos0(val.valueRadians()); } /** * @brief Inverse cosine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastACos0(float val); /** * @brief Inverse cosine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastACos0". */ static float fastACos1(const Radian& val) { return (float)fastACos1(val.valueRadians()); } /** * @brief Inverse cosine function approximation. * * @param val Angle in range [0, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastACos0". */ static float fastACos1(float val); /** * @brief Inverse tangent function approximation. * * @param val Angle in range [-1, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastATan0(const Radian& val) { return (float)fastATan0(val.valueRadians()); } /** * @brief Inverse tangent function approximation. * * @param val Angle in range [-1, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. */ static float fastATan0(float val); /** * @brief Inverse tangent function approximation. * * @param val Angle in range [-1, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastATan0". */ static float fastATan1(const Radian& val) { return (float)fastATan1(val.valueRadians()); } /** * @brief Inverse tangent function approximation. * * @param val Angle in range [-1, 1]. * * @note Evaluates trigonometric functions using polynomial approximations. * Slightly better (and slower) than "fastATan0". */ static float fastATan1(float val); static const float POS_INFINITY; static const float NEG_INFINITY; static const float PI; static const float TWO_PI; static const float HALF_PI; static const float DEG2RAD; static const float RAD2DEG; static const float LOG2; }; }