#pragma once #include "BsCorePrerequisites.h" #include "BsResource.h" #include "BsStringID.h" #include "BsResourceMetaData.h" namespace BansheeEngine { /** @addtogroup Material * @{ */ /** * Describes a single data (int, Vector2, etc.) shader parameter. * * @see Shader::addParameter(). */ struct SHADER_DATA_PARAM_DESC { String name; String gpuVariableName; GpuParamDataType type; StringID rendererSemantic; UINT32 arraySize; UINT32 elementSize; UINT32 defaultValueIdx; }; /** * Describes a single object (texture, sampler state, etc.) shader parameter. * * @see Shader::addParameter(). */ struct SHADER_OBJECT_PARAM_DESC { String name; Vector gpuVariableNames; StringID rendererSemantic; GpuParamObjectType type; UINT32 defaultValueIdx; }; /** Describes a shader parameter block. */ struct SHADER_PARAM_BLOCK_DESC { String name; bool shared; StringID rendererSemantic; GpuParamBlockUsage usage; }; /** @} */ /** @addtogroup Implementation * @{ */ /** Structure used for initializing a shader. */ template struct BS_CORE_EXPORT TSHADER_DESC { template struct TTextureType {}; template<> struct TTextureType < false > { typedef HTexture Type; }; template<> struct TTextureType < true > { typedef SPtr Type; }; template struct TSamplerStateType {}; template<> struct TSamplerStateType < false > { typedef SamplerStatePtr Type; }; template<> struct TSamplerStateType < true > { typedef SPtr Type; }; typedef typename TTextureType::Type TextureType; typedef typename TSamplerStateType::Type SamplerStateType; TSHADER_DESC(); /** * Registers a new data (int, Vector2, etc.) parameter you that you may then use via Material by providing the * parameter name. All parameters internally map to variables defined in GPU programs. * * @param[in] name The name of the parameter. Name must be unique between all data and object parameters. * @param[in] gpuVariableName Name of the GPU variable in the GpuProgram that the parameter corresponds with. * @param[in] type The type of the parameter, must be the same as the type in GpuProgram. * @param[in] rendererSemantic (optional) Semantic that allows you to specify the use of this parameter in the * renderer. The actual value of the semantic depends on the current Renderer and * its supported list of semantics. Elements with renderer semantics should not be * updated by the user, and will be updated by the renderer. These semantics will * also be used to determine if a shader is compatible with a specific renderer * or not. Value of 0 signifies the parameter is not used by the renderer. * @param[in] arraySize (optional) If the parameter is an array, the number of elements in the array. * Size of 1 means its not an array. * @param[in] elementSize (optional) Size of an individual element in the array, in bytes. You only need * to set this if you are setting variable length parameters, like structs. * @param[in] defaultValue (optional) Pointer to the buffer containing the default value for this parameter * (initial value that will be set when a material is initialized with this shader). * The provided buffer must be of the correct size (depending on the element type * and array size). * * @note If multiple parameters are given with the same name but different types behavior is undefined. */ void addParameter(const String& name, const String& gpuVariableName, GpuParamDataType type, StringID rendererSemantic = StringID::NONE, UINT32 arraySize = 1, UINT32 elementSize = 0, UINT8* defaultValue = nullptr); /** * Registers a new object (texture, sampler state, etc.) parameter you that you may then use via Material by * providing the parameter name. All parameters internally map to variables defined in GPU programs. Multiple GPU * variables may be mapped to a single parameter in which case the first variable actually found in the program will * be used while others will be ignored. * * @param[in] name The name of the parameter. Name must be unique between all data and object parameters. * @param[in] gpuVariableName Name of the GPU variable in the GpuProgram that the parameter corresponds with. * @param[in] type The type of the parameter, must be the same as the type in GpuProgram. * @param[in] rendererSemantic (optional) Semantic that allows you to specify the use of this parameter in the * renderer. The actual value of the semantic depends on the current Renderer and * its supported list of semantics. Elements with renderer semantics should not be * updated by the user, and will be updated by the renderer. These semantics will * also be used to determine if a shader is compatible with a specific renderer or * not. Value of 0 signifies the parameter is not used by the renderer. * * @note * If multiple parameters are given with the same name but different types behavior is undefined. You are allowed * to call this method multiple times in order to map multiple GPU variable names to a single parameter, but the * default value (if any) will only be recognized on the first call. Mapping multiple GPU variables to a single * parameter is useful when you are defining a shader that supports techniques across different render systems * where GPU variable names for the same parameters might differ. */ void addParameter(const String& name, const String& gpuVariableName, GpuParamObjectType type, StringID rendererSemantic = StringID::NONE); /** * @see SHADER_DESC::addParameter(const String&, const String&, GpuParamObjectType, StringID) * * @note * Specialized version of addParameter that accepts a default sampler value that will be used for initializing the * object parameter upon Material creation. Default sampler value is only valid if the object type is one of the * sampler types. */ void addParameter(const String& name, const String& gpuVariableName, GpuParamObjectType type, const SamplerStateType& defaultValue, StringID rendererSemantic = StringID::NONE); /** * @see SHADER_DESC::addParameter(const String&, const String&, GpuParamObjectType, StringID) * * @note * Specialized version of addParameter that accepts a default texture value that will be used for initializing the * object parameter upon Material creation. Default texture value is only valid if the object type is one of the * texture types. */ void addParameter(const String& name, const String& gpuVariableName, GpuParamObjectType type, const TextureType& defaultValue, StringID rendererSemantic = StringID::NONE); /** * Changes parameters of a parameter block with the specified name. * * @param[in] name Name of the parameter block. This should correspond with the name specified in * the GPU program code. * @param[in] shared If parameter block is marked as shared it will not be automatically created by * the Material. You will need to create it elsewhere and then assign it manually. * @param[in] usage Specified how often do we plan on modifying the buffer, which determines how is * the buffer internally stored for best performance. * @param[in] rendererSemantic (optional) Semantic that allows you to specify the use of this parameter block * in the renderer. The actual value of the semantic depends on the current * Renderer and its supported list of semantics. Elements with a renderer semantic * will not have their parameter block automatically created (similar to "shared" * argument), but instead a Renderer will create an assign it instead. Be aware * that renderers have strict policies on what and how are parameters stored in the * buffer and you will need to respect them. If you don't respect them your shader * will be deemed incompatible and won't be used. Value of 0 signifies the parameter * block is not used by the renderer. */ void setParamBlockAttribs(const String& name, bool shared, GpuParamBlockUsage usage, StringID rendererSemantic = StringID::NONE); /** * Sorting type to use when performing sort in the render queue. Default value is sort front to back which causes * least overdraw and is preferable. Transparent objects need to be sorted back to front. You may also specify no * sorting and the elements will be rendered in the order they were added to the render queue. */ QueueSortType queueSortType; /** * Priority that allows you to control in what order are your shaders rendered. See QueuePriority for a list of * initial values. Shaders with higher priority will be rendered before shaders with lower priority, and * additionally render queue will only sort elements within the same priority group. * * @note * This is useful when you want all your opaque objects to be rendered before you start drawing your transparent * ones. Or to render your overlays after everything else. Values provided in QueuePriority are just for general * guidance and feel free to increase them or decrease them for finer tuning. (e.g. QueuePriority::Opaque + 1). */ INT32 queuePriority; /** * Enables or disables separable passes. When separable passes are disabled all shader passes will be executed in a * sequence one after another. If it is disabled the renderer is free to mix and match passes from different * objects to achieve best performance. (They will still be executed in sequence, but some other object may be * rendered in-between passes) * * @note Shaders with transparency generally can't be separable, while opaque can. */ bool separablePasses; /** Flags that let the renderer know how should it interpret the shader. */ UINT32 flags; Map dataParams; Map textureParams; Map bufferParams; Map samplerParams; Map paramBlocks; Vector dataDefaultValues; Vector samplerDefaultValues; Vector textureDefaultValues; private: /** * @copydoc addParameter(const String&, const String&, GpuParamObjectType, StringID) * * @note Common method shared by different addParameter overloads. */ void addParameterInternal(const String& name, const String& gpuVariableName, GpuParamObjectType type, StringID rendererSemantic, UINT32 defaultValueIdx); }; /** * Shader represents a collection of techniques. They are used in Materials, which can be considered as instances of a * Shader. Multiple materials may share the same shader but provide different parameters to it. * * Shader will always choose the first supported technique based on the current render system, render manager and other * properties. So make sure to add most important techniques first so you make sure they are used if they are supported. * * @note Templated version of Shader used for implementing both sim and core thread variants. */ template class BS_CORE_EXPORT TShader { public: template struct TTechniqueType {}; template<> struct TTechniqueType < false > { typedef Technique Type; }; template<> struct TTechniqueType < true > { typedef TechniqueCore Type; }; typedef typename TTechniqueType::Type TechniqueType; typedef typename TSHADER_DESC::TextureType TextureType; typedef typename TSHADER_DESC::SamplerStateType SamplerStateType; TShader() { } TShader(const String& name, const TSHADER_DESC& desc, const Vector>& techniques, UINT32 id); virtual ~TShader(); /** Returns the total number of techniques in this shader. */ UINT32 getNumTechniques() const { return (UINT32)mTechniques.size(); } /** * Gets the best supported technique based on current render and other systems. Returns null if not a single * technique is supported. */ SPtr getBestTechnique() const; /** * Returns currently active queue sort type. * * @see SHADER_DESC::queueSortType */ QueueSortType getQueueSortType() const { return mDesc.queueSortType; } /** * Returns currently active queue priority. * * @see SHADER_DESC::queuePriority */ INT32 getQueuePriority() const { return mDesc.queuePriority; } /** * Returns if separable passes are allowed. * * @see SHADER_DESC::separablePasses */ bool getAllowSeparablePasses() const { return mDesc.separablePasses; } /** * Returns flags that control how the renderer interprets the shader. Actual interpretation of the flags depends on * the active renderer. */ UINT32 getFlags() const { return mDesc.flags; } /** Returns type of the parameter with the specified name. Throws exception if the parameter doesn't exist. */ GpuParamType getParamType(const String& name) const; /** * Returns description for a data parameter with the specified name. Throws exception if the parameter doesn't exist. */ const SHADER_DATA_PARAM_DESC& getDataParamDesc(const String& name) const; /** * Returns description for a texture parameter with the specified name. Throws exception if the parameter doesn't * exist. */ const SHADER_OBJECT_PARAM_DESC& getTextureParamDesc(const String& name) const; /** * Returns description for a sampler parameter with the specified name. Throws exception if the parameter doesn't * exist. */ const SHADER_OBJECT_PARAM_DESC& getSamplerParamDesc(const String& name) const; /** * Returns description for a buffer parameter with the specified name. Throws exception if the parameter doesn't * exist. */ const SHADER_OBJECT_PARAM_DESC& getBufferParamDesc(const String& name) const; /** Checks if the parameter with the specified name exists, and is a data parameter. */ bool hasDataParam(const String& name) const; /** Checks if the parameter with the specified name exists, and is a texture parameter. */ bool hasTextureParam(const String& name) const; /** Checks if the parameter with the specified name exists, and is a sampler parameter. */ bool hasSamplerParam(const String& name) const; /** Checks if the parameter with the specified name exists, and is a buffer parameter. */ bool hasBufferParam(const String& name) const; /** Returns a map of all data parameters in the shader. */ const Map& getDataParams() const { return mDesc.dataParams; } /** Returns a map of all texture parameters in the shader. */ const Map& getTextureParams() const { return mDesc.textureParams; } /** Returns a map of all buffer parameters in the shader. */ const Map& getBufferParams() const { return mDesc.bufferParams; } /** Returns a map of all sampler parameters in the shader. */ const Map& getSamplerParams() const { return mDesc.samplerParams; } /** Returns a map of all parameter blocks. */ const Map& getParamBlocks() const { return mDesc.paramBlocks; } /** * Returns a default texture for a parameter that has the specified default value index (retrieved from the * parameters descriptor). */ TextureType getDefaultTexture(UINT32 index) const; /** * Returns a default sampler state for a parameter that has the specified default value index (retrieved from the * parameters descriptor). */ SamplerStateType getDefaultSampler(UINT32 index) const; /** * Returns a pointer to the internal buffer containing the default value for a data parameter that has the * specified default value index (retrieved from the parameters descriptor). */ UINT8* getDefaultValue(UINT32 index) const; /** Returns the unique shader ID. */ UINT32 getId() const { return mId; } protected: String mName; TSHADER_DESC mDesc; Vector> mTechniques; UINT32 mId; }; /** @} */ /** @addtogroup Material * @{ */ /** @cond INTERNAL */ typedef TSHADER_DESC SHADER_DESC_CORE; /** @copydoc ShaderBase */ class BS_CORE_EXPORT ShaderCore : public CoreObjectCore, public TShader { public: /** @copydoc Shader::create */ static SPtr create(const String& name, const SHADER_DESC_CORE& desc, const Vector>& techniques); protected: friend class Shader; ShaderCore(const String& name, const SHADER_DESC_CORE& desc, const Vector>& techniques, UINT32 id); static std::atomic mNextShaderId; }; /** @endcond */ typedef TSHADER_DESC SHADER_DESC; /** @copydoc ShaderBase */ class BS_CORE_EXPORT Shader : public Resource, public TShader { public: /** Retrieves an implementation of a shader usable only from the core thread. */ SPtr getCore() const; /** * Sets a list include file paths that are referenced by this shader. * * @note * This is not used directly by the shader as includes are expected to be processed during GPU program and state * creation, but it may be referenced by higher layers for various purposes. */ void setIncludeFiles(const Vector& includes); /** Checks is the provided object type a sampler. */ static bool isSampler(GpuParamObjectType type); /** Checks is the provided object type a texture. */ static bool isTexture(GpuParamObjectType type); /** Checks is the provided object type a buffer. */ static bool isBuffer(GpuParamObjectType type); /** * Returns the size in bytes for a specific data type. * * @note Returns 0 for variable size types like structures. */ static UINT32 getDataParamSize(GpuParamDataType type); /** Creates a new shader resource using the provided descriptor and techniques. */ static HShader create(const String& name, const SHADER_DESC& desc, const Vector>& techniques); /** Returns a shader object but doesn't initialize it. */ static ShaderPtr createEmpty(); /** @cond INTERNAL */ /** * Creates a new shader object using the provided descriptor and techniques. * * @note Internal method. */ static ShaderPtr _createPtr(const String& name, const SHADER_DESC& desc, const Vector>& techniques); /** @endcond */ private: Shader(const String& name, const SHADER_DESC& desc, const Vector>& techniques, UINT32 id); /** @copydoc CoreObject::getCoreDependencies */ void getCoreDependencies(Vector& dependencies) override; /** @copydoc CoreObject::createCore */ SPtr createCore() const override; /** Converts a sim thread version of the shader descriptor to a core thread version. */ SHADER_DESC_CORE convertDesc(const SHADER_DESC& desc) const; private: /************************************************************************/ /* RTTI */ /************************************************************************/ Shader() { } public: friend class ShaderRTTI; static RTTITypeBase* getRTTIStatic(); virtual RTTITypeBase* getRTTI() const override; }; /** @cond INTERNAL */ /** Shader specific resource meta-data containing information about referenced include files. */ class BS_CORE_EXPORT ShaderMetaData : public ResourceMetaData { public: Vector includes; /************************************************************************/ /* SERIALIZATION */ /************************************************************************/ public: friend class ShaderMetaDataRTTI; static RTTITypeBase* getRTTIStatic(); virtual RTTITypeBase* getRTTI() const override; }; /** @endcond */ /** @} */ }